Structural Geology

Lavishly illustrated in color, this textbook takes an applied approach to introduce undergraduate students to the basic principles of structural geology. The book provides unique links to industry applications in the upper crust, including petroleum and groundwater geology, which highlight the importance of structural geology in exploration and exploitation of petroleum and water resources. Topics range from faults and fractures forming near the surface to shear zones and folds of the deep crust. Students are engaged through examples and parallels drawn from practical everyday situations, enabling them to connect theory with practice. Containing numerous end-of-chapter problems, e-learning modules, and with stunning field photos and illustrations, this book provides the ultimate learning experience for all students of structural geology.

Haakon Fossen is Professor of Structural Geology at the University of Bergen, Norway. His professional career has also involved work as an exploration and production geologist/geophysicist for Statoil and periods of geologic mapping and mineral exploration in Norway. His research ranges from hard to soft rocks and includes studies of folds, shear zones, formation and collapse of the Caledonian Orogen, numerical modeling of deformation (transpression), the evolution of the North Sea rift, and studies of deformed sandstones in the western United States. He has conducted extensive field work in various parts of the world, notably Norway, Utah/Colorado and Sinai, and his research is based on field mapping, microscopy, physical and numerical modeling, geochronology and seismic interpretation. Professor Fossen has been involved in editing several international geology journals, has authored over 100 scientific publications, and has written two books and several book chapters. He has taught undergraduate structural geology courses for over fifteen years and has a keen interest in developing electronic teaching resources to aid student visualization and understanding of geologic structures.

Structural Geology

Haakon Fossen

UNIVERSITY OF BERGEN, NORWAY

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521516648

© Haakon Fossen 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010 Reprinted with corrections 2011 7th printing 2015

Printed in the United Kingdom by Bell and Bain Ltd, Glasgow

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data

Fossen, Haakon, 1961– Structural geology / Haakon Fossen. p. cm. ISBN 978-0-521-51664-8 (Hardback) 1. Geology, Structural. I. Title. QE601.F687 2010 551.8–dc22 2010011781

ISBN 978-0-521-51664-8 Hardback

Additional resources for this publication at www.cambridge.org/9780521516648

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents		
How to use this book page	e viii	2.22 Incremental deformation
Preface	xi	2.23 Strain compatibility and boundary
Acknowledgments	xii	conditions
List of symbols	xiii	2.24 Deformation history from deformed rocks
,		2.25 Coaxiality and progressive simple shear
1		2.26 Progressive pure shear
		2.27 Progressive subsimple shear
Structural geology and structural		2.28 Simple and pure shear and their scale
analysis	1	dependence
1.1 Approaching structural geology	2	2.29 General three-dimensional deformation
1.2 Structural geology and tectonics	2	2.30 Stress versus strain
1.3 Structural data sets	4	Summary
1.4 Field data	5	,
1.5 Remote sensing and geodesy	5	3
1.6 DFM GIS and Google Farth	6	
1.7 Seismic data	8	Strain in rocks
1.8 Experimental data	10	3.1 Why perform strain analysis?
1.9 Numerical modeling	12	3.2 Strain in one dimension
1.10 Other data sources	12	3.3 Strain in two dimensions
1.10 Organizing the data	12	3.4 Strain in three dimensions
1.12 Structural analysis	15	Summary
1 13 Concluding remarks	18	ourmany
7	10	4
۲		•••••
Deformation	21	Stress
2.1 What is deformation?	27	4.1 Definitions, magnitudes and units
2.1 What is deformation:	22	4.2 Stress on a surface
2.2 Components of deformation	23	4.3 Stress at a point
2.5 System of reference	24	4.4 Stress components
2.4 Deformation, detached from history	23	4.5 The stress tensor (matrix)
2.5 Homogeneous and heterogeneous	25	4.6 Deviatoric stress and mean stress
2.6 Mathematical description of deformation	25	4.7 Mohr circle and diagram
2.6 Mathematical description of deformation	20	Summary
2.7 Olle-dimensional strain	20 20	
2.6 Strain in two dimensions	20	5
2.9 Infee-dimensional strain	20	J
2.10 The strain empsoid	20 21	Stress in the lithosphere
2.11 More about the strain ellipsoid	3 I 22	
2.12 Volume change	32	5.1 Importance of stress measurements
2.13 Uniaxial strain (compaction)	33 25	5.2 Stress measurements
2.14 Fulle shear and coaxial deformations	22	5.4 The thermal affect on horizontal stress
2.15 Simple shear	20	5.5 Desidual stress
2.10 Substitupie snear	20	5.6 Tectonic stress
2.17 Progressive deformation and now parameters	50	5.0 rectoric stress
2.18 Velocity field	۵C مد	5.7 Giodal stress patterns
2.19 Flow apophyses	39	5.8 Differential stress, deviatoric stress
2.20 Vorticity and W_k	40	and some implications
2.21 Steady-state deformation	41	Summary

