SOIL MECHANICS

A one-dimensional introduction

This introductory course on soil mechanics presents the key concepts of stress, stiffness, seepage, consolidation, and strength within a onedimensional framework. Consideration of the mechanical behaviour of soils requires us to consider density alongside stresses, thus permitting the unification of deformation and strength characteristics. Soils are described in a way which can be integrated with concurrent teaching of the properties of other engineering materials. The book includes a model of the shearing of soil and some examples of soil-structure interaction which are capable of theoretical analysis using one-dimensional governing equations. The text contains many worked examples, and exercises are given for private study at the end of all chapters. Some suggestions for laboratory demonstrations that could accompany such an introductory course are sprinkled through the book.

David Muir Wood has taught soil mechanics and geotechnical engineering at the universities of Cambridge, Glasgow and Bristol since 1975 and has contributed to courses on soil mechanics in many countries around the world. He is the author of numerous research papers and book chapters. His previous books include *Soil behaviour and critical state soil mechanics* (1990) and *Geotechnical modelling* (2004). He was co-chairman of the United Kingdom GeotechniCAL computeraided learning project.

Soil mechanics

A ONE-DIMENSIONAL INTRODUCTION

David Muir Wood

University of Bristol

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press 32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org Information on this title: www.cambridge.org/9780521741323

© David Muir Wood 2009

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2009

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication data

Muir Wood, David, 1949–
Soil mechanics : a one-dimensional introduction / David Muir Wood.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-521-51773-7 (hardback) – ISBN 978-0-521-74132-3 (pbk.)
Soil mechanics. I. Title.

TA710.W5983 2009 624.1′5136 – dc22 2009020445

ISBN 978-0-521-51773-7 Hardback ISBN 978-0-521-74132-3 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

Contents

Preface

page ix

1	Inti	oduction	1
	1.1	Introduction	1
	1.2	Soil mechanics	2
	1.3	Range of problems/applications	2
	1.4	Scope of this book	10
	1.5	Mind maps	11
2	Stre	ess in soils	12
	2.1	Introduction	12
	2.2	Equilibrium	12
	2.3	Gravity	13
	2.4	Stress	16
	2.5	Exercises: Stress	18
	2.6	Vertical stress profile	19
		2.6.1 Worked examples	21
	2.7	Water in the ground: Introduction to hydrostatics	23
		2.7.1 Worked example: Archimedes uplift on spherical object	26
	2.8	Total and effective stresses	28
		2.8.1 Worked examples	32
	2.9	Summary	37
	2.10	Exercises: Profiles of total stress, effective stress, pore pressure	37
3	Der	asity	40
	3.1	Introduction	40
	3.2	Units	40
	3.3	Descriptions of packing and density	41
		3.3.1 Volumetric ratios	43
		3.3.2 Water content	44
		3.3.3 Densities	44

vi		Contents
	3.3.4 Unit weights	46
	3.3.5 Typical values	46
3.	4 Measurement of packing	47
	3.4.1 Compaction	50
3.	5 Soil particles	52
3.	6 Laboratory exercise: particle size distribution and other	
	classification tests	56
	3.6.1 Sieving	56
	3.6.2 Sedimentation	57
	3.6.3 Particle shape	61
	3.6.4 Sand: relative density	61
3.	7 Summary	62
3.	8 Exercises: Density	64
	3.8.1 Multiple choice questions	64
	3.8.2 Calculation exercises	65
4 S t	iffness	67
4.	1 Introduction	67
4.	2 Linear elasticity	67
4.	3 Natural and true strain	70
4.	4 One-dimensional testing of soils	70
	4.4.1 Hooke's Law: confined one-dimensional stiffness 🌲	72
4.	5 One-dimensional (confined) stiffness of soils	74
4.	6 Calculation of strains	78
	4.6.1 Worked examples: Calculation of settlement	79
4.	7 Overconsolidation	82
	4.7.1 Worked examples: Overconsolidation	84
4.	8 Summary	87
4.	9 Exercises: Stiffness	87
5 S	epage	90
5.	1 Introduction	90
5.	2 Total head: Bernoulli's equation	90
5.	3 Poiseuille's equation	96
5.	4 Permeability	99
	5.4.1 Darcy or Forchheimer?	102
5.	5 Measurement of permeability	104
5.	6 Permeability of layered soil	106
5.	7 Seepage forces	108
5.	8 Radial flow to vertical drain	111
5	9 Radial flow to point drain	112
5.	10 Worked examples: Seepage	113
	5.10.1 Example: flow through soil column	113

