
Chapter I

INTRODUCTION

This book studies logical systems which use restricted reasoning based
on concepts from computational complexity. The complexity classes of
interest lie mainly between the basic class AC0 (whose members are com-
puted by polynomial-size families of bounded-depth circuits), and the
polynomial hierarchy PH , and include the sequence

AC0 ⊂ AC0(m) ⊆ TC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ P ⊆ PH (1)

where P is polynomial time. (See the Appendix for definitions.)
We associate with each of these classes a logical theory and a proof
system for the (quantified) propositional calculus. The proof system can
be considered a nonuniform version of the universal (or sometimes the
bounded) fragment of the theory. The functions definable in the logical
theory are those associated with the complexity class, and (in some cases)
the lines in a polynomial size proof in the propositional system express
concepts in the complexity class. Universal (or bounded) theorems of the
logical theory translate into families of valid formulas with polynomial
size proofs in the corresponding proof system. The logical theory proves
the soundness of the proof system.
Conceptually the theory VC associated with a complexity class C can
prove a given mathematical theorem if the induction hypotheses needed
in the proof can be formulated using concepts from C. We are interested
in trying to find the weakest class C needed to prove various theorems of
interest in computer science.
Here are some examples of the three-way association among complexity
classes, theories, and proof systems:

class AC0 TC0 NC1 P PH

theory V0 VTC0 VNC1 VP V∞

system AC0-Frege TC0-Frege Frege eFrege 〈Gi〉.
(2)

Consider for example the classNC1. The uniform version isALogTime,
the class of problems solvable by an alternating Turing machine in time
O(log n). The definable functions in the associated theory VNC1 are the
NC1 functions, i.e., those functions whose bit graphs are NC1 relations.
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2 I. Introduction

A problem in nonuniform NC1 is defined by a polynomial-size family of
log-depth Boolean circuits, or equivalently a polynomial-size family of
propositional formulas. The corresponding propositional proof systems
are called Frege systems, and are described in standard logic textbooks: a
Frege proof of a tautology A consists of a sequence of propositional for-
mulas ending in A, where each formula is either an axiom or follows from
earlier formulas by a rule of inference. Universal theorems ofVNC1 trans-
late into polynomial-size families of Frege proofs. Finally VNC1 proves
the soundness of Frege systems, and any proof system whose soundness
is provable in VNC1 can be p-simulated by a Frege system (Theorem
X.3.11).
The famous open question in complexity theory is whether the conjec-
ture that P is a proper subset of NP is in fact true (we know P ⊆ NP ⊆
PH). If P = NP then the polynomial hierarchy PH collapses to P, but it
is possible that PH collapses only to NP and still P �= NP. What may be
less well known is that not only is it possible that PH = P, but it is con-
sistent with our present knowledge that PH = AC0(6), so that all classes
in (1) might be equal except for AC0 and AC0(p) for p prime. This is
one motivation for studying the theories associated with these complexity
classes, since it ought to be easier to separate the theories corresponding
to the complexity classes than to separate the classes themselves (but so
far the theories in (2) have not been separated, except for V0).
A common example used to illustrate the complexity of the concepts
needed to prove a theorem is the Pigeonhole Principle (PHP). Our version
states that if n + 1 pigeons are placed in n holes, then some hole has two
or more pigeons. We can present an instance of the PHP using a Boolean
array 〈P(i, j)〉 (0 ≤ i ≤ n, 0 ≤ j < n), where P(i, j) asserts that pigeon i
is placed in hole j. Then the PHP can be formulated in the theory V0 by
the formula

∀i ≤ n ∃j < n P(i, j) ⊃ ∃i1, i2 ≤ n ∃j < n (i1 �= i2 ∧ P(i1, j) ∧ P(i2, j)).
(3)

