Understanding Modern Transistors and Diodes

Written in a concise, easy-to-read style, this text for senior undergraduate and graduate courses covers all key topics thoroughly. It is also a useful self-study guide for practising engineers who need a complete, up-to-date review of the subject.

Key features:

- Rigorous theoretical treatment combined with practical detail
- A theoretical framework built up systematically from the Schrödinger Wave Equation and the Boltzmann Transport Equation
- Covers MOSFETS, HBTs, HJFETS, solar cells and LEDs.
- Uses the PSP model for MOSFETS
- · Describes the operation of modern, high-performance transistors and diodes
- Evaluates the suitability of various transistor types and diodes for specific modern applications
- Examines solar cells and LEDs for their potential impact on energy generation and reduction
- Includes a chapter on nanotransistors to prepare students and professionals for the future
- Rigorous treatment of device capacitance
- Provides results of detailed numerical simulations to compare with analytical solutions
- End-of-chapter exercises to aid understanding
- Online availability of sets of lecture slides for undergraduate and graduate courses

David L. Pulfrey is a Professor in the Department of Electrical and Computer Engineering at the University of British Columbia, Canada, where he has been since receiving his Ph.D. in 1968 from the University of Manchester, UK. He has won teaching awards at the university-, provincial- and international-levels. Most recently he won the 2009 IEEE Electron Devices Society Education Award "for contributions to the teaching of electron devices at both the undergraduate and graduate levels". He has received recognition for his research work on a wide range of semiconductor devices by being elected Fellow of the IEEE in 2000, and Fellow of the Canadian Academy of Engineering in 2003.

Cambridge University Press 978-0-521-51460-6 - Understanding Modern Transistors and Diodes David L. Pulfrey Frontmatter <u>More information</u>

Understanding Modern Transistors and Diodes

DAVID L. PULFREY

Department of Electrical and Computer Engineering University of British Columbia Vancouver, BC V6T1Z4 Canada

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521514606

© Cambridge University Press 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-51460-6 Hardback

Additional resources for this publication at www.cambridge.org/9780521514606

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press 978-0-521-51460-6 - Understanding Modern Transistors and Diodes David L. Pulfrey Frontmatter <u>More information</u>

To Eileen

Contents

Preface

1

2

3

page xv

Intro	oduction		1
Ener	gy band	basics	3
2.1	Period	ic structures	3
2.2	Period	ic potential	4
2.3	Schröd	dinger's equation	6
2.4	Energy	y bands	7
2.5	Reduc	ed-zone plot	10
2.6	Origin	of the bandgaps	11
2.7	Quanti	um states and material classification	12
2.8	Band s	structure of real semiconductors	13
2.9	Crysta	l momentum and effective mass	16
	2.9.1	Negative effective mass	18
	2.9.2	Hole polarity	20
	2.9.3	Parabolic-band approximation	20
2.10	Consta	ant-energy surfaces	21
2.11	Effecti	ive-mass Schrödinger equation	23
	2.11.1	Boundary conditions for the effective-mass	
		equation	25
2.12	Energy	y-band diagram	25
2.13	From r	microscopic to macroscopic	26
Exe	rcises		26
Refe	erences		28
Elec	tron and	I hole concentrations	30
3.1	Creatio	on of electrons and holes	30
	3.1.1	Thermal generation	30
	3.1.2	Optical generation	33
	3.1.3	Electrical generation	34
	3.1.4	Chemical generation	35

