
Aggregation Functions

Aggregation is the process of combining several numerical values into a single
representative value, and an aggregation function performs this operation. These
functions arise wherever aggregating information is important: applied and pure
mathematics (probability, statistics, decision theory, functional equations),
operations research, computer science, and many applied fields (economics and
finance, pattern recognition and image processing, data fusion, etc.).

This readable book provides a comprehensive, rigorous and self-contained
exposition of aggregation functions. Classes of aggregation functions covered
include triangular norms and conorms, copulas, means and averages, and those
based on nonadditive integrals. The properties of each method, as well as their
interpretation and analysis, are studied in depth, together with construction methods
and practical identification methods. Special attention is given to the nature of scales
on which values to be aggregated are defined (ordinal, interval, ratio, bipolar). It is
an ideal introduction for graduate students and a unique resource for researchers.
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Preface

The process of combining several numerical values into a single representative one
is called aggregation, and the numerical function performing this process is called
an aggregation function. This simple definition demonstrates the size of the field of
application of aggregation: applied mathematics (e.g., probability, statistics, deci-
sion theory), computer sciences (e.g., artificial intelligence, operations research), as
well as many applied fields (economics and finance, pattern recognition and image
processing, data fusion, multicriteria decision aid, automated reasoning, etc.).

Although the history of aggregation is probably as old as mathematics (think of the
arithmetic mean), its existence has remained underground till only recently, and its
utilization rather intuitive and hardly formalized. The rapid growth of the above-
mentioned application fields, largely due to the arrival of computers, has made
necessary the establishment of a sound theoretical basis for aggregation functions.
Hence, since the 1980s, aggregation functions have become a genuine research field,
rapidly developing, but in a rather scattered way since aggregation functions are
rooted in many different fields. Indeed, most of the results were disseminated in vari-
ous journals or specialized books, where usually only one specific class of aggregation
functions devoted to one specific domain is discussed.

Actually, in these early years of the twenty-first century, a substantial amount
of literature is already available, many significant results have been found (such as
characterizations of various families of aggregation functions), and many connections
have been made with either related fields or former work (such as triangular norms in
probabilistic metric spaces, theory of means and averages, etc.). Yet for the researcher
as well as for the practitioner, this abundance of literature, because it is scattered in
many domains, is more a handicap than an advantage, and there is a real lack of a
unified and complete view of aggregation functions, where one could find the most
important concepts and results presented in a clear and rigorous way.

This book has been written with the intention of filling this gap: it offers a full,
comprehensive, rigorous, and unified treatment of aggregation functions. Our main
motivation has been to bring a unified viewpoint of the aggregation problem, and to

xiii
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xiv Preface

provide an abstract mathematical presentation and analysis of aggregation functions
used in various disciplines, without referring explicitly to a given domain. The book
also provides a unified terminology and notation.

To reach this aim, we have tried to follow as closely as possible the following
guidelines. First, by contrast to the style of many handbooks, the chapters are not a
collection of definitions, facts and assertions without proof, but we have maintained a
straight, visible and logical line in our discourse, avoiding anecdotal details. Second,
our aim was not to be exhaustive, citing every latest advance in the field, but to be
selective, and put material into a historical perspective. As far as possible, we have
tried to provide the original references. Third, the presentation is mathematical and
rigorous, avoiding jargon and inherent imprecision from the various applied domains
where aggregation functions are used (often under different names such as aggregation
operators, merging functions, connectives, etc.), but keeping as far as possible the
standard terminology of mathematics. This is the only way to make the book usable
by every researcher or practitioner in every field. As far as possible, every result is
given with its proof, unless the proof is long and requires extra material. In this case,
a reference to the proof is always given.

The book is intended primarily for researchers and graduate students in applied
mathematics and computer sciences, secondarily for practitioners in, for example,
decision making, optimization, economics and finance, artificial intelligence, data
fusion, computer vision, etc. It could also be used as a textbook for graduate students
in applied mathematics and computer sciences. The reader of the book is assumed to
have the basic knowledge of a graduate student in algebra and analysis.

The table of contents has been detailed. The main theoretical corpus is given in
Chapters 2 to 5. Additional theoretical material is given in Chapters 6 to 9, while
Chapters 10 and 11 are more practically oriented. In Chapters 2 to 5, as far as possible,
most of the results are given with proof. Due to space limitations and forest saving,
it has not been possible to maintain this philosophy in the second part of the book,
which has too broad a scope.

– Chapter 1: Introduction
The general idea of an aggregation function is presented, and the scope of the book
is defined. After giving some basic examples and definitions, the conventional
notation for the whole book is presented.

– Chapter 2: Properties for aggregation
This important chapter defines the basic possible properties for aggregation func-
tions. They are divided into elementary mathematical properties (monotonicity,
continuity, symmetry, etc.), grouping properties (associativity, decomposability,
etc.), scale invariance (ratio, difference, interval, ordinal scales), and various other
properties (neutral and annihilator elements, additivity, etc.).

– Chapter 3: Conjunctive and disjunctive aggregation functions
Conjunctive (respectively, disjunctive) aggregation functions are those functions
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Preface xv

acting like a logical “and” (respectively, a logical “or”). In this chapter, full devel-
opment is given for conjunctive aggregation functions. Disjunctive aggregation
functions are merely obtained by duality. A large section is devoted to triangular
norms (t-norms for short): different families, continuous Archimedean t-norms,
additively generated t-norms, ordinal sums, etc. Another important section is
devoted to copulas, well known in probability theory. Two other sections present
uninorms and nullnorms (combinations of t-norms and t-conorms).