Ajtai [5] proved (in effect) that this formula is not a theorem of V0, and
also that the propositional version (which uses atoms pij to represent
P(i, j) and finite conjunctions and disjunctions to express the bounded
universal and existential number quantifiers) does not have polynomial
size AC0-Frege proofs. The intuitive reason for this is that a counting
argument seems to be required to prove the PHP, but the complexity
class AC0 cannot count the number of ones in a string of bits. On
the other hand, the class NC1 can count, and indeed Buss proved that
the propositional PHP does have polynomial size Frege proofs, and his
method shows that (3) is a theorem of the theory VNC1. (In fact it is a
theorem of the apparently weaker theory VTC0.)
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I. Introduction 3

A second example comes from linear algebra. If A and B are n × n
matrices over some field, then

AB = I ⊃ BA = I. (4)

A standard proof of this usesGaussian elimination,which is a polynomial-
time process. Indeed Soltys showed that (4) is a theorem of the theoryVP
corresponding to polynomial-time reasoning, and it follows that its propo-
sitional translation (say over the field of two elements) has polynomial-size
proofs in the corresponding proof system eFrege. It is an open question
whether (4) over GF(2) (or any field) can be proved in VNC1, or whether
the propositional version has polynomial-size Frege proofs.
The preceding example (4) is a universal theorem, in the sense that its
statement has no existential quantifier. Another class of examples comes
from existential theorems. From linear algebra, a natural example about
n × n matrices is

∀A∃B �= 0(AB = I ∨ AB = 0). (5)

The complexity of finding B for a given A, even over GF(2), is thought
not to be in NC1 (it is hard for log space). Assuming that this is the case,
it follows that (5) is not a theorem of VNC1, since only NC1 functions
are definable in that theory. This conclusion is the result of a general
witnessing theorem, which states that if the formula ∀x∃yϕ(x, y) (for
suitable formulas ϕ) is provable in the theory associated with complexity
class C , then there is a Skolem function f(x) whose complexity is in C
and which satisfies ∀xϕ(x,f(x)).
The theory VNC1 proves that (4) follows from (5). Both (4) and (5)
are theorems of the theory VP associated with polynomial time.
Another example of an existential theorem is “Fermat’s Little Theo-
rem”, which states that if n is a prime number and 1 ≤ a < n, then
an−1 ≡ 1 (mod n). Its existential content is captured by its contraposi-
tive form

(1 ≤ a < n) ∧ (an−1 �≡ 1 (mod n)) ⊃ ∃d (1 < d < n ∧ d |n). (6)

It is not hard to see that the function an−1 mod n can be computed in
time polynomial in the lengths of a and n, using repeated squaring. If
(6) is provable in VP, then by the witnessing theorem mentioned above
it would follow that there is a polynomial time function f(a, n) whose
value d = f(a, n) provides a proper divisor of n whenever a, n satisfy
the hypothesis in (6). With the exception of the so-called Carmichael
numbers, which can be factored in polynomial time, every composite n
satisfies the hypothesis of (6) for at least half of the values of a, 1 ≤ a < n.
Hence f(a, n) would provide a probabilistic polynomial time algorithm
for integer factoring. Such an algorithm is not known to exist, and would
provide a method for breaking the RSA public-key encryption scheme.
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4 I. Introduction

