Quantum Phase Transitions

Second Edition

This is the first book to describe the physical properties of quantum materials near critical points with long-range many-body quantum entanglement. Readers are introduced to the basic theory of quantum phases, their phase transitions, and their observable properties.

This second edition begins with nine chapters, six of them new, suitable for an introductory course on quantum phase transitions, assuming no prior knowledge of quantum field theory. There are several new chapters covering important recent advances, such as the Fermi gas near unitarity, Dirac fermions, Fermi liquids and their phase transitions, quantum magnetism, and solvable models obtained from string theory. After introducing the basic theory, it moves on to a detailed description of the canonical quantum-critical phase diagram at nonzero temperatures. Finally, a variety of more complex models is explored. This book is ideal for graduate students and researchers in condensed matter physics and particle and string theory.

Subir Sachdev is Professor of Physics at Harvard University and holds a Distinguished Research Chair at the Perimeter Institute for Theoretical Physics. His research has focused on a variety of quantum materials, and especially on their quantum phase transitions.

Quantum Phase Transitions

Second Edition

SUBIR SACHDEV Harvard University

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge. It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

> www.cambridge.org Information on this title: www.cambridge.org/9780521514682

> > © S. Sachdev 2011

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 2011 4th printing 2014

Printed in the United Kingdom by Print on Demand, World Wide

A catalog record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data

Sachdev, Subir, 1961-

Quantum phase transitions / Subir Sachdev. – Second edition. p. cm Includes bibliographical references and index.

ISBN 978-0-521-51468-2 (Hardback) 1. Phase transformations (Statistical physics) 2. Quantum theory. I. Title.

QC175.16.P5S23 2011

530.4'74-dc22

2010050328

ISBN 978-0-521-51468-2 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To my parents and Menaka, Monisha, and Usha

Contents

From the Preface to the first edition Preface to the second edition	<i>page</i> xiii xvii
Part I Introduction	1
1 Basic concepts	3
1.1 What is a quantum phase transition?	3
1.2 Nonzero temperature transitions and crossovers	5
1.3 Experimental examples	8
1.4 Theoretical models	9
1.4.1 Quantum Ising model	10
1.4.2 Quantum rotor model	12
1.4.3 Physical realizations of quantum rotors	14
2 Overview	18
2.1 Quantum field theories	21
2.2 What's different about quantum transitions?	24
Part II A first course	27
3 Classical phase transitions	29
3.1 Mean-field theory	30
3.2 Landau theory	33
3.3 Fluctuations and perturbation theory	34
3.3.1 Gaussian integrals	36
3.3.2 Expansion for susceptibility	39
Exercises	42
4 The renormalization group	45
4.1 Gaussian theory	46
4.2 Momentum shell RG	48
4.3 Field renormalization	53
4.4 Correlation functions	54
Exercises	56

vii

viii	Contents				
		e quantum Ising model	58		
		1 Effective Hamiltonian method	58		
	5.	2 Large- <i>g</i> expansion	59		
		5.2.1 One-particle states	60		
	_	5.2.2 Two-particle states	61		
	5.	3 Small- <i>g</i> expansion	64		
		5.3.1 $d=2$	64		
	-	5.3.2 d = 1	66		
		4 Review	67		
	5.	5 The classical Ising chain	67		
		5.5.1 The scaling limit	70		
		5.5.2 Universality	71		
		5.5.3 Mapping to a quantum model: Ising spin in a transverse field	72		
	5		72		
		6 Mapping of the quantum Ising chain to a classical Ising model kercises	74		
	E	Referes	11		
	6 Th	e quantum rotor model	79		
	6.	1 Large- \tilde{g} expansion	79		
	6.	2 Small- \tilde{g} expansion	80		
	6.	3 The classical XY chain and an O(2) quantum rotor	82		
	6.	4 The classical Heisenberg chain and an O(3) quantum rotor	88		
	6.	5 Mapping to classical field theories	89		
	6.	6 Spectrum of quantum field theory	90		
		6.6.1 Paramagnet	91		
		6.6.2 Quantum critical point	92		
		6.6.3 Magnetic order	92		
	Ex	xercises	95		
	7 Co	rrelations, susceptibilities, and the quantum critical point	96		
		1 Spectral representation	97		
		7.1.1 Structure factor	98		
		7.1.2 Linear response	99		
	7.	2 Correlations across the quantum critical point	101		
		7.2.1 Paramagnet	101		
		7.2.2 Quantum critical point	103		
		7.2.3 Magnetic order	104		
	Ех	xercises	107		
	8 Br	oken symmetries	108		
		1 Discrete symmetry and surface tension	108		
		2 Continuous symmetry and the helicity modulus	110		
		8.2.1 Order parameter correlations	112		