viii

Contents

	3.2 Recombination	37
	3.2.1 Band-to-band recombination	38
	3.2.2 Recombination-generation-centre recombination	39
	3.2.3 Auger recombination	40
	3.2.4 Recombination lifetime	41
	3.3 Carrier concentrations	43
	3.4 Density-of-states effective masses in silicon	46
	3.4.1 Electrons	46
	3.4.2 Holes	46
	Exercises	47
	References	48
4	Thermal equilibrium	49
	4.1 Collisions	49
	4.2 The Fermi level	51
	4.3 Equilibrium carrier concentrations and the Fermi level	53
	4.4 Equations involving intrinsic properties	56
	4.5 Mean unidirectional velocity of an equilibrium distribution	57
	4.5.1 Effective mass and v_R	60
	4.5.2 Current and v_R	60
	Exercises	61
	References	62
5	Charge transport	63
	5.1 Charge, current and energy	63
	5.2 The Boltzmann Transport Equation	64
	5.2.1 The Method of Moments	65
	5.2.2 The continuity equations	65
	5.3 The device equation set	69
	5.4 Mobility	71
	5.4.1 Empirical expressions for mobility	73
	5.4.2 Conductivity effective mass	74
	5.5 Current	75
	5.5.1 Drift current	76
	5.5.2 Diffusion current	77
	5.5.3 Thermal current	79
	5.6 Ballistic transport	80
	5.7 Tunnelling	81
	5.7.1 Probability density current	81
	5.7.2 Transmission probability	83
	5.7.3 Tunnel current	85
	Exercises	87
	References	90

		Contents	ix
6	np- and Np-junction basics		91
	6.1 <i>np</i> -junction at equilibrium		91
	6.1.1 The built-in voltage		93
	6.1.2 Constructing an equilibrium energy-band		
	diagram		94
	6.1.3 Potential profile		95
	6.2 The Depletion Approximation		96
	6.3 <i>np</i> -junction under bias		98
	6.3.1 Constructing a non-equilibrium energy-band		
	diagram		100
	6.3.2 Quasi-neutrality		101
	6.3.3 Reverse bias		102
	6.4 Quasi-Fermi levels		102
	6.5 Shockley's Law of the Junction		105
	6.6 The ideal-diode equation		106
	6.6.1 Deviations from ideality in diodes		108
	6.7 <i>Np</i> -junction electrostatics		109
	6.7.1 Energy band offsets		110
	6.7.2 Junction space-charge region		110 111
	6.7.3 Quasi-Fermi-level splitting6.8 Emitter injection efficiency		111
	Exercises		113
	References		115
7	Solar cells		116
	7.1 The Sun as an electrical resource		116
	7.2 Absorption		118
	7.3 Generation		119
	7.4 Photocurrent		120
	7.4.1 Surface recombination velocity		121
	7.4.2 Emitter photocurrent		122
	7.4.3 Base photocurrent		123
	7.4.4 Space-charge-layer photocurrent		123
	7.4.5 Total photocurrent		124
	7.5 Photovoltage		126
	7.5.1 Photovoltaic power		128
	7.6 Non-silicon solar cells		131
	7.6.1 Thin-film solar cells		131
	7.6.2 Tandem-junction cells		132
	7.7 Prospects for terrestrial photovoltaic power generation		133
	Exercises		135
	References		136

X	Contents	
8	Light-emitting diodes	138
		138
	8.1 Voltage efficiency8.2 Current efficiency	138
	8.2.1 Heterojunction diodes	140
	8.3 Radiative recombination efficiency	141
	8.4 Extraction efficiency	143
	8.5 Wall-plug efficiency	146
	8.6 Luminous efficacy and efficiency	146
	8.7 White-light LEDs	147
	8.8 Prospects for general-purpose solid-state lighting	149
	Exercises	151
	References	152
9	HBT basics	153
	9.1 Basic properties	154
	9.2 Collector current	156
	9.3 Base current	161
	9.3.1 Recombination in the base	162
	9.3.2 Hole injection into the emitter	163
	9.4 DC equivalent-circuit model	164
	Exercises	166
	References	168
10	MOSFET basics	169
	10.1 Transfer characteristic	169
	10.2 Electrostatics	173
	10.2.1 MOS capacitor	173
	10.2.2 MOSFET	175
	10.3 MOSFET <i>I-V</i> characteristics from the surface-potential model	176
	10.3.1 Surface potential	176
	10.3.2 Drain current	179
	10.3.3 Pinch-off and channel-length modulation	182
	10.4 MOSFET $I-V$ characteristics from the strong-inversion,	
	source-referenced model	182
	10.4.1 Basic assumptions of the model	182
	10.4.2 Drain current for constant mobility	183
	10.4.3 Comparison of the surface-potential and SPICE models	185
	10.4.4 Threshold voltage, body-effect coefficient and channel	105
	charge density	185
	10.4.5 I_D when mobility is field-dependent 10.5 Sub-threshold current	187
	10.6 Applying the long-channel models	189 190
	10.0 Applying the long-channel models	190