vi

Contents

Rheology	97
6.1 Rheology and continuum mechanics	98
6.2 Idealized conditions	99
6.3 Elastic materials	99
6.4 Plasticity and flow: permanent	
deformation	103
6.5 Combined models	107
6.6 Experiments	109
6.7 The role of temperature, water etc.	110
6.8 Definition of plastic, ductile and brittle	
deformation	112
6.9 Rheology of the lithosphere	113
Summary	115

•••••	
Fracture and brittle deformation	119
7.1 Brittle deformation mechanisms	120
7.2 Types of fractures	121
7.3 Failure and fracture criteria	126
7.4 Microdefects and failure	130
7.5 Fracture termination and interaction	136
7.6 Reactivation and frictional sliding	138
7.7 Fluid pressure, effective stress	
and poroelasticity	139
7.8 Deformation bands and fractures	
in porous rocks	141
Summary	148

Faults

	Fai	ults	151
	8.1	Fault terminology	152
	8.2	Fault anatomy	156
	8.3	Displacement distribution	160
	8.4	Identifying faults in an oil field setting	161
	8.5	The birth and growth of faults	165
	8.6	Growth of fault populations	174
	8.7	Faults, communication and sealing	
		properties	181
		Summary	185
9			
	Kir	nematics and paleostress	

in the brittle regime

9.1	Kinematic criteria
9.2	Stress from faults

- 9.3 A kinematic approach to fault slip data
- 9.4 Contractional and extensional structures Summary

- -

Deformation at the microscale 10.1 Deformation mechanisms and microstructures 10.2 Brittle versus plastic deformation mechanisms 10.3 Brittle deformation mechanisms 10.4 Mechanical twinning 10.5 Crystal defects 10.6 From the atomic scale to microstructures Summary

.....

Folds an	d folding	219
11.1 Geon	netric description	220
11.2 Foldi	ng: mechanisms and processes	226
11.3 Fold	interference patterns and refolded folds	235
11.4 Folds	s in shear zones	237
11.5 Foldi	ng at shallow crustal depths	238
Sumi	narv	239

•••••	
Foliation and cleavage	243
12.1 Basic concepts	244
12.2 Relative age terminology	245
12.3 Cleavage development	246
12.4 Cleavage, folds and strain	250
12.5 Foliations in quartzites, gneisses	
and mylonite zones	254
Summary	256

.

Lineations	259
13.1 Basic terminology	260
13.2 Lineations related to plastic deformation	tion 260
13.3 Lineations in the brittle regime	263
13.4 Lineations and kinematics	265
Summary	268

Boudinage

	5	
14.1	Boudinage and pinch-and-swell structures	272
14.2	Geometry, viscosity and strain	272
14.3	Asymmetric boudinage and rotation	275
14.4	Foliation boudinage	277
14.5	Boudinage and the strain ellipse	278
14.6	Large-scale boudinage	279
	Summary	281

15

She	ar zones and mylonites	285
15.1	What is a shear zone?	286
15.2	The ideal plastic shear zone	289
15.3	Adding pure shear to a simple shear zone	294
15.4	Non-plane strain shear zones	296
15.5	Mylonites and kinematic indicators	297
15.6	Growth of shear zones	306
	Summary	307
16		
C .	and a the set of the set	244