ix	Contents			
		110		
	8.3 The London equation and the superfluid density	112		
	8.3.1 The rotor model	115		
	Exercises	115		
9		117		
	9.1 Mean-field theory	119		
	9.2 Coherent state path integral	123		
	9.2.1 Boson coherent states	125		
	9.3 Continuum quantum field theories	126		
	Exercises	130		
	Part III Nonzero temperatures	133		
10	The Ising chain in a transverse field	135		
	10.1 Exact spectrum	137		
	10.2 Continuum theory and scaling transformations	140		
	10.3 Equal-time correlations of the order parameter	146		
	10.4 Finite temperature crossovers	149		
	10.4.1 Low T on the magnetically ordered side, $\Delta > 0, T \ll \Delta$	151		
	10.4.2 Low T on the quantum paramagnetic side, $\Delta < 0, T \ll \Delta $	157		
	10.4.3 Continuum high $T, T \gg \Delta $	162		
	10.4.4 Summary	168		
11	Quantum rotor models: large- <i>N</i> limit	171		
	11.1 Continuum theory and large-N limit	172		
	11.2 Zero temperature	174		
	11.2.1 Quantum paramagnet, $g > g_c$	175		
	11.2.2 Critical point, $g = g_c$	177		
	11.2.3 Magnetically ordered ground state, $g < g_c$	178		
	11.3 Nonzero temperatures	181		
	11.3.1 Low T on the quantum paramagnetic side, $g > g_c$, $T \ll \Delta_+$	186		
	11.3.2 High $T, T \gg \Delta_+, \Delta$	186		
	11.3.3 Low T on the magnetically ordered side, $g < g_c$, $T \ll \Delta$	187		
	11.4 Numerical studies	188		
12	The $d = 1$, $O(N \ge 3)$ rotor models	190		
	12.1 Scaling analysis at zero temperature	192		
	12.2 Low-temperature limit of the continuum theory, $T \ll \Delta_+$	193		
	12.3 High-temperature limit of the continuum theory, $\Delta_+ \ll T \ll J$	199		

x	Contents		
			201
		12.3.1 Field-theoretic renormalization group	201
		12.3.2 Computation of χ_u	205
		12.3.3 Dynamics 12.4 Summary	206 211
		12.4 Summary	211
	13	The $d = 2$, $O(N \ge 3)$ rotor models	213
		13.1 Low T on the magnetically ordered side, $T \ll \rho_s$	215
		13.1.1 Computation of ξ_c	216
		13.1.2 Computation of τ_{φ}	220
		13.1.3 Structure of correlations	222
		13.2 Dynamics of the quantum paramagnetic and high- <i>T</i> regions	225
		13.2.1 Zero temperature	227
		13.2.2 Nonzero temperatures	231
		13.3 Summary	234
	14	Physics close to and above the upper-critical dimension	237
		14.1 Zero temperature	239
		14.1.1 Tricritical crossovers	239
		14.1.2 Field-theoretic renormalization group	240
		14.2 Statics at nonzero temperatures	242
		14.2.1 $d < 3$	244
		14.2.2 $d > 3$	248
		14.3 Order parameter dynamics in $d = 2$	250
		14.4 Applications and extensions	257
	15	Transport in $d = 2$	260
		15.1 Perturbation theory	264
		15.1.1 σ_I	268
		15.1.2 σ_{II}	269
		15.2 Collisionless transport equations	269
		15.3 Collision-dominated transport	273
		15.3.1 ϵ expansion	273
		15.3.2 Large-N limit	279
		15.4 Physical interpretation	281
		15.5 The AdS/CFT correspondence	283
		15.5.1 Exact results for quantum critical transport	285
		15.5.2 Implications	288
		15.6 Applications and extensions	289
		Part IV Other models	291
	16	Dilute Fermi and Bose gases	293
		16.1 The quantum XX model	296