			Contents	xi
	10.7 DC eq	uivalent-circuit model		191
	Exercises			192
	References			193
11	HJFET basic	S		195
	11.1 Schott	-		195
	11.1.1			198
	11.2 MESF			199
	11.2.1			199
		Drain current		200
	11.3 HEMT			202
	11.3.1			203
	11.3.2	The finite well		205
	11.3.3			206
	11.3.4	8		207
	11.3.5	The drain <i>I-V</i> characteristic		208
	Exercises			208
	References			209
12	Transistor ca	apacitances		210
		ng capacitance		210
		FET capacitance		213
		Intrinsic MOSFET capacitances		213
		Extrinsic MOSFET capacitances		217
	12.3 HBT c	-		217
	12.3.1	5 1		218
	12.3.2			219
	12.3.3			220
		Base-emitter transit capacitance		220
	12.3.5	Collector-base junction capacitance		222
	Exercises			222
	References			224
13	Transistors	for high-speed logic		225
	13.1 Si CM			225
	13.1.1			225
	13.1.2	The ON-current		227
	13.1.3	Channel mobility and strain		229
	13.1.4	Oxide capacitance and high-k dielectrics		232
	13.1.5	Metal gates and poly-silicon capacitance		233
	13.1.6	•		234
	13.1.7	Threshold voltage: the short-channel effect		235

Cambridge University Press 978-0-521-51460-6 - Understanding Modern Transistors and Diodes David L. Pulfrey Frontmatter More information

xii	Contents	
	13.1.8 Threshold voltage: a quantum-mechanical effect	239
	13.1.9 Silicon-on Insulator FET	240
	13.1.10 Power dissipation	242
	13.1.11 Large-signal equivalent-circuit model	245
	13.2 Emitter-coupled logic	246
	13.2.1 Large-signal equivalent-circuit model	247
	Exercises	248
	References	250
14	Transistors for high frequencies	251
	14.1 Quasi-static analysis	251
	14.2 The generic small-signal model	253
	14.3 Hybrid- π small-signal model for HBTs	255
	14.4 f_T : the extrapolated unity-current-gain frequency	256
	14.4.1 An expression for f_T	257
	14.5 Designing an HBT for high f_T	259
	14.5.1 SiGe HBT	260
	14.6 f_{max} : the extrapolated unity-power-gain frequency	262
	14.6.1 Base-spreading resistance	264
	14.7 f_T and f_{max} for FETs	266
	14.7.1 f_T	267
	14.7.2 f_{max}	268 268
	14.8 Power gain, oscillation and stability Exercises	268 269
	References	209
15	Transistors for memories	273
	15.1 Flash memory	273
	15.2 Dynamic Random Access Memory	273
	Exercises	280
	References	280
16	Transistors for high power	281
	16.1 Avalanche breakdown	281
	16.2 The Kirk Effect	284
	16.3 Transistors for power amplifiers	284
	16.3.1 GaAs HBTs	285
	16.3.2 GaN HJFETs	289
	16.4 Transistors for high-voltage power supplies	292
	16.4.1 Si L-DMOSFETs	293
	16.4.2 Lateral insulated-gate bipolar transistor	294
	Exercises	296
	References	397