Contractional regimes 311 16.1 Contractional faults 312 Thrust faults 313 16.2 319 16.3 Ramps, thrusts and folds 16.4 Orogenic wedges 323 329 Summary

17

Exter	nsional regimes	333
17.1	Extensional faults	334
17.2	Fault systems	335
17.3	Low-angle faults and core complexes	338
17.4	Ramp-flat-ramp geometries	341
17.5	Footwall versus hanging-wall collapse	342
17.6	Rifting	342
17.7	Half-grabens and accommodation zones	343
17.8	Pure and simple shear models	344
17.9	Stretching estimates, fractals	
	and power law relations	345
17.10	Passive margins and oceanic rifts	347
17.11	Orogenic extension and orogenic collapse	348
17.12	Postorogenic extension	350
	Summary	351

18

Strike-slip, transpression and transtension 355 18.1 Strike-slip faults 18.2 Transfer faults 18.3 Transcurrent faults 18.4 Development and anatomy of strike-slip faults

Contents

18.5	Transpression and transtension	363
18.6	Strain partitioning	366
	Summary	368

19

• • • • • • • •	
Salt tectonics	371
19.1 Salt tectonics and halokinesis	372
19.2 Salt properties and rheology	373
19.3 Salt diapirism, salt geometry	
and the flow of salt	374
19.4 Rising diapirs: processes	383
19.5 Salt diapirism in the extensional regime	383
19.6 Diapirism in the contractional regime	386
19.7 Diapirism in strike-slip settings	389
19.8 Salt collapse by karstification	389
19.9 Salt décollements	390
Summary	392

20

Balancing and restoration	395
20.1 Basic concepts and definitions	396
20.2 Restoration of geologic sections	396
20.3 Restoration in map view	403
20.4 Restoration in three dimensions	404
20.5 Backstripping	404
Summary	406

21

356

356

358

359

A glimpse of a larger picture	409
21.1 Synthesizing	410
21.2 Deformation phases	410
21.3 Progressive deformation	411
21.4 Metamorphic textures	411
21.5 Radiometric dating and $P-T-t$ paths	414
21.6 Tectonics and sedimentation	415
Summary	417

Appendix A: More about the deformation matrix	418
Appendix B: Stereographic projection	422
Glossary	428
References	451
Cover and chapter image captions	455
Index	457

HOW TO USE THIS BOOK

Each chapter starts with a general introduction, which presents a context for the topic within structural geology as a whole. These introductions provide a roadmap for the chapter and will help you to navigate through the book.

BOX 4.2 VECTORS, MATRICES AND TEN

A scalar is a real number, reflecting temperature, mass no direction. A vector has both magnitude (length) ar or velocity. A matrix is a two-dimensional array of nui meaning that they have 9 or 4 components). Matrices

The term tensor is, in rock mechanics, applied to v scalars as tensors of order zero, vectors as first-orde Hence, for our purposes, the terms matrix and secon cases where numbers are arranged in matrices that

The main text contains **highlighted terms** and **key expressions** that you will need to understand and become familiar with. Many of these terms are listed in the **Glossary** at the back of the book. The Glossary allows you to easily look up terms whenever needed and can also be used to review important topics and key facts. Each chapter also contains a series of **highlighted statements** to encourage you to pause and review your understanding of what you have read.

Most chapters have one or more **boxes** containing in-depth information about a particular subject, helpful examples or relevant background information. Other important points are brought together in the **chapter summaries. Review questions** should be used to test your understanding of

the chapter before moving on to the next topic. **Answers** to these questions are given on the book's web-page.

