
Cambridge University Press & Assessment
978-0-521-51888-8 — Dark Energy
Pilar Ruiz-Lapuente
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1

Dark energy, gravitation and the

Copernican principle

J E A N - P H I L I P P E U Z A N

1.1 Cosmological models and their hypotheses

1.1.1 Introduction

The progress of physical cosmology during the past ten years has led to a “stan-

dard” cosmological model in agreement with all available data. Its parameters are

measured with increasing precision but it requires the introduction of a dark sec-

tor, including both dark matter and dark energy, attracting the attention of both

observers and theoreticians.

Among all the observational conclusions, the existence of a recent acceleration

phase of the cosmic expansion has become more and more robust. The quest for

the understanding of its physical origin is however just starting (Peebles and Ratra,

2003; Peter and Uzan, 2005; Copeland et al., 2006; Uzan, 2007). Models and spec-

ulations are flourishing and we may wonder to what extent the observations of our

local universe may reveal the physical nature of the dark energy. In particular, there

exist limitations to this quest intrinsic to cosmology, related to the fact that most

observations are located on our past light-cone (Ellis, 1975), and to finite volume

effects (Bernardeau and Uzan, 2004) that can make many physically acceptable

possibilities indistinguishable in practice.

This text discusses the relations between the cosmic acceleration and the theory

of gravitation and more generally with the hypotheses underlying the construc-

tion of our cosmological model, such as the validity of general relativity on

astrophysical scales and the Copernican principle. We hope to illustrate that cos-

mological data now have the potential to test these hypotheses, which go beyond

the measurements of the parameters.
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4 Dark energy, gravitation and the Copernican principle

1.1.2 Cosmology, physics and astronomy

Cosmology sits at the crossroads between theoretical physics and astronomy.

Theoretical physics, based on physical laws, tries to describe the fundamental

components of nature and their interactions. These laws can be probed locally by

experiments. These laws need to be extrapolated to construct cosmological models.

Hence, any new idea or discovery concerning these laws can naturally call for

an extension of our cosmological model (e.g. introducing massive neutrinos in

cosmology is now mandatory).

Astronomy confronts us with phenomena that we have to understand and explain

consistently. This often requires the introduction of hypotheses beyond those of the

physical theories (Section 1.1.3) in order to “save the phenomena” (Duhem, 1908),

as is actually the case with the dark sector of our cosmological model. Needless to

say, even if a cosmological model is in agreement with all observations, whatever

their accuracy, it does not prove that it is the “correct” model of the universe, in

the sense that it is the correct cosmological extrapolation and solution of the local

physical laws.

Dark energy confronts us with a compatibility problem since, in order to “save

the phenomena” of the observations, we have to include new ingredients (cos-

mological constant, matter fields or interactions) beyond those of our established

physical theories. However, the required value for the simplest dark energy model,

i.e. the cosmological constant, is more than 60 orders of magnitude smaller than

what is expected from theoretical grounds (Section 1.1.6). This tension between

what is required by astronomy and what is expected from physics reminds us of

the twenty-centuries long debate between Aristotelians and Ptolemaeans (Duhem,

1913), that was resolved not only by the Copernican model but more importantly

by a better understanding of the physics, since Newton’s gravity was compatible

only with one of these three models that, at the time, could not be distinguished

observationally.

1.1.3 Hypotheses of our cosmological model

The construction of any cosmological model relies on four main hypotheses:

(H1) a theory of gravity,

(H2) a description of the matter contained in the universe and its non-gravitational

interactions,

(H3) symmetry hypotheses, and

(H4) a hypothesis on the global structure, i.e. the topology, of the universe.

These hypotheses are not on the same footing, since H1 and H2 refer to the phys-

ical theories. These two hypotheses are, however, not sufficient to solve the field
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1.1 Cosmological models and their hypotheses 5

equations and we must make an assumption on the symmetries (H3) of the solu-

tions describing our universe on large scales, while H4 is an assumption on some

global properties of these cosmological solutions, with the same local geometry.

