

Bayesian Reasoning and Machine Learning

Extracting value from vast amounts of data presents a major challenge to all those working in computer science and related fields. Machine learning technology is already used to help with this task in a wide range of industrial applications, including search engines, DNA sequencing, stock market analysis and robot locomotion. As its usage becomes more widespread, the skills taught in this book will be invaluable to students.

Designed for final-year undergraduate and graduate students, this gentle introduction is ideally suited to readers without a solid background in linear algebra and calculus. It covers basic probabilistic reasoning to advanced techniques in machine learning, and crucially enables students to construct their own models for real-world problems by teaching them what lies behind the methods. A central conceptual theme is the use of Bayesian modelling to describe and build inference algorithms. Numerous examples and exercises are included in the text. Comprehensive resources for students and instructors are available online.

Bayesian Reasoning and Machine Learning

David Barber

University College London

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9780521518147

© D. Barber 2012

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2012 6th printing 2015

Printed in the United Kingdom by TJ International Ltd, Padstow, Cornwall

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Barber, David, 1968-

Bayesian reasoning and machine learning / David Barber.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-521-51814-7

1. Machine learning. 2. Bayesian statistical decision theory. I. Title.

QA267.B347 2012

006.3'1 - dc23 2011035553

ISBN 978-0-521-51814-7 Hardback

Additional resources for this publication at www.cambridge.org/brml and at www.cs.ucl.ac.uk/staff/D.Barber/brml

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

CONTENTS

Li	eface st of notation RMLTOOLBOX	xv xx xxi	3.3.1 Conditional independence3.3.2 The impact of collisions3.3.3 Graphical path manipulations
I Inference in probabilistic models 1 Probabilistic reasoning 1.1 Probability refresher 1.1.1 Interpreting conditional probability 1.1.2 Probability tables 1.2 Probabilistic reasoning 1.3 Prior, likelihood and posterior 1.3.1 Two dice: what were the individual scores? 1.4 Summary 1.5 Code 1.6 Exercises		3	for independence 3.3.4 d-separation 3.3.5 Graphical and distributional in/dependence 3.3.6 Markov equivalence in belief networks 3.3.7 Belief networks have limited expressibility 3.4 Causality 3.4.1 Simpson's paradox 3.4.2 The do-calculus 3.4.3 Influence diagrams and the do-calculus 3.5 Summary 3.6 Code 3.7 Exercises
2	Basic graph concepts 2.1 Graphs 2.2 Numerically encoding graphs 2.2.1 Edge list 2.2.2 Adjacency matrix 2.2.3 Clique matrix 2.3 Summary 2.4 Code 2.5 Exercises	22	4 Graphical models 4.1 Graphical models 4.2 Markov networks 4.2.1 Markov properties 4.2.2 Markov random fields 4.2.3 Hammersley-Clifford theorem 4.2.4 Conditional independence using Markov networks 4.2.5 Lattice models
3	Belief networks 3.1 The benefits of structure 3.1.1 Modelling independencies 3.1.2 Reducing the burden of specification	29	 4.3 Chain graphical models 4.4 Factor graphs 4.4.1 Conditional independence in factor graphs 4.5 Expressiveness of graphical models

> vi Contents 77 5 Efficient inference in trees 6.6.2 Computing the 5.1 Marginal inference normalisation constant of a distribution 5.1.1 Variable elimination in a The marginal likelihood 6.6.3 Markov chain and message 6.6.4 Some small JTA examples passing 6.6.5 Shafer-Shenoy propagation 5.1.2 The sum-product algorithm on factor graphs 6.7 Finding the most likely state Dealing with evidence 6.8 Reabsorption: converting a 5.1.3 5.1.4 Computing the marginal junction tree to a directed network likelihood 6.9 The need for approximations 5.1.5 The problem with loops 6.9.1 Bounded width junction trees 5.2 Other forms of inference 6.10 Summary 5.2.1 Max-product 6.11 Code 5.2.2 Finding the *N* most probable states 6.12 Exercises 5.2.3 Most probable path and shortest path 127 **Making decisions** 5.2.4 Mixed inference 7.1 Expected utility 5.3 Inference in multiply connected graphs 7.1.1 Utility of money 5.3.1 Bucket elimination 7.2 Decision trees 5.3.2 Loop-cut conditioning 7.3 Extending Bayesian networks 5.4 Message passing for continuous for decisions distributions 7.3.1 Syntax of influence 5.5 Summary diagrams 5.6 Code 7.4 Solving influence diagrams 5.7 Exercises 7.4.1 Messages on an ID 7.4.2 Using a junction tree The junction tree algorithm 102 7.5 Markov decision processes 6.1 Clustering variables 7.5.1 Maximising expected 6.1.1 Reparameterisation utility by message passing 6.2 Clique graphs 7.5.2 Bellman's equation 6.2.1 Absorption 7.6 Temporally unbounded MDPs 6.2.2 Absorption schedule on 7.6.1 Value iteration clique trees 7.6.2 Policy iteration 6.3 Junction trees 7.6.3 A curse of dimensionality 6.3.1 The running intersection 7.7 Variational inference and property planning 6.4 Constructing a junction tree for 7.8 Financial matters singly connected distributions 7.8.1 Options pricing and 6.4.1 Moralisation expected utility 6.4.2 Forming the clique graph 7.8.2 Binomial options pricing 6.4.3 Forming a junction tree from model a clique graph 7.8.3 Optimal investment 6.4.4 Assigning potentials to 7.9 Further topics cliques 7.9.1 Partially observable MDPs 6.5 Junction trees for multiply 7.9.2 Reinforcement learning connected distributions 7.10 Summary 6.5.1 Triangulation algorithms 7.11 Code 6.6 The junction tree algorithm 7.12 Exercises