Thus Fermat’s Little Theorem is not provable in VP, assuming that
there is no probabilistic polynomial time factoring algorithm.
Propositional tautologies can be used to express universal theorems
such as (3) (in which the Predicate P is implicitly universally quantified
and the bounded number quantifiers can be expanded in translation) and
(4), but are not well suited to express existential theorems such as (5) and
(6). However the latter can be expressed using formulas in the quantified
propositional calculus (QPC), which extends the propositional calculus
by allowing quantifiers ∀p and ∃p over propositional variables p. Each
of the complexity classes in (2) has an associated QPC system, and in fact
the systems 〈Gi〉 mentioned for PH form a hierarchy of QPC systems.
Most of the theories presented in this book, including those in (2),
have the same “second-order” underlying vocabulary L2A, introduced by
Zambella. The vocabulary L2A is actually a vocabulary for the two-sorted
first-order predicate calculus, where one sort is for numbers in N and the
second sort is for finite sets of numbers. Here we regard an object of the
second sort as a finite string over the alphabet {0, 1} (the i-th bit in the
string is 1 iff i is in the set). The strings are the objects of interest for
the complexity classes, and serve as the main inputs for the machines or
circuits that determine the class. The numbers serve a useful purpose as
indices for the strings when describing properties of the strings. When
they are used as machine or circuit inputs, they are presented in unary
notation.
In themore common single-sorted theories such as Buss’s hierarchies Si2
and T i2 the underlying objects are numbers which are presented in binary
notation as inputs to Turing machines. Our two-sorted treatment has the
advantage that the underlying vocabulary has no primitive operations on
strings except the length function |X | and the bit predicateX (i) (meaning
i ∈ X ). This is especially important for studying weak complexity classes
such as AC0. The standard vocabulary for single-sorted theories includes
number multiplication, which is not an AC0 function on binary strings.
Chapter II provides a sufficient background in first-order logic for the
rest of the book, including Gentzen’s proof system LK . An unusual
feature is our treatment of anchored (or “free-cut-free”) LK-proofs. The
completeness of these restricted systems is proved directly by a simple
term-model construction as opposed to the usual syntactic cut-elimination
method. The second formof theHerbrandTheoremprovedhere hasmany
applications in later chapters for witnessing theorems.
Chapter III presents the necessary background on Peano Arithmetic
(the first-order theory of N under + and×) and its subsystems, including
the bounded theory I∆0. The functions definable in I∆0 are precisely those
in the complexity class known as LTH (the Linear Time Hierarchy). An
important theorem needed for this result is that the predicate y = 2x

is definable in the vocabulary of arithmetic using a bounded formula
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I. Introduction 5

(Section III.3.3). The universal theory I∆0 has function symbols for each
function in the Linear TimeHierarchy, and forms a conservative extension
of I∆0. This theory serves as a prototype for universal theories defined in
later chapters for other complexity classes.
Chapter IV introduces the syntax and intended semantics for the two-
sorted theories, which will be used throughout the remaining chapters.
Here ΣB0 is defined to be the class of formulas with no string quantifiers,
and with all number quantifiers bounded. The ΣB1 -formulas begin with
zero or more bounded existential string quantifiers followed by a ΣB0 -
formula, andmore generally ΣBi -formulas begin with at most i alternating
blocks of bounded string quantifiers ∃∀∃ . . . . Representation theorems
are proved which state that formulas in the syntactic class ΣB0 represent

precisely the (two-sorted) AC0 relations, and for i ≥ 1, formulas in ΣBi
represent the relations in the i-th level of the polynomial hierarchy.
Chapter V introduces the hierarchy of two-sorted theories V0 ⊂ V1 ⊆
V2 ⊆ · · · . For i ≥ 1, V i is the two-sorted version of Buss’s single-
sorted theory Si2, which is associated with the ith level of the polynomial
hierarchy. In this chapter we concentrate on V0, which is associated with
the complexity class AC0. All two-sorted theories considered in later
chapters are extensions of V0. A Buss-style witnessing theorem is proved
for V0, showing that the existential string quantifiers in a ΣB1 -theorem of

V0 can be witnessed by AC0-functions. Since ΣB1 -formulas have all string
quantifiers in front, both the statement and the proof of the theorem are
simpler than for the usual Buss-style witnessing theorems. (The same
applies to the witnessing theorems proved in later chapters.) The final
section proves that V0 is finitely axiomatizable.
Chapter VI concentrates on the theory V1, which is associated with the
complexity class P. All (and only) polynomial time functions are ΣB1 -
definable inV1. The positive direction is shown in two ways: by analyzing
Turing machine computations and by using Cobham’s characterization of
these functions. Thewitnessing theorem forV1 is shownusing (two-sorted
versions of) the anchored proofs described in Chapter II, and implies that
only polynomial time functions are ΣB1 -definable in V

