1

2

3

Cambridge University Press & Assessment 978-0-521-51613-6 — Electronic Thin-Film Reliability King-Ning Tu Table of Contents <u>More Information</u>

Contents

Prefa	ce	page xv
Thin-1	film applications to microelectronic technology	1
1.1	Introduction	1
1.2	Metal-oxide-semiconductor field-effect-transistor (MOSFET) devices	1
	1.2.1 Self-aligned silicide (salicide) contacts and gate	5
1.3	Thin-film under-bump-metallization in flip-chip technology	7
1.4	Why do we seldom encounter reliability failure in our computers?	11
1.5	Trend and transition from micro to nano electronic technology	11
1.6	Impact on microelectronics as we approach the end of Moore's law	12
Refer	ences	12
Thin-1	film deposition	14
2.1	Introduction	14
2.2	Flux equation in thin-film deposition	15
2.3	Thin-film deposition rate	17
2.4	Ideal gas law	17
2.5	Kinetic energy of gas molecules	19
2.6	Thermal equilibrium flux on a surface	20
2.7	Effect of ultrahigh vacuum on the purity of the deposited film	20
2.8	Frequency of collision of gas molecules	21
2.9	Boltzmann's velocity distribution function and ideal gas law	22
2.10	Maxwell's velocity distribution function and kinetic energy of	
	gas molecules	24
2.11	Parameters of nucleation and growth that affect the	
	microstructure of thin films	26
Refer	ences	28
Probl	ems	28
Surfa	ce energies	30
3.1	Introduction	30
3.2	Pair potential energy, bond energy, and binding energy	31

viii	Contents				
	3.3	Short-range interaction and quasi-chemical assumption	33		
	3.4	Surface energy and latent heat	35		
	3.5	Surface tension	36		
	3.6	Liquid surface energy measurement by capillary effect	38		
	3.7	Solid surface energy measurement by zero creep	41		
	3.8	Surface energy systematics	44		
	3.9	Augnitudes of surface energies	40		
		3.9.1 Thermodynamic approach	40		
		3.9.2 Mechanical approach	40		
	3 10	Surface structure	49 51		
	5.10	3 10.1 Crystallography and notation	51		
		3 10.2 Directions and planes	54		
		3.10.3 Surface reconstruction	54		
	Refer	ences	56		
	Probl	ems	57		
4	Atomic diffusion in solids				
	4.1	Introduction	60		
	4.2	Jump frequency and diffusional flux	61		
	4.3	Fick's first law (flux equation)	64		
	4.4	Diffusivity	65		
	4.5	Fick's second law (continuity equation)	66		
		4.5.1 Derivation of the continuity equation	69		
	4.6	A solution of the diffusion equation	71		
	4./	Diffusion coefficient	/3		
	4.8	Decomposition of the diffusion coefficient	74		
	4.9	4.0.1 Atomic vibrational frequency	70		
		4.9.1 Atomic violational inequality	70		
		4.9.3 The pre-exponential factor	81		
	Refer	ences	83		
	Proble	ems	84		
5	Applic	cations of the diffusion equation	86		
	5.1	Introduction	86		
	5.2	Application of Fick's first law (flux equation)	87		
		5.2.1 Zener's growth model of a planar precipitate	87		
		5.2.2 Kidson's analysis of planar growth in layered thin films	89		
	5.3	Applications of Fick's second law (diffusion equation)	93		
		5.3.1 Effect of diffusion on composition homogenization	93		
	- .	5.3.2 Interdiffusion in a bulk diffusion couple	95		
	5.4	Analysis of growth of a solid precipitate	108		