6.6.1 Remarks on the JTA

Contents

Learning in probabilistic models Learning binary variable tables using a Beta prior 9.4.3 Learning multivariate Statistics for machine learning 165 discrete tables using a 8.1 Representing data Dirichlet prior 8.1.1 Categorical 9.5 Structure learning 8.1.2 Ordinal 9.5.1 PC algorithm 8.1.3 Numerical 9.5.2 Empirical independence 8.2 Distributions 9.5.3 Network scoring 8.2.1 The Kullback-Leibler 9.5.4 Chow-Liu trees divergence KL(q|p)9.6 Maximum likelihood for 8.2.2 Entropy and information undirected models 8.3 Classical distributions The likelihood gradient 8.4 Multivariate Gaussian 9.6.2 General tabular clique 8.4.1 Completing the square potentials 8.4.2 Conditioning as system 9.6.3 Decomposable Markov networks 8.4.3 Whitening and centring 9.6.4 Exponential form potentials 8.5 Exponential family 9.6.5 Conditional random fields 8.5.1 Conjugate priors 9.6.6 Pseudo likelihood 8.6 Learning distributions 9.6.7 Learning the structure 8.7 Properties of maximum likelihood 9.7 Summary Training assuming the 8.7.1 9.8 Code correct model class 9.9 Exercises Training when the assumed 8.7.2 model is incorrect 243 10 Naive Bayes 8.7.3 Maximum likelihood and 10.1 Naive Bayes and conditional the empirical distribution independence 8.8 Learning a Gaussian 10.2 Estimation using maximum 8.8.1 Maximum likelihood training 8.8.2 Bayesian inference of the likelihood mean and variance 10.2.1 Binary attributes 8.8.3 Gauss-gamma distribution 10.2.2 Multi-state variables 8.9 Summary 10.2.3 Text classification 8.10 Code 10.3 Bayesian naive Bayes 8.11 Exercises 10.4 Tree augmented naive Bayes 10.4.1 Learning tree augmented naive Bayes networks 199 Learning as inference 10.5 Summary 9.1 Learning as inference 10.6 Code 9.1.1 Learning the bias of a coin 9.1.2 Making decisions 10.7 Exercises 9.1.3 A continuum of parameters 9.1.4 Decisions based on 11 Learning with hidden variables 256 continuous intervals 11.1 Hidden variables and missing 9.2 Bayesian methods and ML-II data 9.3 Maximum likelihood training 11.1.1 Why hidden/missing of belief networks variables can complicate 9.4 Bayesian belief network training proceedings 9.4.1 Global and local parameter 11.1.2 The missing at random independence assumption

vii

viii				Contents
	11.1.3 Maximum likelihood 11.1.4 Identifiability issues 11.2 Expectation maximisation 11.2.1 Variational EM			12.7 Summary12.8 Code12.9 Exercises
	11.2.2 Classical EM11.2.3 Application to belief networks		III	Machine learning
	11.2.4 General case 11.2.5 Convergence 11.2.6 Application to Markov networks		13	Machine learning concepts 13.1 Styles of learning 13.1.1 Supervised learning
	11.3 Extensions of EM 11.3.1 Partial M-step 11.3.2 Partial E-step 11.4 A failure case for EM			13.1.2 Unsupervised learning13.1.3 Anomaly detection13.1.4 Online (sequential) learning13.1.5 Interacting with the environment
	11.5 Variational Bayes 11.5.1 EM is a special case of variational Bayes 11.5.2 An example: VB for the			13.1.6 Semi-supervised learning 13.2 Supervised learning 13.2.1 Utility and loss 13.2.2 Using the empirical
	Asbestos-Smoking-Cancer network			distribution
	11.6 Optimising the likelihood by gradient methods 11.6.1 Undirected models			13.2.3 Bayesian decision approach13.3 Bayes versus empirical decisions13.4 Summary
	11.7 Summary			13.5 Exercises
	11.8 Code 11.9 Exercises		14	Nearest neighbour classification 322 14.1 Do as your neighbour does
12	Bayesian model selection	284		14.2 K-nearest neighbours
	12.1 Comparing models the Bayesian way12.2 Illustrations: coin tossing			14.3 A probabilistic interpretation of nearest neighbours 14.3.1 When your nearest neighbour is far away
	12.2.1 A discrete parameter space12.2.2 A continuous parameter space			14.4 Summary14.5 Code14.6 Exercises
	12.3 Occam's razor and Bayesian			The Excluses
	complexity penalisation 12.4 A continuous example: curve fitting		15	Unsupervised linear dimension reduction 329
	12.5 Approximating the model likelihood 12.5.1 Laplace's method 12.5.2 Bayes information criterion			 15.1 High-dimensional spaces – low-dimensional manifolds 15.2 Principal components analysis 15.2.1 Deriving the optimal linear reconstruction
	12.6 Bayesian hypothesis testing for outcome analysis 12.6.1 Outcome analysis 12.6.2 <i>H</i> _{indep} : model likelihood 12.6.3 <i>H</i> _{same} : model likelihood			15.2.2 Maximum variance criterion 15.2.3 PCA algorithm 15.2.4 PCA and nearest neighbours classification
	12.6.4 Dependent outcome analysis 12.6.5 Is classifier <i>A</i> better than <i>B</i> ?			15.2.5 Comments on PCA