xi	Contents		
	16.2	The dilute spinless Fermi gas	298
		16.2.1 Dilute classical gas, $k_B T \ll \mu , \mu < 0$	300
		16.2.2 Fermi liquid, $k_B T \ll \mu, \mu > 0$	301
		16.2.3 High-T limit, $k_B T \gg \mu $	304
	16.3	The dilute Bose gas	305
		16.3.1 $d < 2$	307
		16.3.2 $d = 3$	310
		16.3.3 Correlators of Z_B in $d = 1$	314
	16.4	The dilute spinful Fermi gas: the Feshbach resonance	320
		16.4.1 The Fermi–Bose model	323
		16.4.2 Large- <i>N</i> expansion	327
	16.5	Applications and extensions	331
	17 Phase	e transitions of Dirac fermions	332
	17.1	<i>d</i> -wave superconductivity and Dirac fermions	332
	17.2	Time-reversal symmetry breaking	335
	17.3	Field theory and RG analysis	338
	17.4	Ising-nematic ordering	342
	18 Ferm	i liquids, and their phase transitions	346
		Fermi liquid theory	347
		18.1.1 Independence of choice of \vec{k}_0	354
	18.2	Ising-nematic ordering	355
		18.2.1 Hertz theory	356
		18.2.2 Fate of the fermions	358
		18.2.3 Non-Fermi liquid criticality in $d = 2$	360
	18.3	Spin density wave order	363
		18.3.1 Mean-field theory	364
		18.3.2 Continuum theory	365
		18.3.3 Hertz theory	367
		18.3.4 Fate of the fermions	368
		18.3.5 Critical theory in $d = 2$	369
	18.4	Nonzero temperature crossovers	370
	18.5	Applications and extensions	374
	19 Heise	nberg spins: ferromagnets and antiferromagnets	375
		Coherent state path integral	375
		Quantized ferromagnets	380
		Antiferromagnets	385
		19.3.1 Collinear antiferromagnetism and the quantum nonlinear	
		sigma model	385
		19.3.2 Collinear antiferromagnetism in $d = 1$	388
		19.3.3 Collinear antiferromagnetism in $d = 2$	390

Contents 19.3.4 Noncollinear antiferromagnetism in d = 2: deconfined spinons and visons 395 19.3.5 Deconfined criticality 401 19.4 Partial polarization and canted states 403 19.4.1 Quantum paramagnet 405 19.4.2 Quantized ferromagnets 406 19.4.3 Canted and Néel states 406 19.4.4 Zero temperature critical properties 408 19.5 Applications and extensions 410 20 Spin chains: bosonization 412 20.1 The XX chain revisited: bosonization 413 20.2 Phases of H_{12} 423 20.2.1 Sine-Gordon model 425 428 20.2.2 Tomonaga-Luttinger liquid 20.2.3 Valence bond solid order 428 20.2.4 Néel order 431 20.2.5 Models with SU(2) (Heisenberg) symmetry 431 20.2.6 Critical properties near phase boundaries 433 20.3 O(2) rotor model in d = 1435 20.4 Applications and extensions 436 21 Magnetic ordering transitions of disordered systems 437 438 21.1 Stability of quantum critical points in disordered systems 21.2 Griffiths-McCoy singularities 440 21.3 Perturbative field-theoretic analysis 442 21.4 Metallic systems 445 21.5 Quantum Ising models near the percolation transition 447 21.5.1 Percolation theory 447 448 21.5.2 Classical dilute Ising models 449 21.5.3 Quantum dilute Ising models 21.6 The disordered quantum Ising chain 453 21.7 Discussion 460 21.8 Applications and extensions 461 22 Quantum spin glasses 463 22.1 The effective action 464 22.1.1 Metallic systems 469 22.2 Mean-field theory 470 22.3 Applications and extensions 477 479 References Index 496