– Chapter 4: Means and averages
This chapter develops perhaps the best known family of aggregation functions,
with a long history. The concepts of means and average functions, as well as
their relationships, are first presented in full generality. Then main subclasses of
means, such as quasi-arithmetic ones, some of their special cases, and some of their
generalizations are presented. A section is then devoted to means constructed from
the associativity property and another one to those means constructed from a mean
value property, such as Cauchy means. A section also concerns some construction
methods. Finally, the last section deals with extended means constructed from
weight triangles.

– Chapter 5: Aggregation functions based on nonadditive integrals
Considering nonadditive integrals (e.g., the Choquet integral) in the discrete finite
case defines a new class of aggregation functions, in which interest developed in
the 1980s. Nonadditive integrals are defined with respect to capacities (nonadditive
monotone measures), and in particular generalize the notion of expected value. A
first section defines capacities, their properties and related notions. An important
section is devoted to the Choquet integral, since this is the most representative of
nonadditive integrals, possessing many appealing properties. Then the case of the
Sugeno integral is presented, and finally other families of nonadditive integrals.

– Chapter 6: Construction methods
This chapter gives some means to create new aggregation functions from existing
ones. The main operations to do this are transformation, composition, introduction
of weights on variables, ordinal sums, and various other means (idempotization,
etc.). Also optimization tasks yielding aggregation functions are discussed.

– Chapter 7: Aggregation on specific scale types
This chapter addresses the important concern of choosing appropriate aggregation
functions by taking into account the scale types of the input and output variables.
The scale type of a variable is defined by a class of admissible transformations,
such as that from grams to pounds or degrees Fahrenheit to degrees centigrade,
that change the scale into another acceptable scale. We describe the aggregation
functions that are meaningful when considering ratio, difference, interval, and
log-ratio scales.

– Chapter 8: Aggregation on ordinal scales
On ordinal scales, all usual arithmetic operations become meaningless in the
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xvi Preface

measurement theoretical point of view, and allowed operations are more or less lim-
ited to comparisons and projections. We investigate which aggregation functions
are meaningful on ordinal scales.

– Chapter 9: Aggregation on bipolar scales
Most aggregation functions are defined on the [0, 1] interval (unipolar scale). This
chapter analyzes how to extend them to the interval [−1, 1] (bipolar scale), that
is, to perform a kind of symmetrization with respect to 0 while keeping properties
of the aggregation function. This nontrivial problem is motivated essentially by
decision making, where most often bipolar scales are more suitable than unipolar
ones.

– Chapter 10: Behavioral analysis of aggregation functions
This chapter gives various ways to understand, analyze and quantify the “behavior”
of an aggregation function, that is, how the output of the function behaves with
respect to its variables. This is done through various indices and values (like the
expected value), which in some sense constitutes the identity card of the aggregation
function.

– Chapter 11: Identification of aggregation functions
An important topic in practice is how to choose a suitable aggregation function.
Chapters 2 to 5 and Chapter 10 provide the keys to selecting the suitable family of
aggregation functions and to understanding its behavior, but a precise identification
(i.e., what is the value of the parameter(s)?) is not always possible. This chapter
gives various ways to identify aggregation functions from data. This often reduces
to solving an optimization problem, most of the time a least squares regression
problem under constraints.

– Appendix A: Aggregation of infinitely many arguments
This appendix explores the rather unexpected consequences of defining an aggre-
gation function with an infinite (either countable or uncountable) number of
arguments.

– Appendix B: Examples and applications
A short description is given with references to the main fields of application
of aggregation functions, namely in decision making, data fusion, and artificial
intelligence. A last section details an application to the mixture of uncertainty
measures.

The genesis of the book goes back to the summer of 2002, on the shores of Lake
Annecy, a charming place in the Alps in the South of France. We were there together
for the IPMU Congress, and inspired by the beauty of the landscape, we decided to
start the great adventure of writing a book on aggregation functions. During the next
six years, we exchanged hundreds of emails, and took advantage as far as possible
of many congresses, workshops, and projects to meet, visit each other, discuss the
book, and incidentally see many other nice landscapes. We started as colleagues in
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Preface xvii

mathematics and computer science, and finished as close friends, having experienced
and learnt a lot, apart from mathematics, about ourselves and each other.

The authors gratefully acknowledge the support of their respective institutions
during the long period of writing the manuscript, namely, the Computer Science Lab-
oratory, University of Paris VI, the Center of Economics of the Sorbonne, University
of Paris I, the Mathematics Research Unit, University of Luxembourg, the Depart-
ment of Mathematics and Descriptive Geometry, Faculty of Civil Engineering, Slovak
University of Technology, Bratislava, the Department of Mathematics and Informat-
ics, University of Novi Sad, the Academy of Sciences and Arts of Vojvodina (Novi
Sad), and the European Academy of Sciences (Brussels).

During this period, we benefited from the support of various projects which
facilitated communication and collaboration among us, in particular the bilateral
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Paris, and the bilateral project SK-SRB-19 between Slovakia and Serbia, the internal
research project Mathematics Research in Decision Making and Operations Research,
F1R-MTH-PUL-09MRDO, supported by the University of Luxembourg, projects
APVV-0375-06, APVV-0012-07, and VEGA 1/4209/07, supported by the Slovak
Grant Agency for Sciences, the national grants MNTRS (Serbia, Project 144012),
Provincial Secretariat for Science and Technological Development of Vojvodina, and
MTA HMTA (Hungary).

Last but not least, the authors are indebted to many colleagues for stimulating dis-
cussions, fruitful scientific exchanges, and for having agreed to read parts of the book
and thus to correct a number of errors. In particular we would like to thank Jayaram
Balasubrahmaniam, Gleb Beliakov, Dieter Denneberg, Jozo Dujmović, János Fodor,
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