16

17

Co	ontents					ix
15.3	High-dimensional data				17.4.1 Logistic regression	
	15.3.1 Eigen-decomposition for $N < D$				17.4.2 Beyond first-order gradient ascent	
	15.3.2 PCA via singular value				17.4.3 Avoiding overconfident	
	decomposition				classification	
15.4	Latent semantic analysis				17.4.4 Multiple classes	
	15.4.1 Information retrieval				17.4.5 The kernel trick for	
15.5	PCA with missing data				classification	
	15.5.1 Finding the principal			17.5	Support vector machines	
	directions				17.5.1 Maximum margin linear	
	15.5.2 Collaborative filtering				classifier	
	using PCA with missing				17.5.2 Using kernels	
	data				17.5.3 Performing the optimisation	
15.6	Matrix decomposition methods				17.5.4 Probabilistic interpretation	
	15.6.1 Probabilistic latent			17.6	Soft zero-one loss for outlier	
	semantic analysis				robustness	
	15.6.2 Extensions and variations			17.7	Summary	
	15.6.3 Applications of PLSA/NMF			17.8	Code	
	Kernel PCA			17.9	Exercises	
15.8	Canonical correlation analysis					
	15.8.1 SVD formulation		18	Bayes	ian linear models	392
	Summary			18.1	Regression with additive	
	Code				Gaussian noise	
15.11	Exercises				18.1.1 Bayesian linear parameter models	
Super	vised linear dimension				18.1.2 Determining	
reduc	tion	359			hyperparameters: ML-II	
16.1	Supervised linear projections				18.1.3 Learning the	
16.2	Fisher's linear discriminant				hyperparameters using EM	
16.3	Canonical variates				18.1.4 Hyperparameter	
	16.3.1 Dealing with the nullspace				optimisation: using the	
16.4	Summary				gradient	
16.5	Code				18.1.5 Validation likelihood 18.1.6 Prediction and model	
16.6	Exercises				averaging	
					18.1.7 Sparse linear models	
Linea	r models	367		18.2	Classification	
17.1	Introduction: fitting a straight			10.2	18.2.1 Hyperparameter optimisation	
	line				18.2.2 Laplace approximation	
17.2	Linear parameter models for				18.2.3 Variational Gaussian	
	regression				approximation	
	17.2.1 Vector outputs				18.2.4 Local variational	
	17.2.2 Regularisation				approximation	
	17.2.3 Radial basis functions				18.2.5 Relevance vector	
17.3	The dual representation and				machine for classification	
	kernels				18.2.6 Multi-class case	
	17.3.1 Regression in the dual space			18.3	Summary	
17.4	Linear parameter models for			18.4	Code	
	classification			18.5	Exercises	

x							Contents
19	19.1 19.2 19.3	Non-parametric prediction 19.1.1 From parametric to non-parametric 19.1.2 From Bayesian linear models to Gaussian processes 19.1.3 A prior on functions Gaussian process prediction 19.2.1 Regression with noisy training outputs Covariance functions 19.3.1 Making new covariance functions from old 19.3.2 Stationary covariance functions 19.3.3 Non-stationary covariance functions Analysis of covariance functions 19.4.1 Smoothness of the functions 19.4.2 Mercer kernels 19.4.3 Fourier analysis for	412	21	20.5 20.6 20.7 20.8 20.9 Laten	20.3.6 Bayesian mixture models 20.3.7 Semi-supervised learning Mixture of experts Indicator models 20.5.1 Joint indicator approach: factorised prior 20.5.2 Polya prior Mixed membership models 20.6.1 Latent Dirichlet allocation 20.6.2 Graph-based representations of data 20.6.3 Dyadic data 20.6.4 Monadic data 20.6.5 Cliques and adjacency matrices for monadic binary data Summary Code Exercises t linear models	462
	19.6 19.7 19.8	stationary kernels Gaussian processes for classification 19.5.1 Binary classification 19.5.2 Laplace's approximation 19.5.3 Hyperparameter optimisation 19.5.4 Multiple classes Summary Code Exercises			21.2 21.3 21.4	Factor analysis 21.1.1 Finding the optimal bias Factor analysis: maximum likelihood 21.2.1 Eigen-approach likelihood optimisation 21.2.2 Expectation maximisation Interlude: modelling faces Probabilistic principal components analysis Canonical correlation analysis and factor analysis	
20		re models	432		21.6	Independent components	
	20.2	Density estimation using mixtures Expectation maximisation for mixture models 20.2.1 Unconstrained discrete tables 20.2.2 Mixture of product of Bernoulli distributions The Gaussian mixture model 20.3.1 EM algorithm 20.3.2 Practical issues 20.3.3 Classification using		22	21.8 21.9 Laten 22.1	analysis Summary Code Exercises t ability models The Rasch model 22.1.1 Maximum likelihood training 22.1.2 Bayesian Rasch models Competition models	479
		Gaussian mixture models 20.3.4 The Parzen estimator 20.3.5 K-means				22.2.1 Bradley–Terry–Luce model22.2.2 Elo ranking model22.2.3 Glicko and TrueSkill	