	Contents	xiii
17	Transistors for low noise	299
	17.1 Noise: general properties	299
	17.2 Noise inherent to transistors	300
	17.2.1 Thermal noise	300
	17.2.2 Shot noise	301
	17.2.3 Flicker noise	302
	17.2.4 Induced gate noise	303
	17.2.5 Adding-up the noise	304
	17.3 Representation of noise in an equivalent circuit	304
	17.4 Noise figure	306
	17.4.1 Associated gain	307
	Exercises	309
	References	309
18	Transistors for the future	310
	18.1 1-D carrier basics	311
	18.1.1 Density of states	311
	18.1.2 Carrier density	312
	18.1.3 Mean, unidirectional velocity of a 1-D equilibrium distribution	313
	18.2 1-D ballistic transport	314
	18.2.1 Dimensions for current density	316
	18.2.2 Local density of states	316
	18.2.3 Evaluating the charge	316
	18.3 Master set of equations for 1-D simulations	318
	18.4 Comparison of 1-D and 2-D currents	319
	18.4.1 Energy dissipation in ballistic transistors	321
	18.5 Novel features of carbon nanotube FETs	321
	18.5.1 Quantum capacitance and transconductance	322
	18.5.2 Ambipolarity	323
	Exercises	324
	References	326
19	Appendices	327
	19.1 Appendix A: Physical constants	327
	19.2 Appendix B: Selected material properties	327
	19.3 Appendix C: N-MOSFET parameters	329
	Index	330

Preface

Understanding Modern Transistors and Diodes is a textbook on semiconductor devices with three objectives: (i) to provide a rigorous, yet readable, account of the theoretical basis of the subject of semiconductor devices; (ii) to apply this theory to contemporary transistors and diodes so that their design and operation can be thoroughly understood; (iii) to leave readers with a sense of confidence that they are well equipped to appreciate the workings of tomorrow's devices, and to participate in their development.

There are many books on semiconductor devices, often with similar objectives, and it is reasonable to ask: why write another one? The answer is two-fold: firstly, after teaching and researching in the area for 40 years, I have a strong personal viewpoint on how the subject can best be presented to students; secondly, we are at a particularly interesting point in the development of the subject – we are at the micro/nano boundary for high-performance transistors, and we are on the threshold of seeing optoelectronic diodes make a contribution to our planet's sustainability.

These circumstances are new, and are quite different from those of 20 years ago when I was last moved to write a book on semiconductor devices. At that time the major development was the incorporation of thousands of transistors into monolithic integrated circuits. To design and analyse such circuits, the transistors were represented by a set of model parameters. One could use these parameters to design a circuit without understanding how they related to the physical properties of the actual transistors comprising the circuit. To address this deficiency I co-authored a book with Garry Tarr in 1989 that specifically linked circuit-model parameters to the physical properties of transistors and diodes.¹

Today, after a further 20 years of teaching and researching in the area of solidstate devices, I find myself lecturing on, and needing to know more about: the effect of miniaturization on the performance of silicon field-effect transistors, as used in increasingly dense integrated circuits and memories; the displacement of the silicon bipolar transistor from its traditional areas of strength (high-frequency, high-power, low-noise) by heterostructural devices based on compound semiconductors; how device engineers and physicists can address sustainability issues in their domain, particularly the generation of electricity from a renewable source via more cost-effective solar cells, and the reduction of electricity usage for lighting via high-brightness light-emitting diodes. Sometimes I feel as though the trends in semiconductor devices are creating

¹ D.L. Pulfrey and N.G. Tarr, Introduction to Microelectronic Devices, Prentice-Hall, 1989.

xvi Preface

an impossible situation: the need for greater depth of knowledge in a wider variety of devices.

The solution to this dilemma comes back to the first objective of this book: provide a rigorous and digestible theoretical basis, from which the understanding of devices of the modern era, and of the near future, follows naturally. This is how Understanding Modern Transistors and Diodes meets the challenge of covering a wide breadth of topics in the depth they warrant, while managing to limit the material to that which can be covered in one or two one-term courses. The requisite physics is treated properly once and is then approximated, and seen to be approximated, where justifiable, when being applied to various devices. The physics has to be quantum mechanical for several reasons: band structure is important for all the devices we discuss, particularly for heterostructural diodes and transistors of both field-effect and bipolar varieties; electron-photon interactions are obviously relevant in solar cells and light-emitting diodes; tunnelling is an important leakage-current mechanism in field-effect transistors; future one-dimensional transistors may be so short that ballistic, rather than dissipative, transport will be operative. Even in 'classical' devices transport must be treated rigorously in view of the trends towards miniaturization: the Drift-Diffusion Equation cannot be blindly applied, but must be justified after a proper treatment of its parent, the Boltzmann Transport Equation. One intermediate solution to this equation, the charge-density continuity equation, provides the basis for our rigorous and formal description of capacitance. This device property is crucially important to the transistors presented in the application-specific chapters in the book on digital switching, high-frequency performance and semiconductor memories. As a final emphasis on the rigour of this book, the traditional SPICE-related model for the MOS field-effect transistor is put in its rightful place, i.e., as a computationally expedient approximation to the 'surface-potential' model. If SPICE has helped design circuits that have enabled higher performance computers, then that has been its downfall, because those computers can now permit the more rigorous surface-potential model to be used for the more accurate simulation of integrated circuits!