From the Preface to the first edition

The past decade has seen a substantial rejuvenation of interest in the study of quantum phase transitions, driven by experiments on cuprate superconductors, heavy fermion materials, organic conductors, and related compounds. Although quantum phase transitions in simple spin systems, like the Ising model in a transverse field, were studied in the early 1970s, much of the subsequent theoretical work examined a particular example: the metal-insulator transition. While this is a subject of considerable experimental importance, the greatest theoretical progress was made for the case of the Anderson transition of non-interacting electrons, which is driven by localization of the electronic states in the presence of a random potential. The critical properties of this transition of noninteracting electrons constituted the primary basis upon which most condensed matter physicists have formed their intuition on the behavior of the systems near a quantum phase transition. However, it is clear that strong electronic interactions play a crucial role in the systems near quantum critical points are not widely known.

It is the purpose of this book to move interactions to center stage by describing and classifying the physical properties of the simplest interacting systems undergoing a quantum phase transition. The effects of disorder will be neglected for the most part but will be considered in the concluding chapters. Our focus will be on the dynamical properties of such systems at nonzero temperature, and it will become apparent that these differ substantially from the noninteracting case. We shall also be considering inelastic collision-dominated quantum dynamics and transport: our results will apply to clean physical systems whose inelastic scattering time is much shorter than their disorder-induced elastic scattering time. This is the converse of the usual theoretical situation in Anderson localization or mesoscopic system theory, where inelastic collision times are conventionally taken to be much larger than all other timescales.

One of the most interesting and significant regimes of the systems we shall study is one in which the inelastic scattering and phase coherence times are of order \hbar/k_BT , where *T* is the absolute temperature. The importance of such a regime was pointed out by Varma *et al.* [523, 524] by an analysis of transport and optical data on the cuprate superconductors. Neutron scattering measurements of Hayden *et al.* [210] and Keimer *et al.* [263] also supported such an interpretation in the low doping region. It was subsequently realized [86, 419, 440] that the inelastic rates are in fact a *universal number* times k_BT/\hbar , and they are a robust property of the high-temperature limit of renormalizable, interacting quantum field theories that are not asymptotically free at high energies. In the Wilsonian picture, such a field theory is defined by renormalization group flows away from a critical point describing a second-order quantum phase transition. It is not essential for this

xiii

From the Preface to the first edition

critical point to be in an experimentally accessible regime of the phase diagram: the quantum field theory it defines may still be an appropriate description of the physics over a substantial intermediate energy and temperature scale. Among the implications of such an interpretation of the experiments was the requirement that response functions should have prefactors of anomalous powers of T and a singular dependence on the wavevector; recent observations of Aeppli *et al.* [5], at somewhat higher dopings, appear to be consistent with this. These recent experiments also suggest that the appropriate quantum critical points involve competition between phases with or without conventional superconducting, spin-, or charge-density-wave order. There is no global theory yet for such quantum transitions, but we shall discuss numerous simpler models here that capture some of the basic features.

It is also appropriate to note here theoretical studies [25, 93, 94, 336, 514] on the relevance of finite temperature crossovers near quantum critical points of Fermi liquids [218] to the physics of heavy fermion compounds.

A separate motivation for the study of quantum phase transitions is simply the value in having another perspective on the physics of an interacting many-body system. A traditional analysis of such a system would begin from either a weak-coupling Hamiltonian, and then build in interactions among the nearly free excitations, or a strong-coupling limit, where the local interactions are well accounted for, but their coherent propagation through the system is not fully described. In contrast, a quantum critical point begins from an intermediate coupling regime, which straddles these limiting cases. One can then use the powerful technology of scaling to set up a systematic expansion of physical properties away from the special critical point. For many low-dimensional strongly correlated systems, I believe that such an approach holds the most promise for a comprehensive understanding. Many of the vexing open problems are related to phenomena at intermediate temperatures, and this is precisely the region over which the influence of a quantum critical point is dominant. Related motivations for the study of quantum phase transitions appear in a recent discourse by Laughlin [286].