	Contents						хi
	22.3 Summary 22.4 Code 22.5 Exercises			24.2	24.2.1	regressive models Training an AR model AR model as an OLDS	
	22.5 Exercises					Time-varying AR model	
IV	Dynamical models					Time-varying variance AR models	
23	Discrete-state Markov models	489		24.3	Latent	t linear dynamical systems	
	23.1 Markov models	.03		24.4	Infere	nce	
	23.1.1 Equilibrium and					Filtering	
	stationary distribution of				24.4.2	Smoothing:	
	a Markov chain					Rauch-Tung-Striebel	
	23.1.2 Fitting Markov models				24.42	correction method	
	23.1.3 Mixture of Markov models					The likelihood	
	23.2 Hidden Markov models					Most likely state	
	23.2.1 The classical inference				24.4.5	Time independence and	
	problems			24.5	Laguni	Riccati equations	
	23.2.2 Filtering $p(h_t v_{1:t})$			24.3		ing linear dynamical system Identifiability issues	18
	23.2.3 Parallel smoothing $p(h_t v_{1:T})$					EM algorithm	
	23.2.4 Correction smoothing					Subspace methods	
	23.2.5 Sampling from $p(h_{1:T} v_{1:T})$					Structured LDSs	
	23.2.6 Most likely joint state					Bayesian LDSs	
	23.2.7 Prediction			24.6		hing auto-regressive	
	23.2.8 Self-localisation and			21.0	model	_	
	kidnapped robots					Inference	
	23.2.9 Natural language models					Maximum likelihood	
	23.3 Learning HMMs				21.0.2	learning using EM	
	23.3.1 EM algorithm 23.3.2 Mixture emission			24.7	Summ		
	23.3.3 The HMM-GMM				Code		
	23.3.4 Discriminative training				Exerci	ises	
	23.4 Related models			21.7	BACICI		
	23.4.1 Explicit duration model		25	Switc	hina li	near dynamical	
	23.4.2 Input–output HMM		23	syster	_	irear aynamicar	547
	23.4.3 Linear chain CRFs			•	Introd	uction	J 7 1
	23.4.4 Dynamic Bayesian networks					witching LDS	
	23.5 Applications			23.2		Exact inference is	
	23.5.1 Object tracking				23.2.1	computationally intractable	
	23.5.2 Automatic speech recognition			25.3	Gauss	ian sum filtering	
	23.5.3 Bioinformatics			23.3		Continuous filtering	
	23.5.4 Part-of-speech tagging					Discrete filtering	
	23.6 Summary					The likelihood $p(\mathbf{v}_{1:T})$	
	23.7 Code					Collapsing Gaussians	
	23.8 Exercises					Relation to other methods	
				25.4		ian sum smoothing	
24	Continuous-state Markov models	520				Continuous smoothing	
-	24.1 Observed linear dynamical	=				Discrete smoothing	
	systems					Collapsing the mixture	
	24.1.1 Stationary distribution				25.4.4	Using mixtures in smoothing	
	with noise					Relation to other methods	

xii					Conte	ntc
ΛII					conte	113
	25.5 Reset models 25.5.1 A Poisson reset model 25.5.2 Reset-HMM-LDS 25.6 Summary			27.5	27.4.1 Markov chains 27.4.2 Metropolis–Hastings sampling Auxiliary variable methods	
	25.7 Code 25.8 Exercises				27.5.1 Hybrid Monte Carlo (HMC) 27.5.2 Swendson–Wang (SW) 27.5.3 Slice sampling	
26	Distributed computation 26.1 Introduction 26.2 Stochastic Hopfield networks 26.3 Learning sequences 26.3.1 A single sequence 26.3.2 Multiple sequences 26.3.3 Boolean networks 26.3.4 Sequence disambiguation	568		27.7 27.8	Importance sampling 27.6.1 Sequential importance sampling 27.6.2 Particle filtering as an approximate forward pass Summary Code Exercises	
	26.4 Tractable continuous latent		28	Deter	ministic approximate	
	variable models 26.4.1 Deterministic latent variables 26.4.2 An augmented Hopfield		20	infere		17
	network				The Laplace approximation	
	26.5 Neural models			28.3	Properties of Kullback–	
	 26.5.1 Stochastically spiking neurons 26.5.2 Hopfield membrane potential 26.5.3 Dynamic synapses 26.5.4 Leaky integrate and fire models 				Leibler variational inference 28.3.1 Bounding the normalisation constant 28.3.2 Bounding the marginal likelihood 28.3.3 Bounding marginal quantities	
	26.6 Summary				28.3.4 Gaussian approximations	
	26.7 Code 26.8 Exercises				using KL divergence 28.3.5 Marginal and moment matching properties of	
٧	Approximate inference			20.4	minimising $KL(p q)$	
27	Sampling 27.1 Introduction 27.1.1 Univariate sampling	587		28.4	Variational bounding using KL(q p) 28.4.1 Pairwise Markov random field 28.4.2 General mean-field equations 28.4.3 Asynchronous updating guarantees approximation	
	27.1.2 Rejection sampling 27.1.3 Multivariate sampling 27.2 Ancestral sampling 27.2.1 Dealing with evidence			28.5	improvement 28.4.4 Structured variational approximation Local and KL variational	
	27.2.2 Perfect sampling for a Markov network 27.3 Gibbs sampling 27.3.1 Gibbs sampling as a Markov chain				approximations 28.5.1 Local approximation 28.5.2 KL variational approximation	
	27.3.2 Structured Gibbs sampling27.3.3 Remarks	(C)		28.6	Mutual information maximisation: a KL variational approach	
	27.4 Markov chain Monte Carlo (MCM	IC)			variational approach	

7

Contents				xiii
	The information maximisation algorithm Linear Gaussian decoder	28.12 28.13	Code Exercises	
28.7.1 28.7.2 28.8 Expec 28.9 MAP 28.9.1	Classical BP on an undirected graph Loopy BP as a variational procedure tation propagation for Markov networks Pairwise Markov networks Attractive binary Markov	A.1 A.2 A.3 A.4 A.5	A: Background mathematics Linear algebra Multivariate calculus Inequalities Optimisation Multivariate optimisation Constrained optimisation using Lagrange multipliers	655
	networks	References Index	3	675 689
28.9.3 28.10 Furthe 28.11 Summ	C		te section between pp. 360 and 361	307

PREFACE

The data explosion

We live in a world that is rich in data, ever increasing in scale. This data comes from many different sources in science (bioinformatics, astronomy, physics, environmental monitoring) and commerce (customer databases, financial transactions, engine monitoring, speech recognition, surveillance, search). Possessing the knowledge as to how to process and extract value from such data is therefore a key and increasingly important skill. Our society also expects ultimately to be able to engage with computers in a natural manner so that computers can 'talk' to humans, 'understand' what they say and 'comprehend' the visual world around them. These are difficult large-scale information processing tasks and represent grand challenges for computer science and related fields. Similarly, there is a desire to control increasingly complex systems, possibly containing many interacting parts, such as in robotics and autonomous navigation. Successfully mastering such systems requires an understanding of the processes underlying their behaviour. Processing and making sense of such large amounts of data from complex systems is therefore a pressing modern-day concern and will likely remain so for the foreseeable future.