Review questions

- **1.** When is it appropriate to use the term pressure in geology?
- 2. How can we graphically visualize the state of stress in two and the
- 3. Where could we expect to find tensile stress in the crust?
- **4.** How will the shape and orientation of the stress ellipsoid change system?
- 5. Will the stress tensor (matrix) look different if we choose a different
- **6.** A diagonal tensor has numbers on the diagonal running from the with all other entries being zero. What does a diagonal stress tens

Web-based resources

Specially prepared resources, unique to this book, are available from the book's web-page: www.cambridge.org/fossen. These are:

 Flash based e-learning modules that combine animations, text, illustrations and photographs. These present key aspects of structural geology in a highly visual and interactive environment.

- All of the figures for each chapter as jpeg files for use by instructors and readers.
- Supplementary figures illustrating additional geologic structures and field examples.
- Answers to the review questions presented at the end of each chapter.
- Additional exercises and solutions.
- A repository for further images, animations, videos, exercises and other resources provided by readers and instructors as a community resource.

This textbook is written to introduce undergraduate students, and others with a general geologic background, to basic principles, aspects and methods of structural geology. It is mainly concerned with the structural geology of the crust, although the processes and structures described are relevant also for deformation that occurs at deeper levels within our planet. Further, remote data from Mars and other planets indicate that many aspects of terrestrial structural geology are relevant also beyond our own planet.

The field of structural geology is very broad, and the content of this book presents a selection of important subjects within this field. Making the selection has not been easy, knowing that lecturers tend to prefer their own favorite aspects of, and approaches to, structural geology, or make selections according to their local departmental course curriculum. Existing textbooks in structural geology tend to emphasize the ductile or plastic deformation that occurs in the middle and lower crust. In this book I have tried to treat the frictional regime in the upper crust more extensively so that it better balances that of the deeper parts of the crust, which makes some chapters particularly relevant to courses where petroleum geology and brittle deformation in general are emphasized.

Obtaining this balance was one of several motivating factors for writing this book, and is perhaps related to my mixed petroleum geology and hard-rock structural geology experience. Other motivating factors include the desire to make a book where I could draw or redraw all of the illustrations and be able to present the first fullcolor book in structural geology. I also thought that a fundamental structural geology text of the twenty-first century should come with specially prepared e-learning resources, so the package of e-learning material that is presented with this book should be regarded as part of the present book concept.

Book structure

The structure of the book is in many ways traditional, going from strain (Chapters 2 and 3) to stress (Chapters 4 and 5) and via rheology (Chapter 6) to brittle deformation (Chapters 7 and 8). Of these, Chapter 2 contains material that would be too detailed and advanced for some students and classes, but selective reading is possible. Then, after a short introduction to the microscale structures and processes that distinguish crystal-plastic from brittle deformation (Chapter 10), ductile deformation structures such as folding, boudinage, foliations and shear zones are discussed (Chapters 11-15). Three consecutive chapters then follow that are founded on the three principal tectonic regimes (Chapters 16-18) before salt tectonics and restoration principles are presented (Chapters 19 and 20). A final chapter, where links to metamorphic petrology as well as stratigraphy are drawn, rounds off the book, and suggests that structural geology and tectonics largely rely on other disciplines. The chapters do not have to be read in numerical order, and most chapters can be used individually.

Emphasis and examples

The book seeks to cover a wide ground within the field of structural geology, and examples presented in the text are from different parts of the world. However, pictures and illustrations from a few geographic areas reappear. One of those is the North Sea rift system, notably the Gullfaks oil field, which I know quite well from my years with the Norwegian oil company Statoil. Another is the Colorado Plateau (mostly Utah), which over the last two decades has become one of my favorite places to do field work. A third, and much wetter and greener one, is the Scandinavian Caledonides. From this ancient orogen I have chosen a number of examples to illustrate structures typical of the plastic regime.