The particular quantum phase transitions that are examined in this book are undoubtedly heavily influenced by my own research. However, I believe that my choices can also be justified on pedagogical grounds and lead to a logical development of the main physical concepts in the simplest possible contexts. Throughout, I have also attempted to provide experimental motivations for the models considered; this is mainly in the form of a guide to the literature, rather than in-depth discussion of the experimental issues. I have highlighted some especially interesting experiments in a recent popular introduction to quantum phase transitions [428]. An experimentally oriented introduction to the subject of quantum phase transitions can also be found in the excellent review article of Sondhi, Girvin, Carini, and Shahar [481]. Readers may also be interested in a recent introductory article [533], intended for a general science audience.

Acknowledgments

Chapter 21 was co-authored with T. Senthil and adapted from his 1997 Yale University Ph.D. thesis; I am grateful to him for agreeing to this arrangement.

From the Preface to the first edition

Some portions of this book grew out of lectures and write-ups I prepared for schools and conferences in Trieste, Italy [418], Xiamen, China [419], Madrid, Spain [421], Geilo, Norway [424], and Seoul, Korea [427]. I am obliged to Professors Yu Lu, S. Lundqvist, G. Morandi, Hao Bai-Lin, German Sierra, Miguel Martin-Delgado, Arne Skjeltorp, David Sherrington, Jisoon Ihm, Yunkyu Bang, and Jaejun Yu for the opportunities to present these lectures. I also taught two graduate courses at Yale University and a mini-course at the Université Joseph Fourier, Grenoble, France on topics discussed in this book; I thank both institutions for arranging and supporting these courses. I am indebted to the participants and students at these lectures for stimulating discussions, valuable feedback, and their interest. Part of this book was written during a sojourn at the Laboratoire des Champs Magnétiques Intenses in Grenoble, and I thank Professors Claude Berthier and Benoy Chakraverty for their hospitality. My research has been supported by grants from the Division of Materials Research of the U.S. National Science Foundation.

I have been fortunate in having the benefit of interactions and collaborations with numerous colleagues and students who have generously shared insights that appear in many of these pages. I would particularly like to thank my collaborators Chiranjeeb Buragohain, Andrey Chubukov, Kedar Damle, Sankar Das Sarma, Antoine Georges, Ilya Gruzberg, Satya Majumdar, Reinhold Oppermann, Nick Read, R. Shankar, T. Senthil, Sasha Sokol, Matthias Troyer, Jinwu Ye, Peter Young, and Lian Zheng.

The evolution of the book owes a great deal to comments of readers of earlier versions, who unselfishly donated their time in working through unpolished drafts; naturally, they bear no responsibility for the remaining errors and obscurities. I am most grateful to Sudip Chakravarty, Andrey Chubukov, Kedar Damle, Ilya Gruzberg, Sankar Das Sarma, Bert Halperin, T. Senthil, R. Shankar, Oleg Starykh, Chandra Varma, Peter Young, Jan Zaanen, and two anonymous referees. The detailed comments provided by Steve Girvin and Wim van Saarloos were especially valuable. My thanks to them, and the others, accompany an admiration for their generous collegial spirit. I also acknowledge salutary encouragement from Jan Zaanen.

My wife, Usha, and my daughters, Monisha and Menaka, patiently tolerated my mental and physical absences during the writing (and rewritings) of this book. Ultimately, it was their cheerful support that made the project possible and worthwhile.

XV

Preface to the second edition

Research on quantum phase transitions has undergone a vast expansion since the publication of the first edition, over a decade ago. Many new theoretical ideas have emerged, and the arena of experimental systems has grown rapidly. The cuprates have been firmly established to be *d*-wave superconductors, with a massless Dirac spectrum for their electronic excitations; the latter spectrum has also been observed in graphene and on the surface of topological insulators. Such fermions play a key role in a variety of quantum phase transitions. The observation of quantum oscillations in the presence of strong magnetic fields in the underdoped cuprates has highlighted the relevance of competing orders, and their quantum critical points. Optical lattices of ultracold atoms now offer a realization of the boson Hubbard model, and exhibit the superfluid–insulator transition. And ideas on quantum criticality and entanglement have had an interesting interplay with developments in quantum information science.