Machine learning

Machine learning is the study of data-driven methods capable of mimicking, understanding and aiding human and biological information processing tasks. In this pursuit, many related issues arise such as how to compress data, interpret and process it. Often these methods are not necessarily directed to mimicking directly human processing but rather to enhancing it, such as in predicting the stock market or retrieving information rapidly. In this probability theory is key since inevitably our limited data and understanding of the problem forces us to address uncertainty. In the broadest sense, machine learning and related fields aim to 'learn something useful' about the environment within which the agent operates. Machine learning is also closely allied with artificial intelligence, with machine learning placing more emphasis on using data to drive and adapt the model.

In the early stages of machine learning and related areas, similar techniques were discovered in relatively isolated research communities. This book presents a unified treatment via graphical models, a marriage between graph and probability theory, facilitating the transference of machine learning concepts between different branches of the mathematical and computational sciences.

Whom this book is for

The book is designed to appeal to students with only a modest mathematical background in undergraduate calculus and linear algebra. No formal computer science or statistical background is required to follow the book, although a basic familiarity with probability, calculus and linear algebra

xvi Preface

would be useful. The book should appeal to students from a variety of backgrounds, including computer science, engineering, applied statistics, physics and bioinformatics that wish to gain an entry to probabilistic approaches in machine learning. In order to engage with students, the book introduces fundamental concepts in inference using only minimal reference to algebra and calculus. More mathematical techniques are postponed until as and when required, always with the concept as primary and the mathematics secondary.

The concepts and algorithms are described with the aid of many worked examples. The exercises and demonstrations, together with an accompanying MATLAB toolbox, enable the reader to experiment and more deeply understand the material. The ultimate aim of the book is to enable the reader to construct novel algorithms. The book therefore places an emphasis on skill learning, rather than being a collection of recipes. This is a key aspect since modern applications are often so specialised as to require novel methods. The approach taken throughout is to describe the problem as a graphical model, which is then translated into a mathematical framework, ultimately leading to an algorithmic implementation in the BRMLTOOLBOX.

The book is primarily aimed at final year undergraduates and graduates without significant experience in mathematics. On completion, the reader should have a good understanding of the techniques, practicalities and philosophies of probabilistic aspects of machine learning and be well equipped to understand more advanced research level material.

The structure of the book

The book begins with the basic concepts of graphical models and inference. For the independent reader Chapters 1, 2, 3, 4, 5, 9, 10, 13, 14, 15, 16, 17, 21 and 23 would form a good introduction to probabilistic reasoning, modelling and machine learning. The material in Chapters 19, 24, 25 and 28 is more advanced, with the remaining material being of more specialised interest. Note that in each chapter the level of material is of varying difficulty, typically with the more challenging material placed towards the end of each chapter. As an introduction to the area of probabilistic modelling, a course can be constructed from the material as indicated in the chart.

The material from Parts I and II has been successfully used for courses on graphical models. I have also taught an introduction to probabilistic machine learning using material largely from Part III, as indicated. These two courses can be taught separately and a useful approach would be to teach first the graphical models course, followed by a separate probabilistic machine learning course.

A short course on approximate inference can be constructed from introductory material in Part I and the more advanced material in Part V, as indicated. The exact inference methods in Part I can be covered relatively quickly with the material in Part V considered in more depth.

A timeseries course can be made by using primarily the material in Part IV, possibly combined with material from Part I for students that are unfamiliar with probabilistic modelling approaches. Some of this material, particularly in Chapter 25, is more advanced and can be deferred until the end of the course, or considered for a more advanced course.

The references are generally to works at a level consistent with the book material and which are in the most part readily available.

Preface							xvii
		Graphical models course	Probabilistic machine learning course	Approximate inference short course	Timeseries short course	Probabilistic modelling course	
Part I: Inference in probabilistic models	1: Probabilistic reasoning 2: Basic graph concepts 3: Belief networks 4: Graphical models 5: Efficient inference in trees 6: The junction tree algorithm 7: Making decisions	0000000	00000	000000	000000	0000000	
Part II: Learning in probabilistic models	8: Statistics for machine learning 9: Learning as inference 10: Naive Bayes 11: Learning with hidden variables 12: Bayesian model selection	00000	00000	00000	00000	00000	
Part III: Machine learning	13: Machine learning concepts 14: Nearest neighbour classification 15: Unsupervised linear dimension reduction 16: Supervised linear dimension reduction 17: Linear models 18: Bayesian linear models 19: Gaussian processes 20: Mixture models 21: Latent linear models 22: Latent ability models	0000000000	000000000	0000000000	0000000000	0000000000	
Part IV: Dynamical models	23: Discrete-state Markov models 24: Continuous-state Markov models 25: Switching linear dynamical systems 26: Distributed computation	0000	0000	0000	0000	0000	
Part V: Approximate inference	27: Sampling 28: Deterministic approximate inference	0	0	0	0	0	

xviii Preface

Accompanying code

The BRMLTOOLBOX is provided to help readers see how mathematical models translate into actual MATLAB code. There is a large number of demos that a lecturer may wish to use or adapt to help illustrate the material. In addition many of the exercises make use of the code, helping the reader gain confidence in the concepts and their application. Along with complete routines for many machine learning methods, the philosophy is to provide low-level routines whose composition intuitively follows the mathematical description of the algorithm. In this way students may easily match the mathematics with the corresponding algorithmic implementation.