1.
Chapter VII gives a general definition of propositional proof system.
The goal is to associate a proof system with each theory so that each ΣB0 -
theorem of the theory translates into a polynomial size family of proofs
in the proof system. Further, the theory should prove the soundness
of the proof system, but this is not shown until Chapter X. In Chap-
ter VII, translations are defined from V0 to bounded-depth PK-proofs
(i.e. bounded-depth Frege proofs), and also from V1 to extended Frege
proofs. Systems Gi and G�i for the quantified propositional calculus are
defined, and for i ≥ 1 we show how to translate bounded theorems of V i

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-51729-4 - Logical Foundations of Proof Complexity
Stephen Cook and Phuong Nguyen
Excerpt
More information

http://www.cambridge.org/9780521517294
http://www.cambridge.org
http://www.cambridge.org


6 I. Introduction

to polynomial size families of proofs in the system G�i . The two-sorted
treatment makes these translations simple and natural.
Chapter VIII begins by introducing other two-sorted theories associ-
ated with polynomial time. The finitely axiomatized theory VP and its
universal conservative extension VPV both appear to be weaker thanV1,
although they have the same ΣB1 theorems as V

1. VP = TV0 is the base

of the hierarchy of theories TV0 ⊆ TV1 ⊆ · · · , where for i ≥ 1, TV i
is isomorphic to Buss’s single-sorted theory T i2. The definable problems

in TV1 have the complexity of Polynomial Local Search. A form of the
Herbrand Theorem known as KPT Witnessing is proved and applied to
show independence of the Replacement axiom scheme from some theo-
ries, and to relating the collapse of the V∞ hierarchy with the provable
collapse of the polynomial hierarchy. The ΣBj -definable search problems in

V i and TV i are characterized for many i and j. The RSUV isomorphism
theorem between Si2 and V

i is proved.
See Table 3 on page 250 for a summary of which search problems are
definable in V i and TV i .
Chapter IX gives a uniform way of introducing minimal canonical the-
ories for many complexity classes between AC0 and P, including those
mentioned earlier in (1). Each finitely axiomatized theory is defined as an
extension ofV0 obtained by adding a single axiom stating the existence of
a computation solving a complete problem for the associated complexity
class. Evidence for the “minimality” of each theory is presented by defin-
ing a universal theory whose axioms are simply a set of basic axioms for
V0 together with the defining axioms for all the functions in the associated
complexity class. These functions are defined as the functionAC0-closure
of the complexity class, or (as is the case forP) using a recursion-theoretic
characterization of the function class. The main theorem in each case is
that the universal theory is a conservative extension of the finitely axiom-
atized theory.
Table 1 on page 7 gives a summary of the two-sorted theories presented
in Chapter IX and elsewhere, and Table 2 on page 8 gives a list of some
theorems provable (or possibly not provable) in the various theories.
Chapter X extends Chapter VII by presenting quantified propositional
proof systems associated with various complexity classes, and defining
translations from the bounded theorems of the theories introduced in
Chapter IX to the appropriate proof system. Witnessing theorems for
subsystems of G (quantified propositional calculus) are proved. The
notion of reflection principle (soundness of a proof system) is defined,
and many results showing which kinds of reflection principle for various
systems can (or probably cannot) be proved in various theories. It is
shown how reflection principles can be used to axiomatize some of the
theories.
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I. Introduction 7