The second edition does not present a fully comprehensive survey of these ongoing developments. I believe the core topics of the first edition had a certain coherence, and they continue to be central to the more modern developments; I did not wish to dilute the global perspective they offer in understanding both condensed matter and ultracold atom experiments. However, wherever possible, I have discussed important advances, or directed the reader to review articles.

Also, in the last few years, a remarkable connection has developed between ideas on quantum criticality and the string theory of quantum black holes. I briefly survey the initial developments in Section 15.5. The subject has advanced rapidly since then, with interesting applications to quantum critical states of fermions at nonzero density: this recent work is not discussed here. In any case, this book should be useful background reading for this emerging and growing field of research.

The primary change in the second edition is pedagogical. I have had the benefit of teaching a course on quantum phase transitions several times since the first edition, both at Yale and at Harvard. I am also grateful for the opportunity to lecture at various summer and winter schools (Altenberg, Boulder, Cargese, Goa, Groningen, Jerusalem, Les Houches, Mahabaleshwar, Milos, Prague, Trieste, Windsor). The content of these lectures is now in the new Part II of the book. Chapters 3–8 are new, although they do extract some material from the earlier chapters of the first edition. Part II, titled "A first course," is intended for a stand-alone course on the basic theory of quantum phase transitions, and for self-study. It should be accessible to students in both theory and experiment, after they have taken the core graduate courses on quantum mechanics and statistical mechanics. No prior knowledge of quantum field theory is assumed. Exercises are included at the ends of chapters, drawn from the problem sets of my courses.

xvii

xviii

Preface to the second edition

After completing Part II, a course can choose from the more advanced topics in Parts III and IV. I recommend a basic survey of the nonzero temperature phase diagram from Chapters 10 and 11. This can be followed by a treatment of Fermi systems drawn from Chapters 17 and 18. Chapters 19 and 20 offer many possibilities for student presentations.

The chapters in the new Parts III and IV have been significantly updated from the first edition. Chapter 16 has a new section on the Fermi gas near unitarity: this was a simple and natural extension of the previous discussion on dilute quantum liquids. These results apply to ultracold atomic systems near a Feshbach resonance. Chapter 17, on Dirac fermions, is entirely new. I took this opportunity to introduce the basics of the theory of unconventional superconductivity induced by antiferromagnetism, as it applies to the cuprates and the pnictides. Dirac fermions also offer a gentle way of introducing non-trivial quantum phase transitions of Fermi systems. Chapter 18, on Fermi liquids and their phase transitions, has been almost completely re-written: this reflects advances in our understanding, and its relevance in many experimental contexts. Chapter 19, on quantum magnetism, has numerous updates to reflect our improved understanding of spin liquids, and a brief discussion of deconfined criticality. However, I have not attempted to cover the many modern developments in quantum magnetism: a more comprehensive starting point is offered by my Solvay lecture [430].

My web site, http://sachdev.physics.harvard.edu, will have updates and corrections.

Acknowledgments

I am very grateful to all the students in my courses for their interest and valuable feedback. The notes of Suzanne Pittman and Jihye Seo were invaluable in writing Chapters 3–8. Gilad Ben-Shach, Thiparat Chotibut, Debanjan Chowdhury, Sean Hartnoll, Yejin Huh, Max Metlitski, and Eun Gook Moon provided very useful feedback on the initial drafts. The treatment of Fermi liquids in Chapter 18 is based on the ideas of Max Metlitski [333, 334].

I thank Simon Capelin, from Cambridge University Press, for guiding both editions over many years.

I thank the Perimeter Institute, Waterloo for hospitality while I was working on the second edition. Finally, I remain grateful to the National Science Foundation for continued support of my research.