xii

Preface

Acknowledgments

During the writing of this textbook I have built on experience and knowledge achieved through my entire career, from early days as a student, via various industrial and academic positions, to the time I have spent writing the manuscript. In this respect I want to thank fellow students, geologists and professors with whom I have interacted during my time at the Universities of Bergen, Oslo, Minnesota and Utah, at Utah State University, in Statoil and at the Geological Survey of Norway. In particular, my advisers and friends Tim Holst, Peter Hudleston and Christian Teyssier deserve thanks for sharing their knowledge during my three years in Minnesota, and among the many fellow PhD students there special thanks are due to Jim Dunlap, Eric Heatherington, David Kirschner, Labao Lan and, particularly, Basil Tikoff for valuable discussions and exchange of ideas as we were exploring various aspects of structural geology. Among coworkers and colleagues I wish to extend special

thanks to Roy Gabrielsen, who contributed to the Norwegian book on which this book builds, Jonny Hesthammer for good company in Statoil and intense field discussions, Egil Rundhovde for co-leading multiple field trips to the Colorado Plateau, and to Rich Schultz who is always keen on intricate discussions on fracture mechanics and deformation bands in Utah and elsewhere.

Special thanks also go to Wallace Bothner, Rob Butler, Nestor Cardozo, Declan DePaor, Jim Evans, James Kirkpatrick, Stephen Lippard, Christophe Pascal, Atle Rotevatn, Zoe Shipton, Holger Stunitz and Bruce Trudgill for reading and commenting on earlier versions of the text. I am also thankful to colleagues and companies who assisted in finding appropriate figures and seismic examples of structures, each of which is acknowledged in connection with the appearance of the illustration in the book, and to readers who will send their comments to me so that improvements can be made for the next edition.

Symbols

а	long axis of ellipse representing a microcrack
Α	area;
	empirically determined constant in flow laws
С	short axis of ellipse representing a microcrack
С	cohesion or cohesional strength of a rock
C_{f}	cohesive strength of a fault
d	offset
$d_{ m cl}$	thickness of clay layer
D	displacement;
	fractal dimension
D_{\max}	maximum displacement along a fault trace or on a fault surface
D	deformation (gradient) matrix
$e = \varepsilon$	elongation
$\dot{e} = \dot{e}$	elongation rate (de/dt)
\dot{e}_x and \dot{e}_y	elongation rates in the x and y directions (s^{-1})
\mathbf{e}_1 , \mathbf{e}_2 and \mathbf{e}_3	eigenvectors of deformation matrix, identical to the three axes
	of strain ellipsoid
ē	logarithmic (natural) elongation
\overline{e}_{s}	natural octahedral unit shear
Ε	Young's modulus;
	activation energy for migration of vacancies through a crystal
	$(\operatorname{J}\operatorname{mol}^{-1}\operatorname{K}^{-1})$
E^*	activation energy
F	force vector $(\text{kg m s}^{-2}, \text{N})$
F _n	normal component of the force vector
F _s	shear component of the force vector
g	acceleration due to gravity (m/s ²)
h	layer thickness
h_0	initial layer thickness
$h_{ m T}$	layer thickness at onset of folding (buckling)
ISA ₁₋₃	instantaneous stretching axes
Κ	bulk modulus
Ki	stress intensity factor
K _c	fracture toughness
k	parameter describing the shape of the strain ellipsoid
	(lines in the Flinn diagram)
k_x and k_y	pure shear components, diagonal elements in the pure shear
	and simple shear matrices
1	line length (m)