Our reference cosmological model is the �CDM model. It assumes that grav-

ity is described by general relativity (H1), that the universe contains the fields of

the standard model of particle physics plus some dark matter and a cosmological

constant, the last two having no physical explanation at the moment. Note that

in the cosmological context this involves an extra assumption, since what will be

required by the Einstein equations is the effective stress–energy tensor averaged

on large scales. It thus implicitly refers to a, usually not explicit, averaging proce-

dure (Ellis and Buchert, 2005). It also deeply involves the Copernican principle as

a symmetry hypothesis (H3), without which the Einstein equations usually cannot

be solved, and usually assumes that the spatial sections are simply connected (H4).

H2 and H3 imply that the description of standard matter reduces to a mixture of a

pressureless fluid and a radiation perfect fluid.

1.1.4 Copernican principle

The cosmological principle supposes that the universe is spatially isotropic and

homogeneous. In particular, this implies that there exists a privileged class of

observers, called fundamental observers, who all see an isotropic universe around

them. It implies the existence of a cosmic time and states that all the properties

of the universe are the same everywhere at the same cosmic time. It is supposed

to hold for the smoothed-out structure of the universe on large scales. Indeed, this

principle has to be applied in a statistical sense since there exist structures in the

universe.

We can distinguish it from the Copernican principle which merely states that

we do not live in a special place (the center) in the universe. As long as isotropy

around the observer holds, this principle actually leads to the same conclusion as

the cosmological principle.

The cosmological principle makes definite predictions about all unobservable

regions beyond the observable universe. It completely determines the entire struc-

ture of the universe, even for regions that cannot be observed. From this point of

view, this hypothesis, which cannot be tested, is very strong. On the other hand,

it leads to a complete model of the universe. The Copernican principle has more

modest consequences and leads to the same conclusions but only for the observ-

able universe where isotropy has been verified. It does not make any prediction on

the structure of the universe for unobserved regions (in particular, space could be

homogeneous and non-isotropic on scales larger than the observable universe). We

refer to Bondi (1960), North (1965) and Ellis (1975) for further discussions on the

definition of these two principles.
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6 Dark energy, gravitation and the Copernican principle

We emphasize that, as will be discussed in the next section, our reference cosmo-

logical model includes a primordial phase of inflation in order to explain the origin

of the large-scale structures of the universe. Inflation gives a theoretical prejudice

in favor of the Copernican principle since it predicts that all classical (i.e. non-

quantum) inhomogeneities (curvature, shear, etc.) have been washed-out during

this phase. If it is sufficiently long, we expect the principle to hold on scales much

larger than those of the observable universe, hence backing-up the cosmological

principle, since unobservable regions today arise from the same causal process

that affected the conditions in our local universe. While the standard predictions of

inflation are in agreement with all astronomical data, we should not forget that it

is only a theoretical argument to which we shall come back if we find observable

evidence against isotropy (Pereira et al., 2007; Pitrou et al., 2008), curvature (Uzan

et al., 2003), and homogeneity (e.g. a spatial topology of the universe).

These principles lead to a Robertson–Walker (RW) geometry with metric

ds2 = 2dt2 + a2(t)³i j dx i dx j , (1.1)

where t is the cosmic time and ³i j is the spatial metric on the constant time hyper-

surfaces, which are homogeneous and isotropic, and thus of constant curvature. It

follows that the metric is reduced to a single function of time, the scale factor, a.

This implies that there is a one-to-one mapping between the cosmic time and the

redshift z:

1 + z =
a0

a(t)
, (1.2)

if the expansion is monotonous.

1.1.5 �CDM reference model

The dynamics of the scale factor can be determined from the Einstein equations

which reduce for the metric (1.1) to the Friedmann equations:

H2 =
8ÃG

3
Ä 2

K

a2
+

�

3
, (1.3)

ä

a
= 2

4ÃG

3
(Ä + 3P) +

�

3
. (1.4)

H c Ûa/a is the Hubble function and K = 0, ±1 is the curvature of the spa-

tial sections. G and � are the Newton and cosmological constants. Ä and P

are respectively the energy density and pressure of the cosmic fluids and are

related by

ÛÄ + 3H(Ä + P) = 0.
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1.1 Cosmological models and their hypotheses 7

Defining the dimensionless density parameters as

� =
8ÃGÄ

3H2
, �� =

�

3H2
, �K = 2

K

H2a2
, (1.5)

respectively for the matter, the cosmological constant and the curvature, the first

Friedmann equation can be rewritten as

E2(z) c
�

H

H0

�2

= �rad0(1 + z)4 + �mat0(1 + z)3 + �K 0(1 + z)2 + ��0, (1.6)

with �K 0 = 1 2 �rad0 2 �mat0 2 ��0. All background observables, such as the

luminosity distance, the angular distance, etc., are functions of E(z) and are thus

not independent.