CLASS THEORY SEE

AC0
V0 Section V.1

V
0

Section V.6

AC0(2)
V0(2),V̂0(2), V0(2) Section IX.4.2

VAC0(2)V Section IX.4.4

AC0(m) V0(m),V̂0(m), V0(m) Section IX.4.6

AC0(6) VAC0(6)V Section IX.4.8

ACC VACC Section IX.4.6

TC0
VTC0,̂VTC0, VTC

0
Section IX.3.2

VTC0V Section IX.3.4

NC1
VNC1, ̂VNC1, VNC

1
Section IX.5.3

VNC1V Section IX.5.5

L
VL,̂VL,VL Section IX.6.3

VLV Section IX.6.4

NL
VNL,V̂NL,VNL Section IX.6.1

V1-KROM Section IX.6.2

ACk (k ≥ 1) VACk Section IX.5.6

NCk+1 (k ≥ 1) VNCk+1 Section IX.5.6

NC
VNC Section IX.5.6

U1 Section IX.5.6

P

VP Section VIII.1

VPV Section VIII.2

TV0 Section VIII.3

V1-HORN Section VIII.4

V1 Chapter VI

C (for C ⊆ P) VC ,̂VC , VC Section IX.2.1

CC(PLS)
TV1 Section VIII.5

V2 Section VIII.7.2

Table 1. Theories and their ΣB1 -definable classes.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-51729-4 - Logical Foundations of Proof Complexity
Stephen Cook and Phuong Nguyen
Excerpt
More information

http://www.cambridge.org/9780521517294
http://www.cambridge.org
http://www.cambridge.org


8 I. Introduction

THEORY (NON)THEOREM(?) SEE

V0
(seq.) Jordan Curve Theorem [84]

�� PHP Corollary VII.2.4

�� onto PHP, �� Countm Section IX.4.3

V0(2)

onto PHP, Count2 Section IX.4.3

(set) Jordan Curve Theorem Section IX.4.5

PHP?, Count3? Section IX.7.4

V0(m)

Countm′ (if gcd(m,m′) > 1) Section IX.4.7

Countm′? (if gcd(m,m′) = 1) Section IX.7.4

PHP? Section IX.7.4

VTC0

sorting Exercise IX.3.9

Reflection Principles for d -PTK Section X.4.2

PHP Section IX.3.5

Finite Szpilrajn’s Theorem Section IX.3.7

Bondy’s Theorem Section IX.3.8

define �X/Y �? Section IX.7.3

VNC1
Reflection Principle for PK Theorem X.3.9

Barrington’s Theorem Sec. IX.5.5 & [82]

NUMONES Section IX.5.4

VL
Lind’s characterization of L Section IX.6.4

Reingold’s Theorem? Section IX.7.2

VNL Grädel’s Theorem (for NL) Theorem IX.6.24

VNC2 Cayley–Hamilton Theorem? Section IX.7.1

VP = TV0
Reflection Principle for ePK Exercise X.2.22

Grädel’s Theorem (for P) Theorem VIII.4.8

��Fermat’s Little Theorem (cond.) page 3

V1 Prime Factorization Theorem Exercise VI.4.4

V i (i ≥ 1) Πqi -RFNGi−1 , Π
q
i+2-RFNG�i Theorem X.2.17

TV i (i ≥ 0) Πqi+2-RFNG�i+1 , Π
q
i+1-RFNGi Theorem X.2.20

Table 2. Some theories and their (non)theorems/sol-
vable problems (and open questions). (“cond.” stands
for conditional.) Many theorems of VP, such as Kura-
towski’s Theorem, Hall’s Theorem, Menger’s Theorem
are not discussed here.
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Chapter II

THE PREDICATE CALCULUS AND THE SYSTEM LK

In this chapter we present the logical foundations for theories of bounded
arithmetic. We introduce Gentzen’s proof system LK for the predicate
calculus, and prove that it is sound, and complete even when proofs
have a restricted form called “anchored”. We augment the system LK
by adding equality axioms. We prove the Compactness Theorem for
predicate calculus, and the Herbrand Theorem.
In general we distinguish between syntactic notions and semantic no-
tions. Examples of syntactic notions are variables, connectives, formulas,
and formal proofs. The semantic notions relate to meaning; for example
truth assignments, structures, validity, and logical consequence.
The first section treats the simple case of propositional calculus.