Website

The BRMLTOOLBOX along with an electronic version of the book is available from

www.cs.ucl.ac.uk/staff/D.Barber/brml

Instructors seeking solutions to the exercises can find information at www.cambridge.org/brml, along with additional teaching materials.

Other books in this area

The literature on machine learning is vast with much relevant literature also contained in statistics, engineering and other physical sciences. A small list of more specialised books that may be referred to for deeper treatments of specific topics is:

- Graphical models
 - *Graphical Models* by S. Lauritzen, Oxford University Press, 1996.
 - Bayesian Networks and Decision Graphs by F. Jensen and T. D. Nielsen, Springer-Verlag, 2007.
 - Probabilistic Networks and Expert Systems by R. G. Cowell, A. P. Dawid, S. L. Lauritzen and D. J. Spiegelhalter, Springer-Verlag, 1999.
 - Probabilistic Reasoning in Intelligent Systems by J. Pearl, Morgan Kaufmann, 1988.
 - Graphical Models in Applied Multivariate Statistics by J. Whittaker, Wiley, 1990.
 - Probabilistic Graphical Models: Principles and Techniques by D. Koller and N. Friedman, MIT Press, 2009.
- Machine learning and information processing
 - Information Theory, Inference and Learning Algorithms by D. J. C. MacKay, Cambridge University Press, 2003.
 - Pattern Recognition and Machine Learning by C. M. Bishop, Springer-Verlag, 2006.
 - An Introduction to Support Vector Machines, N. Cristianini and J. Shawe-Taylor, Cambridge University Press, 2000.
 - Gaussian Processes for Machine Learning by C. E. Rasmussen and C. K. I. Williams, MIT Press, 2006.

Acknowledgements

Many people have helped this book along the way either in terms of reading, feedback, general insights, allowing me to present their work, or just plain motivation. Amongst these I would like

Preface xix

to thank Dan Cornford, Massimiliano Pontil, Mark Herbster, John Shawe-Taylor, Vladimir Kolmogorov, Yuri Boykov, Tom Minka, Simon Prince, Silvia Chiappa, Bertrand Mesot, Robert Cowell, Ali Taylan Cemgil, David Blei, Jeff Bilmes, David Cohn, David Page, Peter Sollich, Chris Williams, Marc Toussaint, Amos Storkey, Zakria Hussain, Le Chen, Serafín Moral, Milan Studený, Luc De Raedt, Tristan Fletcher, Chris Vryonides, Tom Furmston, Ed Challis and Chris Bracegirdle. I would also like to thank the many students that have helped improve the material during lectures over the years. I'm particularly grateful to Taylan Cemgil for allowing his GraphLayout package to be bundled with the BRMLTOOLBOX.

The staff at Cambridge University Press have been a delight to work with and I would especially like to thank Heather Bergman for her initial endeavours and the wonderful Diana Gillooly for her continued enthusiasm.

A heartfelt thankyou to my parents and sister – I hope this small token will make them proud. I'm also fortunate to be able to acknowledge the support and generosity of friends throughout. Finally, I'd like to thank Silvia who made it all worthwhile.

NOTATION

ν	A calligraphic symbol typically denotes a set of random variables	page 3
dom(x)	Domain of a variable	3
x = x	The variable x is in the state x	3
p(x = tr)	Probability of event/variable <i>x</i> being in the state true	3
p(x = fa)	Probability of event/variable <i>x</i> being in the state false	3
p(x, y)	Probability of x and y	4
$p(x \cap y)$	Probability of x and y	4
$p(x \cup y)$	Probability of <i>x</i> or <i>y</i>	4
p(x y)	The probability of x conditioned on y	4
$\mathcal{X} \perp \!\!\! \perp \mathcal{Y} \mathcal{Z}$	Variables ${\mathcal X}$ are independent of variables ${\mathcal Y}$ conditioned on variables ${\mathcal Z}$	7
$\mathcal{X} \top \mathcal{Y} \mathcal{Z}$	Variables ${\mathcal X}$ are dependent on variables ${\mathcal Y}$ conditioned on variables ${\mathcal Z}$	7
$\int_{x} f(x)$	For continuous variables this is shorthand for $\int_x f(x)dx$ and for discrete variables means summation over the states of x , $\sum_x f(x)$	14
$\mathbb{I}[S]$	Indicator: has value 1 if the statement S is true, 0 otherwise	16
pa(x)	The parents of node x	24
ch(x)	The children of node x	24
ne(x)	Neighbours of node x	24
$\dim(x)$	For a discrete variable x , this denotes the number of states x can take	34
$\langle f(x)\rangle_{p(x)}$	The average of the function $f(x)$ with respect to the distribution $p(x)$	170
$\delta(a,b)$	Delta function. For discrete a,b , this is the Kronecker delta, $\delta_{a,b}$ and for continuous a,b the Dirac delta function $\delta(a-b)$	172
$dim(\mathbf{x})$	The dimension of the vector/matrix \mathbf{x}	183
$\sharp (x = s, y = t)$	The number of times x is in state s and y in state t simultaneously	207
\sharp_y^x	The number of times variable x is in state y	293
\mathcal{D}	Dataset	303
n	Data index	303
N	Number of dataset training points	303
S	Sample Covariance matrix	331
$\sigma(x)$	The logistic sigmoid $1/(1 + \exp(-x))$	371
$\operatorname{erf}(x)$	The (Gaussian) error function	372
$x_{a:b}$	$x_a, x_{a+1}, \ldots, x_b$	372
$i \sim j$	The set of unique neighbouring edges on a graph	624
\mathbf{I}_m	The $m \times m$ identity matrix	644

BRMLTOOLBOX

The BRMLTOOLBOX is a lightweight set of routines that enables the reader to experiment with concepts in graph theory, probability theory and machine learning. The code contains basic routines for manipulating discrete variable distributions, along with more limited support for continuous variables. In addition there are many hard-coded standard machine learning algorithms. The website contains also a complete list of all the teaching demos and related exercise material.