Besides this background description, the �CDM also accounts for an under-

standing of the large-scale structure of our universe (galaxy distribution, cosmic

microwave background anisotropy) by using the theory of cosmological perturba-

tions at linear order. In particular, in the sub-Hubble regime, the growth rate of the

density perturbations is also a function of E(z).

One must, however, extend this minimal description by a primordial phase in

order to solve the standard cosmological problems (flatness, horizon, etc.). In our

reference model, we assume that this phase is described by an inflationary period

during which the expansion of the universe is almost exponentially accelerated. In

such a case, the initial conditions for the gravitational dynamics that will lead to

the large-scale structure are also determined so that our model is completely pre-

dictive. We refer to Chapter 8 of Peter and Uzan (2005) for a detailed description

of these issues that are part of our cosmological model but not directly related to

our actual discussion.

In this framework, the dark energy is well defined and reduces to a single num-

ber equivalent to a fluid with equation of state w = P/Ä = 21. This model is

compatible with all astronomical data, which roughly indicates that

��0 � 0.73, �mat0 � 0.27, �K 0 � 0.

1.1.6 The cosmological constant problem

This model is theoretically well-defined, observationally acceptable, phenomeno-

logically simple and economical. From the perspective of general relativity the

value of � is completely free and there is no argument allowing us to fix it,
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8 Dark energy, gravitation and the Copernican principle

or equivalently, the length scale �� = |�0|21/2, where �0 is the astronomically

deduced value of the cosmological constant. Cosmology roughly imposes that

|�0| f H2
0 ñó �� f H21

0 > 1026 m > 1041 GeV21.

In itself this value is no problem, as long as we only consider classical physics.

Notice, however, that it is disproportionately large compared to the natural scale

fixed by the Planck length:

�� > 1060�P ñó
�0

M2
Pl

< 102120 ñó Ä�0
< 102120 M4

Pl > 10247 GeV4,

(1.7)

when expressed in terms of energy density.

The main problem arises from the interpretation of the cosmological constant.

The local Lorentz invariance of the vacuum implies that its energy–momentum

tensor must take the form (Zel’dovich, 1988) �T vac
¿¿ � = 2�Ä�g¿¿ , which is equiv-

alent to that of a cosmological constant. From the quantum point of view, the

vacuum energy receives a contribution of the order of

�Ä�EW
vac > (200 GeV)4, �Ä�Pl

vac > (1018 GeV)4, (1.8)

arising from the zero point energy, respectively fixing the cutoff frequency of the

theory to the electroweak scale or to the Planck scale. This contribution implies

a disagreement of respectively 60 to 120 orders of magnitude with astronomical

observations!

This is the cosmological constant problem (Weinberg, 1989). It amounts to

understanding why

|Ä�0
| = |Ä� + �Ä�vac| < 10247 GeV4 (1.9)

or equivalently,

|�0| = |� + 8ÃG�Ä�vac| < 102120 M2
Pl, (1.10)

i.e. why Ä�0
is so small today, but non-zero.

Today, there is no known solution to this problem and two approaches have been

designed. One the one hand, one sticks to this model and extends the cosmological

model in order to explain why we observe such a small value of the cosmological

constant (Garriga and Vilenkin, 2004; Carr and Ellis, 2008). We shall come back

to this approach later. On the other hand, one hopes that there should exist a phys-

ical mechanism to exactly cancel the cosmological constant and looks for another

mechanism to explain the observed acceleration of the universe.
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1.2 Modifying the minimal �CDM 9

1.1.7 The equation of state of dark energy

The equation of state of the dark energy is obtained from the expansion his-

tory, assuming the standard Friedmann equation. It is thus given by the general

expression (Martin et al., 2006)

3�dewde = 21 + �K + 2q, (1.11)

q being the deceleration parameter,

q c 2
aä

Ûa2
= 21 +

1

2
(1 + z)

d ln H2

dz
. (1.12)

This expression (1.11) does not assume the validity of general relativity or any

theory of gravity, but gives the relation between the dynamics of the expansion

history and the property of the matter that would lead to this acceleration if general

relativity described gravity. Thus, the equation of state, as defined in Eq. (1.11),

reduces to the ratio of the pressure, Pde, to the energy density, Äde, of an effective

dark energy fluid under this assumption only, that is if

H2 =
8ÃG

3
(Ä + Äde) 2

K

a2
, (1.13)

ä

a
= 2

4ÃG

3
(Ä + Äde + 3P + 3Pde). (1.14)

All the background information about dark energy is thus encapsulated in the

single function wde(z). Most observational constraints on the dark energy equation

of state refer to this definition.