116

	٠	
v	I	L
•	•	•

		5.10.3 Example: pumping from aquifer	117
		5.10.4 Example: flow into excavation	119
	5.11	Summary	121
	5.12	Exercises: Seepage	123
6	Cha	nge in stress	127
	61	Introduction	127
	6.2	Stress change and soil permeability	127
	6.3	Worked examples	130
		6.3.1 Example 1	130
		6.3.2 Example 2	131
		6.3.3 Example 3	133
	6.4	Summary	134
	6.5	Exercises: Change in stress	136
7	Cor	solidation	138
,	71	Introduction	138
	7.2	Describing the problem	140
	7.3	Parabolic isochrones	142
	7.4	Worked examples	149
		7.4.1 Example 1: Determination of coefficient of consolidation	149
		7.4.2 Example 2	152
		7.4.3 Example 3	154
		7.4.4 Example 4	155
	7.5	Consolidation: exact analysis 🌲	155
		7.5.1 Semi-infinite layer	159
		7.5.2 Finite layer	161
	7.6	Summary	165
	7.7	Exercises: Consolidation	167
8	Stre	ngth	169
	8.1	Introduction	169
	8.2	Failure mechanisms	169
	8.3	Shear box and strength of soils	171
	8.4	Strength model	173
	8.5	Dilatancy	174
	8.6	Drained and undrained strength	177
	8.7	Clay: overconsolidation and undrained strength	179
	8.8	Pile load capacity	181
	8.9	Infinite slope	185
		8.9.1 Laboratory exercise: Angle of repose	191
	8.10	Undrained strength of clay: fall-cone test	193
	8.11	Simple model of shearing ♣	195
		8.11.1 Stiffness	196

viii

		Contents
	8.11.2 Strength	197
	8.11.3 Mobilisation of strength	197
	8.11.4 Dilatancy	198
	8.11.5 Complete stress:strain relationship	199
	8.11.6 Drained and undrained response	200
	8.11.7 Model: summary	203
:	8.12 Summary	203
:	8.13 Exercises: Strength	205
9	Soil-structure interaction	208
	9.1 Introduction	208
9	9.2 Pile under axial loading ♣	211
	9.2.1 Examples	215
	9.3 Bending of an elastic beam ♣	216
	9.4 Elastic beam on elastic foundation ♣	220
	9.5 Pile under lateral loading 🌲	224
9	9.6 Soil-structure interaction: next steps	226
9	9.7 Summary	227
	9.8 Exercises: Soil-structure interaction	227
10	Envoi	
	10.1 Summary	230
	10.2 Beyond the single dimension	231
Exer	cises: numerical answers	

Preface

This book has emerged from a number of stimuli.

There is a view that soils are special: that their characteristics are so extraordinary that they can only be understood by a small band of specialists. Obviously, soils do have some special properties: the central importance of density and change of density merits particular attention. However, in the context of teaching principles of soil mechanics to undergraduates in the early years of their civil engineering degree programmes, I believe that there is advantage to be gained in trying to integrate this teaching with other teaching of properties of engineering materials to which the students are being exposed at the same time.

It is a fundamental tenet of *critical state soil mechanics* – with which I grew up in my undergraduate days – that consideration of the mechanical behaviour of soils requires us to consider density alongside effective stresses, thus permitting the unification of deformation and strength characteristics. This can be seen as a broad interpretation of the phrase *critical state soil mechanics*. I believe that such a unification can aid the teaching and understanding of soil mechanics.

There is an elegant book by A. J. Roberts¹ which demonstrates in a unified way how a common mathematical framework can be applied to problems of solid mechanics, fluid mechanics, traffic flow and so on. While I cannot hope to emulate this elegance, the title prompted me to explore a similar one-dimensional theme for the presentation of many of the key concepts of soil mechanics: density, stress, stiffness, strength and fluid flow.

This one-dimensional approach to soil mechanics has formed the basis for an introductory course of ten one-hour lectures with ten one-hour problem classes and one three-hour laboratory afternoon for first-year civil engineering undergraduates at Bristol University. The material of that course is contained in this book. I have added a chapter on the analysis of one-dimensional consolidation, which fits neatly with the theme of the book. I have also included a model of the shearing of soil and some examples of soil-structure interaction which are capable of theoretical analysis using essentially one-dimensional governing equations.

¹ Roberts, A. J. (1994). A one-dimensional introduction to continuum mechanics. World Scientific.

х

Preface

Simplification of more or less realistic problems leads to differential equations which can be readily solved: this is the essence of modelling with which engineers need to engage (and to realise that they are engaging) all the time. A few of these topics require some modest mathematical ability – a bit of integration, solution of ordinary and partial differential equations – but nothing beyond the eventual expectations of an undergraduate engineering degree programme. Sections that might, as a consequence, be omitted on a first reading, or until the classes in mathematics have caught up, are indicated by the symbol \clubsuit .

Exercises are given for private study at the end of all chapters and some suggestions for laboratory demonstrations that could accompany such an introductory course are sprinkled through the book.

I am grateful to colleagues at Bristol and elsewhere – especially Danuta Lesniewska, Erdin Ibraim and Dick Clements – who have provided advice and comments on drafts of this book to which I have tried to respond. Erdin in particular has helped enormously by using material and examples from a draft of this book in his own teaching and has made many useful suggestions for clarification. However, the blame for any remaining errors must remain with me.

I am grateful to Christopher Bambridge, Ross Boulanger, Sarah Dagostino, David Eastaff, David Nash and Alan Powderham for their advice and help in locating and giving permission to reproduce suitable pictures.

I thank Bristol University for awarding me a University Research Fellowship for the academic year 2007–8 which gave me some breathing space after a particularly heavy four years of administrative duty.

I am particularly grateful to Peter Gordon for his editorial guidance and wisdom and his intervention at times of stress.

I acknowledge with gratitude Helen's indulgence and support while I have been preparing and revising this book.

David Muir Wood Abbots Leigh June 2009

SOIL MECHANICS

A one-dimensional introduction