xiv

List of symbols

1	line length main to defense them (m)
	line length prior to deformation (m)
L	velocity tensor (matrix)
L	fault length;
_	wavelength
$L_{\rm d}$	dominant wavelength
L_{T}	actual length of a folded layer over the distance of one wavelength
п	exponent of displacement-length scaling law
$p_{ m f}$	fluid pressure
P	pressure (Pa)
Q	activation energy
R	ellipticity or aspect ratio of ellipse (long over short axis);
	gas constant $(J kg^{-1} K^{-1})$
$R_{ m f}$	final ellipticity of an object that was non-circular prior to deformation
$R_{\rm i}$	initial ellipticity of an object (prior to deformation)
R _s	same as R, used in connection with the $R_{\rm f}/\phi$ -method to distinguish
	it from <i>R</i> _f
R_{xy}	X/Y
$R_{\nu z}$	Y/Z
s	stretching
Ś	stretching tensor, symmetric part of L
t	time (s)
Т	temperature (K or °C);
-	uniaxial tensile strength (bar):
	local displacement or throw of a fault when calculating SGR and SSF
V	velocity vector (m/s)
• V	volume (m^3)
V	volume prior to deformation
V ₀ V	volucity of P wayes
v p V	velocity of S waves
V _S	verticity vector
w	
W XA7	volticity
VV 147	vorticity (or spin) tensor, which is the skew-symmetric component of L
<i>W</i> _k	Rinematic vorticity number
X /	vector or point in a coordinate system prior to deformation
X	vector or point in a coordinate system after deformation
<i>x</i> , <i>y</i> , <i>z</i>	coordinate axes, z being vertical
X, Y, Z	principal strain axes; $X \ge Y \ge Z$
Z	crustal depth (m)
α	thermal expansion factor (K ⁻¹);
	Biot poroelastic parameter;
	angle between passive marker and shear direction at onset of
	non-coaxial deformation (Chapter 15);
	angle between flow apophyses (Chapter 2)
α'	angle between passive marker and shear direction after a non-coaxial
	deformation
β	stretching factor, equal to s
Δ	volume change factor
$\Delta \sigma$	change in stress

γ	shear strain
$\overline{\gamma}_{oct}$	octahedral shear strain
Ŷ	shear strain rate
Γ	non-diagonal entry in deformation matrix for subsimple shear
η	viscosity constant (N s m ⁻²)
λ	quadratic elongation
λ_1 , λ_2 and λ_3	eigenvalues of deformation matrix
$\sqrt{\lambda_1}$, $\sqrt{\lambda_2}$ and	length of strain ellipse axes
$\sqrt{\lambda_3}$	
μ	shear modulus;
	viscosity
$\mu_{ m f}$	coefficient of sliding friction
$\mu_{ m L}$	viscosity of buckling competent layer
$\mu_{ m M}$	viscosity of matrix to buckling competent layer
ν	Poisson's ratio;
	Lode's parameter
θ	angle between the normal to a fracture and $\sigma_{1;}$
	angle between ISA1 and the shear plane
θ'	angle between X and the shear plane
ρ	density (g/cm ³)
σ	stress ($\Delta F/\Delta A$) (bar: 1 bar = 1.0197 kg/cm ² = 10 ⁵ Pa = 10 ⁶ dyne/cm ²)
σ	stress vector (traction vector)
$\sigma_1\!>\!\sigma_2\!>\!\sigma_3$	principal stresses
$\bar{\sigma}$	effective stress
$\sigma_{\rm a}$	axial stress
$\sigma_{ m dev}$	deviatoric stress
$\sigma_{ m diff}$	differential stress $(\sigma_1 - \sigma_3)$
$\sigma_{ m H}$	max horizontal stress
$\sigma_{ m h}$	min horizontal stress
$\sigma_{ m h}*$	average horizontal stress in thinned part of the lithosphere
	(constant-horizontal-stress model)
$\sigma_{ m m}$	mean stress $(\sigma_1 + \sigma_2 + \sigma_3)/3$
$\sigma_{\rm n}$	normal stress
$\sigma_{ m r}$	remote stress
$\sigma_{ m s}$	shear stress
$\sigma_{ m t}$	tectonic stress
$\sigma_{ m tip}$	stress at tip of fracture or point of max curvature along pore margin
$\sigma_{ m tot}$	total stress ($\sigma_{\rm m} + \sigma_{\rm dev}$)
$\sigma_{ m v}$	vertical stress
σ_n^{g}	normal stress at grain-grain or grain-wall contact areas in porous medium
$\sigma_{\rm n}^{\rm w}$	average normal stress exerted on wall by grains in porous medium
ϕ	internal friction (rock mechanics);
	angle between X and a reference line at onset of deformation $(R_{\rm f}/\phi$ -method)
ϕ'	angle between X and a reference line after a deformation $(R_{\rm f}/\phi\text{-method})$
Φ	porosity
ψ	angular shear
ω	angular velocity vector