1.2 Modifying the minimal �CDM

The Copernican principle implies that the spacetime metric reduces to a single

function, the scale factor a(t), which can be Taylor expanded as a(t) = a0 + H0

(t 2 t0) 2 1
2
q0 H2

0 (t 2 t0)
2 + · · · . It follows that the conclusion that the cosmic

expansion is accelerating (q0 < 0) does not involve any hypothesis about the theory

of gravity (other than that the spacetime geometry can be described by a metric)

or the matter content, as long as this principle holds.

The assumption that the Copernican principle holds, and the fact that it is so

central in drawing our conclusion on the acceleration of the expansion, splits our

investigation into two avenues. Either we assume that the Copernican principle

holds and we have to modify the laws of fundamental physics or we abandon the
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10 Dark energy, gravitation and the Copernican principle

Copernican principle, hoping to explain dark energy without any new physics but

at the expense of living in a particular place in the universe. While the first solution

is more orthodox from a cosmological point of view, the second is indeed more

conservative from a physical point of view. It will be addressed in Section 1.2.4.

We are thus faced with a choice between “simple” cosmological solutions with

new physics and more involved cosmological solutions of standard physics.

This section focuses on the first approach. If general relativity holds then

Eq. (1.4) tells us that the dynamics has to be dominated by a dark energy fluid

with wde <21
3

for the expansion to be accelerated. The simplest solution is indeed

the cosmological constant � for which wde = 21 and which is the only model not

introducing new degrees of freedom.

1.2.1 General classification of physical models

1.2.1.1 General relativity

Einstein’s theory of gravity relies on two independent hypotheses.

First, the theory rests on the Einstein equivalence principle, which includes the

universality of free-fall, the local position and local Lorentz invariances in its weak

form (as other metric theories) and is conjectured to satisfy it in its strong form.

We refer to Will (1981) for a detailed explanation of these principles and their

implications. The weak equivalence principle can be mathematically implemented

by assuming that all matter fields are minimally coupled to a single metric tensor

g¿¿ . This metric defines the length and times measured by laboratory clocks and

rods so that it can be called the physical metric. This implies that the action for

any matter field, Ë say, can be written as Smatter[Ë, g¿¿]. This so-called metric

coupling ensures in particular the validity of the universality of free-fall.

The action for the gravitational sector is given by the Einstein–Hilbert action

Sgravity =
c3

16ÃG

�

d4x
:

2g7 R7, (1.15)

where g7
¿¿ is a massless spin-2 field called the Einstein metric. The second

hypothesis states that both metrics coincide

g¿¿ = g7
¿¿ .

The underlying physics of our reference cosmological model (i.e. hypotheses

H1 and H2) is thus described by the action

Sgravity =
c3

16ÃG

�

d4x
:

2g(R 2 2�) +
"

standard model+CDM

Smatter[Ëi , g¿¿], (1.16)
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1.2 Modifying the minimal �CDM 11

which includes all known matter fields plus two unknown components (in

bold face).

1.2.1.2 Local experimental constraints

The assumption of a metric coupling is well tested in the solar system. First, it

implies that all non-gravitational constants are spacetime independent, and have

been tested to a very high accuracy in many physical systems and for various

fundamental constants (Uzan, 2003, 2004; Uzan and Leclercq, 2008), e.g. at the

1027 level for the fine structure constant on time scales ranging to 2–4 Gyrs.