CAMBRIDGE

	Conte	nts		ix
		5.4.1	Ham's model of growth of a spherical precipitate	
			$(C_r \text{ is constant})$	109
		5.4.2	Mean-field consideration	112
	Dofor	5.4.3	Growth of a spherical nanoparticle by ripening	115
	Probl	ems		117
6	Elasti	c stress a	and strain in thin films	118
	6.1	Introdu	iction	118
	6.2	Elastic	stress-strain relationship	120
	6.3	Strain e	energy	123
	6.4	Biaxial	stress in thin films	124
	6.5	Stoney	's equation of biaxial stress in thin films	127
	6.6	Measu	rement of thermal stress in Al thin films	131
	6.7	Applica	ation of Stoney's equation to thermal expansion measurement	133
	6.8	Anharn	nonicity and thermal expansion	134
	6.9	The ori	gin of intrinsic stress in thin films	134
	0.10 Refer	Elastic	energy of a misin dislocation	133
	Probl	ems		138
7	Surfa	ce kineti	e processes on thin films	141
'	Julia			141
	7.1	Introdu	iction	141
	7.2	Adaton	ns on a surface	143
	7.5 7.4	Equilit	a diffusion	145
	7.4	Sten m	e disted growth in homoenitaxy	140
	7.5	Deposi	tion and growth of an amorphous thin film	149
	7.7	Growth	n modes of homoepitaxy	152
	7.8	Homog	geneous nucleation of a surface disc	155
	7.9	Mass ti	ransport on a patterned surface	159
		7.9.1	Early stage of diffusion on a patterned surface	159
		7.9.2	Later stage of mass transport on a patterned structure	161
	7.10	Ripenii	ng of a hemispherical particle on a surface	163
	Refer	rences		167
	Probl	ems		167
8	Interc	liffusion	and reaction in thin films	170
	8.1	Introdu	lection	170
	8.2	Silicide	e formation	172
		8.2.1	Sequential Ni silicide formation	172
		8.2.2	First phase in silicide formation	178
	8.3	Kinetic	s of interfacial-reaction-controlled growth in thin-film reactions	180
	8.4	Kinetic	es of competitive growth of two-layered phases	185

X	Contents				
	8.5	Marker analysis in intermetallic compound formation	186		
	8.6	Reaction of a monolayer of metal and a Si wafer	189		
	Refer	rences	189		
	Probl	ems	190		
9	Grain	-boundary diffusion	192		
	9.1	Introduction	192		
	9.2	Comparison of grain-boundary and bulk diffusion	194		
	9.3	Fisher's analysis of grain-boundary diffusion	197		
		9.3.1 Penetration depth	200		
		9.3.2 Sectioning	200		
	9.4	Whipple's analysis of grain-boundary diffusion	202		
	9.5	Diffusion in small-angle grain boundaries	206		
	9.6	Diffusion-induced grain-boundary motion	207		
	Refer	ences	209		
	Probl	ems	210		
10	Irreve	ersible processes in interconnect and packaging technology	212		
	10.1	Introduction	212		
	10.2	Flux equations	214		
	10.3	Entropy generation	216		
		10.3.1 Heat conduction	217		
		10.3.2 Atomic diffusion	218		
		10.3.3 Electrical conduction	218		
	10.4	Conjugate forces with varying temperature	220		
		10.4.1 Atomic diffusion	221		
	10.5	10.4.2 Electrical conduction	222		
	10.5	Joule heating	222		
	10.0	Electromigration, thermomigration, and stress-migration	223		
	10.7	10.7.1 Electromigration and group in All string	225		
	10.8	Interversible processes in thermomization	220		
	10.8	10.8.1 Thermomigration in unpowered composite solder joints	229		
	10.9	Irreversible processes in thermo-electric effects	229		
	10.7	10.9.1 Thomson effect and Seebeck effect	232		
		10.9.2 Peltier effect	235		
	Refer	rences	235		
	Probl	ems	235		
11	Electi	romigration in metals	237		
	11.1	Introduction	237		
	11.1	Ohm's law	2.37		
	11.2		272		