BRMLTOOLKIT

Graph theory

- Return the ancestors of nodes x in DAG A

ancestralorder - Return the ancestral order or the DAG A (oldest first) descendents - Return the descendents of nodes x in DAG A

children - Return the children of variable x given adjacency matrix A

edges - Return edge list from adjacency matrix A

elimtri - Return a variable elimination sequence for a triangulated graph connectedComponents - Find the connected components of an adjacency matrix

istree - Check if graph is singly connected

neigh - Find the neighbours of vertex v on a graph with adjacency matrix G

noselfpath - Return a path excluding self-transitions

parents - Return the parents of variable x given adjacency matrix A

spantree - Find a spanning tree from an edge list triangulate - Triangulate adjacency matrix A

triangulatePorder - Triangulate adjacency matrix A according to a partial ordering

Potential manipulation

condpot - Return a potential conditioned on another variable

changevar - Change variable names in a potential

- Return the adjacency matrix (zeros on diagonal) for a belief network

deltapot - A delta function potential
disptable - Print the table of a potential
divpots - Divide potential pota by potb
drawFG - Draw the factor graph A
drawID - Plot an influence diagram
drawJTree - Plot a junction tree
drawNet - Plot network

evalpot - Evaluate the table of a potential when variables are set

exppot - Exponential of a potential eyepot - Return a unit potential

grouppot - Form a potential based on grouping variables together

groupstate - Find the state of the group variables corresponding to a given ungrouped state

logpot - Logarithm of the potential

markov - Return a symmetric adjacency matrix of Markov network in pot

maxpot - Maximise a potential over variables
maxsumpot - Maximise or sum a potential over variables
multpots - Multiply potentials into a single potential

> **BRMLTOOLBOX** xxii

- Number of states of the variables in a potential

- Return potential with variables reordered according to order orderpot

orderpotfields - Order the fields of the potential, creating blank entries where necessary

potsample - Draw sample from a single potential

- Returns those potential numbers that contain only the required variables potscontainingonly

- Returns information about all variables in a set of potentials potvariables setevpot - Sets variables in a potential into evidential states

- Sets potential variables to specified states setpot

setstate - Set a potential's specified joint state to a specified value

- Eliminate redundant potentials (those contained wholly within another) squeezepots

sumpot - Sum potential pot over variables

sumpotID - Return the summed probability and utility tables from an ID

sumpots - Sum a set of potentials table - Return the potential table

ungrouppot - Form a potential based on ungrouping variables

uniquepots - Eliminate redundant potentials (those contained wholly within another)

- Returns potentials that contain a set of variables whichpot

Routines also extend the toolbox to deal with Gaussian potentials: multpotsGaussianMoment.m, sumpotGausssianCanonical.m, sumpotGaussianMoment.m, multpotsGaussianCanonical.m See demoSumprodGaussCanon.m, demo-sumprodGaussCanon.m, demo-sumprodGaussCanon.m, demo-sumprodGaussCanon.mSumprodGaussCanonLDS.m. demoSumprodGaussMoment.m

Inference

absorb - Update potentials in absorption message passing on a junction tree

absorption - Perform full round of absorption on a junction tree - Perform full round of absorption on an influence diagram absorptionID ancestralsample

- Ancestral sampling from a belief network - Get the MAP assignment for a binary MRF with positive W

binaryMRFmap

- Bucket elimination on a set of potentials bucketelim - Conditional independence check using graph of variable interactions condindep

condindepEmp - Compute the empirical log Bayes factor and MI for independence/dependence

- Numerical conditional independence measure condindepPot.

- Conditional mutual information I(x,y|z) of a potential condMI

- Factor nodes connecting to a set of variables FactorConnectingVariable

- Returns a factor graph adjacency matrix based on potentials FactorGraph - Probability and decision variables from a partial order IDvars

- Assign potentials to cliques in a junction tree jtassignpot - Setup a junction tree based on a set of potentials jtree - Setup a junction tree based on an influence diagram jtreeID - Loopy belief propagation using sum-product algorithm LoopyBP

MaxFlow - Ford Fulkerson max-flow min-cut algorithm (breadth first search) - Find the N most probable values and states in a potential maxNpot

maxNprodFG - N-max-product algorithm on a factor graph (returns the Nmax most probable states)

maxprodFG - Max-product algorithm on a factor graph MDPemDeterministicPolicy - Solve MDP using EM with deterministic policy

- Solve a Markov decision process MDPsolve

MesstoFact - Returns the message numbers that connect into factor potential

metropolis - Metropolis sample

- Find the most probable path in a Markov chain mostprobablepath

 ${\tt mostprobablepathmult}$ - Find the all source all sink most probable paths in a Markov chain - Sum-product algorithm on a factor graph represented by A sumprodFG

Specific models

ARlds - Learn AR coefficients using a linear dynamical system - Fit auto-regressive (AR) coefficients of order L to v. ARtrain

BayesLinReg - Bayesian linear regression training using basis functions $\mathsf{phi}(x)$ - Bayesian logistic regression with the relevance vector machine BayesLogRegressionRVM

CanonVar - Canonical variates (no post rotation of variates)