II.1. Propositional Calculus

Propositional formulas (called simply formulas in this section) are built
from the logical constants ⊥, � (for False, True), propositional variables
(or atoms) P1, P2, . . . , connectives ¬,∨,∧, and parentheses (, ). We use
P,Q,R, . . . to stand for propositional variables, A,B,C, . . . to stand for
formulas, and Φ,Ψ, . . . to stand for sets of formulas. When writing
formulas such as (P ∨ (Q ∧R)), our convention is that P,Q,R, . . . stand
for distinct variables.
Formulas are built according to the following rules:

• ⊥, �, P, are formulas (also called atomic formulas) for any vari-
able P.

• If A and B are formulas, then so are (A ∨ B), (A ∧ B), and ¬A.
The implication connective ⊃ is not allowed in our formulas, but we
will take (A ⊃ B) to stand for (¬A ∨ B). Also (A ↔ B) stands for
((A ⊃ B) ∧ (B ⊃ A)).
We sometimes abbreviate formulas by omitting parentheses, but the
intended formula has all parentheses present as defined above.
A truth assignment is an assignment of truth values F,T to atoms.
Given a truth assignment �, the truth value A� of a formula A is defined

9
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10 II. The Predicate Calculus and the System LK

inductively as follows: ⊥� = F , �� = T , P� = �(P) for atom P, (A ∧
B)� = T iff bothA� = T and B� = T , (A∨B)� = T iff either A� = T or
B� = T , (¬A)� = T iff A� = F .

Definition II.1.1. A truth assignment � satisfies A iff A� = T ; � satis-
fies a set Φ of formulas iff � satisfies A for all A ∈ Φ. Φ is satisfiable iff
some � satisfies Φ; otherwise Φ is unsatisfiable. Similarly for A. Φ |= A
(i.e., A is a logical consequence of Φ) iff � satisfies A for every � such that
� satisfies Φ. A formula A is valid iff |= A (i.e., A� = T for all �). A
valid propositional formula is called a tautology. We say thatA andB are
equivalent (written A⇐⇒ B) iff A |= B and B |= A.

Note that⇐⇒ refers to semantic equivalence, as opposed to=syn, which
indicates syntactic equivalence. For example, (P ∨ Q)⇐⇒ (Q ∨ P), but
(P ∨Q) �=syn (Q ∨ P).
II.1.1. Gentzen’s Propositional Proof System PK . We present the pro-
positional part PK of Gentzen’s sequent-based proof system LK . Each
line in a proof in the system PK is a sequent of the form

A1, . . . , Ak −→ B1, . . . , B� (7)

where −→ is a new symbol and A1, . . . , Ak and B1, . . . , B� are sequences
of formulas (k, � ≥ 0) called cedents. We call the cedent A1, . . . , Ak the
antecedent and B1, . . . , B� the succedent (or consequent).
The semantics of sequents is given as follows. We say that a truth
assignment � satisfies the sequent (7) iff either � falsifies some Ai or �
satisfies some Bi . Thus the sequent is equivalent to the formula

¬A1 ∨ ¬A2 ∨ · · · ∨ ¬Ak ∨ B1 ∨ B2 ∨ · · · ∨ B� . (8)

(Here and elsewhere, a disjunctionC1∨· · ·∨Cn indicates parentheses have
been inserted with association to the right. For example,C1∨C2∨C3∨C4
stands for (C1∨(C2∨(C3∨C4))). Similarly for a disjunctionC1∧· · ·∧Cn.)
In other words, the conjunction of the A’s implies the disjunction of the
B’s. In the cases in which the antecedent or succedent is empty, we see that
the sequent−→ A is equivalent to the formula A, andA −→ is equivalent
to ¬A, and just −→ (with both antecedent and succedent empty) is false
(unsatisfiable). We say that a sequent is valid if it is true under all truth
assignments (which is the same as saying that its corresponding formula
is a tautology).

Definition II.1.2. A PK proof of a sequent S is a finite tree whose
nodes are (labeled with) sequents, whose root (called the endsequent) is S
and is written at the bottom, whose leaves (or initial sequents) are logical
axioms (see below), such that each non-leaf sequent follows from the
sequent(s) immediately above by one of the rules of inference given below.
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