CAMBRIDGE

	Conter	its		xi	
	11.3	Electron	nigration in metallic interconnects	243	
	11.4	Electron	wind force of electromigration	246	
	11.5	Calculat	ion of the effective charge number	249	
	11.6	Effect of	f back stress and measurement of critical length,		
		critical p	product, and effective charge number	251	
	11.7	Why is t	here back stress in an Al interconnect?	252	
	11.8	Measure	ement of back stress induced by electromigration	254	
	11.9	Current	crowding	256	
	11.10	Current	density gradient force of electromigration	259	
	11.11	Electron	nigration in an anisotropic conductor of beta-Sn	261	
	11.12	Electron	nigration of a grain boundary in anisotropic conductor	264	
	11.13	AC elect	tromigration	266	
	Refere	ences		267	
	Proble	ems		268	
12	Electro	omigratio	n-induced failure in AI and Cu interconnects	270	
	12.1	Introduc	tion	270	
	12.2	Electron	nigration-induced failure due to atomic flux divergence	271	
	12.3	Electron	nigration-induced failure due to electric current crowding	271	
		12.3.1	Void formation in the low-current density region	272	
	12.4	Electron	nigration-induced failure in Al interconnects	276	
		12.4.1	Effect of microstructure in Al on electromigration	276	
		12.4.2	Wear-out failure mode in multilayered Al lines and W vias	277	
		12.4.3	Solute effect of Cu on electromigration in Al	277	
		12.4.4	Mean-time-to-failure in Al interconnects	277	
	12.5	Electron	nigration-induced failure in Cu interconnects	279	
		12.5.1	Effect of microstructure on electromigration	281	
		12.5.2	Effect of solute on electromigration	282	
		12.5.3	Effect of stress on electromigration	285	
		12.5.4	Effect of nanotwins on electromigration	286	
	Refere	ences		287	
	Proble	ems		288	
13	Therm	omigratio	n	289	
	13.1	13.1 Introduction			
	13.2	Thermon	migration in flip-chip solder joints of SnPb	291	
		13.2.1	Thermomigration in unpowered composite solder joints	291	
		13.2.2	In-situ observation of thermomigration	292	
		13.2.3	Random states of phase separation in the two-phase eutectic		
			structure	293	
		13.2.4	Thermomigration in unpowered eutectic SnPb solder joints	295	
	13.3	Analysis	s of thermomigration	298	
		13.3.1	Driving force of thermomigration	299	

xii	Contents				
		13.3.2	Thermomigration in eutectic two-phase alloys	301	
	13.4	Thermon	nigration under DC or AC stressing in flip-chip solder joints	302	
	13.5	Thermon	nigration in Pb-free flip-chip solder joints	303	
	13.6	Thermon	nigration and creep in Pb-free flip-chip solder joints	304	
	Refer	ences		306	
	Probl	ems		307	
14	Stress migration in thin films				
	14.1	Introduct	ion	309	
	14.2	Chemica	l potential in a stressed solid	311	
	14.3	Diffusior	nal creep (Nabarro–Herring equation)	313	
	14.4	Void grov	wth in Al interconnects driven by tensile stress	317	
	14.5	Whisker	growth in Sn/Cu thin films driven by compressive stress	319	
		14.5.1	Morphology of spontaneous Sn whisker growth	319	
		14.5.2	Stress generation (driving force) in Sn whisker growth	323	
		14.5.3	Effect of surface Sn oxide on stress-gradient generation	325	
		14.5.4	Measurement of stress distribution by synchrotron radiation	220	
		1455	Strass relevation by graph broken avide model in Sn	328	
		14.3.3	whisker growth	227	
	Pofor	ancas	whisker growth	334	
	Probl	ems		335	
	11001			555	
15	Reliability science and analysis				
	15.1	Introduct	ion	336	
	15.2	Constant	volume and non-constant volume processes	337	
	15.3	Effect of lattice shift on divergence of mass flux in			
		irreversible processes			
		15.3.1	Initial distribution of current density, temperature, and		
		15 2 2	chemical potential in a device structure before operation	338	
		15.3.2	Change of the distributions during device operation	340	
	15 4	15.3.3 Dhaai aal	Effect of lattice shift on divergence of mass flux	341	
	15.4		Distribution of summent density in a pair of joints	241	
		15.4.1	Distribution of temperature in a pair of joints	342	
		15.4.2	Effect of current crowding on pancake type void growth	345	
	15 5	15.4.5 Statistica	l analysis of electromigration failure in	540	
	15.5	flin-chin	solder joints	350	
		15.5 1	Time-to-failure and Weibull distribution	353	
		15.5.2	To calculate the parameters in Black's MTTF equation	355	
		15.5.3	Modification of Black's equation for flip-chip solder joints	357	
		15.5.4	Weibull distribution function and JMA theory of phase	221	
			transformations	359	

CAMBRIDGE

Conten	ontents				
	15.5.5 Physical analysis of statistical distribution of failure	36(
15 (Simulation	261			
13.0	Simulation	301			
Refere	ences	361			
Proble	ems	362			

ippendix in it or leg review of the moustainite functions	505
Appendix B: Defect concentration in solids	366
Appendix C: Derivation of Huntington's electron wind force	368
Appendix D: Elastic constants tables and conversions	373
Appendix E: Terrace size distribution in Si MBE	380
Appendix F: Interdiffusion coefficient	385
Appendix G: Tables of physical properties	388
Index	392