> **BRMLTOOLBOX** xxiii

- Canonical correlation analysis

- Gamma exponential covariance function covfnGE

- Factor analysis FA

- Fit a mixture of Gaussian to the data X using EM GMMem

- Gaussian process binary classification GPclass - Gaussian process regression GPrea

HebbML - Learn a sequence for a Hopfield network

- HMM backward pass HMMbackward

- Backward pass (beta method) for the switching Auto-regressive HMM HMMbackwardSAR

HMMem - EM algorithm for HMM HMMforward - HMM forward pass

 ${\tt HMMforwardSAR}$ - Switching auto-regressive HMM with switches updated only every Tskip timesteps HMMgamma - HMM posterior smoothing using the Rauch-Tung-Striebel correction method

vHMMsmooth - Smoothing for a hidden Markov model (HMM)

HMMsmoothSAR - Switching auto-regressive HMM smoothing HMMviterbi - Viterbi most likely joint hidden state of HMM

- A kernel evaluated at two points kernel Kmeans - K-means clustering algorithm

- Full backward pass for a latent linear dynamical system (RTS correction method) LDSbackward - Single backward update for a latent linear dynamical system (RTS smoothing update) LDSbackwardUpdate

- Full forward pass for a latent linear dynamical system (Kalman filter) LDSforward - Single forward update for a latent linear dynamical system (Kalman filter) LDSforwardUpdate

- Linear dynamical system: filtering and smoothing LDSsmooth - Subspace method for identifying linear dynamical system LDSsubspace - Learning logistic linear regression using gradient ascent LogReg MIXprodBern - EM training of a mixture of a product of Bernoulli distributions

- EM training for a mixture of Markov models mixMarkov

 ${\tt NaiveBayesDirichletTest}$ - Naive Bayes prediction having used a Dirichlet prior for training

- Naive Bayes training using a Dirichlet prior NaiveBayesDirichletTrain

NaiveBayesTest - Test Naive Bayes Bernoulli distribution after max likelihood training - Train Naive Bayes Bernoulli distribution using max likelihood NaiveBayesTrain

nearNeigh - Nearest neighbour classification - Principal components analysis pca plsa - Probabilistic latent semantic analysis

plsaCond - Conditional PLSA (probabilistic latent semantic analysis)

rbf - Radial basis function output SARlearn - EM training of a switching AR model SLDSbackward - Backward pass using a mixture of Gaussians

- Switching latent linear dynamical system Gaussian sum forward pass SLDSmargGauss - Compute the single Gaussian from a weighted SLDS mixture

softloss - Soft loss function

- Singular value decomposition with missing values svdm

- Train a support vector machine SVMtrain

General

aramax - Performs argmax returning the index and value

- Assigns values to variables assign - p(x>y) for $x\sim Beta(a,b)$, $y\sim Beta(c,d)$ betaXbiggerY

- Plot a 3D bar plot of the matrix Z bar3zcolor

avsigmaGauss - Average of a logistic sigmoid under a Gaussian

- Cap x at absolute value c cap

chi2test - Inverse of the chi square cumulative density

- For a data matrix (each column is a datapoint), return the state counts count

- Place the field of a structure in a cell

condexp - Compute normalised p proportional to exp(logp) condp - Make a conditional distribution from the matrix dirrnd - Samples from a Dirichlet distribution

- Return the mean and covariance of a conditioned Gaussian GaussCond

BRMLTOOLBOX

hinton - Plot a Hinton diagram

ind2subv - Subscript vector from linear index ismember_sorted - True for member of sorted set lengthcell - Length of each cell entry

Log determinant of a positive definite matrix computed in a numerically stable manner

logeps $-\log(x+eps)$

logGaussGamma - Unnormalised log of the Gauss-Gamma distribution
logsumexp - Compute log(sum(exp(a).*b)) valid for large a

logZdirichlet - Log normalisation constant of a Dirichlet distribution with parameter u

majority - Return majority values in each column on a matrix

maxarray - Maximise a multi-dimensional array over a set of dimensions
maxNarray - Find the highest values and states of an array over a set of dimensions
mix2mix - Fit a mixture of Gaussians with another mixture of Gaussians
mvrandn - Samples from a multivariate Normal (Gaussian) distribution

mygamrnd - Gamma random variate generator
mynanmean - Mean of values that are not nan
mynansum - Sum of values that are not nan
mynchoosek - Binomial coefficient v choose k

myones - Same as ones(x), but if x is a scalar, interprets as ones([x 1]) myrand - Same as rand(x) but if x is a scalar interprets as rand([x 1]) myzeros - Same as rand(x) but if x is a scalar interprets as rand([x 1])

normp - Make a normalised distribution from an array
randgen - Generates discrete random variables given the pdf
replace - Replace instances of a value with another value

 $\begin{array}{ll} \text{sigma} & -1./(1+\exp(-x)) \\ \text{sigmoid} & -1./(1+\exp(-beta^*x)) \end{array}$

 $\begin{array}{lll} & \text{sqdist} & -\text{Square distance between vectors in x and y} \\ & \text{subv2ind} & -\text{Linear index from subscript vector.} \\ & \text{sumlog} & -\text{sum}(\log(x)) \text{ with a cutoff at } 10\text{e-}200 \end{array}$

Miscellaneous

- Compatibility of object F being in position h for image v on grid Gx,Gy

logp - The logarithm of a specific non-Gaussian distribution
placeobject - Place the object F at position h in grid Gx,Gy
plotCov - Return points for plotting an ellipse of a covariance

pointsCov - Unit variance contours of a 2D Gaussian with mean m and covariance S setup - Run me at initialisation – checks for bugs in matlab and initialises path

validgridposition - Returns 1 if point is on a defined grid