Second, the isotropy has been tested from the constraint on the possible quadrupo-

lar shift of nuclear energy levels (Prestage et al., 1985; Chupp et al., 1989;

Lamoreaux et al., 1986) proving that matter couples to a unique metric ten-

sor at the 10227 level. Third, the universality of free-fall of test bodies in an

external gravitational field at the 10213 level has been tested in the laboratory

(Baessler et al., 1999; Adelberger et al., 2001). The Lunar Laser ranging experi-

ment (Williams et al., 2004), which compares the relative acceleration of the Earth

and Moon in the gravitational field of the Sun, also probes the strong equivalence

principle at the 1024 level. Fourth, the Einstein effect (or gravitational redshift)

states that two identical clocks located at two different positions in a static Newton

potential U and compared by means of electromagnetic signals will exhibit a dif-

ference in clock rates of 1 + [U1 2 U2]/c2, where U is the gravitational potential.

This effect has been measured at the 2 × 1024 level (Vessot and Levine, 1978).

The parameterized post-Newtonian formalism (PPN) is a general formalism

that introduces 10 phenomenological parameters to describe any possible devi-

ation from general relativity at the first post-Newtonian order (Will, 1981). The

formalism assumes that gravity is described by a metric and that it does not

involve any characteristic scale. In its simplest form, it reduces to the two

Eddington parameters entering the metric of the Schwartzschild metric in isotropic

coordinates:

g00 = 21 +
2Gm

rc2
2 2³PPN

�

2Gm

rc2

�2

, gi j =
�

1 + 2³ PPN 2Gm

rc2

�

·i j .

Indeed, general relativity predicts ³PPN = ³ PPN = 1. These two phenomenolog-

ical parameters are constrained by: (1) the shift of the Mercury perihelion

(Shapiro et al., 1990), which implies that |2³ PPN 2 ³PPN 2 1| < 3 × 1023; (2)

the Lunar Laser ranging experiment (Williams et al., 2004) which implies

|4³PPN 2 ³ PPN 2 3| = (4.4 ± 4.5) × 1024 and (3) the deflection of electromag-

netic signals, which are all controlled by ³ PPN. For instance, very long baseline

interferometry (Shapiro et al., 2004) implies that |³ PPN 2 1| = 4 × 1024, while
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12 Dark energy, gravitation and the Copernican principle

measurement of the time delay variation to the Cassini spacecraft (Bertotti et al.,

2003) sets ³ PPN 21 = (2.1 ± 2.3) × 1025.

The PPN formalism does not allow us to test finite range effects that could be

caused e.g. by a massive degree of freedom. In that case one expects a Yukawa-type

deviation from the Newton potential,

V =
Gm

r

�

1 + ³e2r/»
�

,

that can be probed by “fifth force” experimental searches. » characterizes the

range of the Yukawa deviation while its strength ³ may also include a composition

dependence (Uzan, 2003). The constraints on (», ³) are summarized in Hoyle et al.

(2004), which typically shows that ³ < 1022 on scales ranging from the millimeter

to the solar system size.

In general relativity, the graviton is massless. One can, however, give it a mass,

but this is very constrained. In particular, around a Minkowski background, the

mass term must have the very specific form of the Pauli–Fierz type in order to

avoid ghosts (see below for a more precise definition) being excited. This mass

term is, however, inconsistent with solar system constraints because there exists a

discontinuity (van Dam and Veltman, 1970; Zakharov, 1970) between the case of

a strictly massless graviton and a very light one. In particular, such a term can be

ruled out from the Mercury perihelion shift.

General relativity is also tested with pulsars (Damour and Esposito-Farèse,

1998; Esposito-Farèse, 2005) and in the strong field regime (Psaltis, 2008). For

more details we refer to Will (1981), Damour and Lilley (2008) and Turyshev

(2008). Needless to say, any extension of general relativity has to pass these con-

straints. However, deviations from general relativity can be larger in the past, as we

shall see, which makes cosmology an interesting physical system to extend these

constraints.

1.2.1.3 Universality classes

There are many possibilities to extend this minimal physical framework. Let us

start by defining universality classes (Uzan, 2007) by restricting our discussion

to field theories. This helps in identifying the new degrees of freedom and their

couplings.

The first two classes assume that gravitation is well described by general rela-

tivity and introduce new degrees of freedom beyond those of the standard model

of particle physics. This means that one adds a new term Sde[Ë; g¿¿] in the

action (1.16) while keeping the Einstein–Hilbert action and the coupling of all

the fields (standard matter and dark matter) unchanged. They are:

1. Class A consists of models in which the acceleration is driven by the gravitational effect

of the new fields. They thus must have an equation of state smaller than 2 1
3

. They are
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