Understanding Modern Transistors and Diodes is intended for students at the graduate or senior-undergraduate level who are studying electronics, microelectronics or nanoelectronics, within the disciplines of electrical and computer engineering, engineering physics or physics. However, there is sufficient material on basic semiconductor theory and elementary device physics for the book to be appropriate also for a junior-level course on solid-state electronic devices. Additionally, the inclusion in the book of specific chapters on the application of the foundation material to modern, high-performance transistors and diodes, and a glimpse into the future of true nanotransistors, should make the book of interest to practitioners and managers in the semiconductor industry, particularly those who have not had the opportunity to keep up with recent developments in the field. It is my hope that the depth and breadth of this book might make it a 'one-stop shop' for several levels of courses on semiconductor devices, and for device-practitioner neophytes and veterans alike. The material in this book, in various stages of development, has been used by me for senior-level undergraduate courses and for graduate-level courses on semiconductor devices at UBC, for short courses to engineers at PMC-Sierra in Vancouver, and to graduate students at the University of Pisa and at the Technical University of Vienna. I thank all those students of these courses who have commented on the material and have sought to improve it.

As an undergraduate I focused on 'heavy-current electrical engineering', and never benefited from a course on semiconductor devices. I am basically 'self-taught' in the area, and I think that this has attuned me particularly well to the nature of the difficulties many students face in trying to master this profound subject. Hopefully this book circumvents most of these obstacles to the understanding of how semiconductor devices work. If it does, then thanks are due to many people who have enlightened me over my 40 years of working in the subject area, both as a professor at the University of British Columbia, and as a visiting research engineer at various industry, government, and university laboratories around the world. I particularly want to mention Lawrence Young, who hired me as a postdoc in 1968, and thereby started my transformation to a 'light-current electrical engineer'. I owe a great debt of gratitude to my graduate students, with whom I have worked collegially, learning with them, and sharing the work 'in the trenches' as much as possible. One of the great pleasures of writing this book has been to call on some of them, and on some former undergraduates too, to make sure that the material in some of the device-specific chapters in the book is truly modern. Particularly, I wish to thank: Alvin Loke (AMD, Colorado) for his enthusiastic support, his insights into the finer points of modern, high-performance CMOS devices and his arrangement of the procurement of the cover photograph from AMD's Dresden laboratory; Tony St. Denis (Triquint, Portland) for provision of material on high-frequency and low-noise heterojunction field-effect transistors; Mani Vaidyanathan (University of Alberta) for his insights into high-frequency devices, and for his encouragement; Leonardo Castro (Qimonda, Munich) for helpful details on DRAMs; David John (NXP, Eindhoven) for useful information on silicon power transistors, and for alerting me to Philips' version of the MOSFET surface-potential model; Shawn Searles (AMD, Austin) for sharing his thoughts on where Si CMOS is heading; Gary Tarr (Carleton University) for commenting on the solar cell chapter. I also wish to thank Ivan Pesic of Silvaco Data Systems for making a copy of his company's excellent simulation software, Atlas, available to me during 2008. At Cambridge University Press, England, I thank Julie Lancashire for her encouragement of this project, and Sarah Matthews, Caroline Brown and Richard Marston for their assistance in bringing it to fruition.

Most 'part-time' authors of technical books comment on the interruptions to their family life that writing a textbook entails, and I am no exception. My children, their spouses and my grandchildren are my friends, and I am conscious of the time I have missed spending with them. I hope they will think that this book has been worth it. The writing of it has been sustained by the encouragement, support and understanding of my wife, Eileen, to whom I give my deepest thanks.

David Pulfrey Vancouver