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Prologue

Groupoids possess many of the features which give groups their power
and importance, but apply in situations which lack the symmetry which
is characteristic of group theory and its applications. Though only de-
veloped since the mid 20th century, the modern concept of Lie groupoid
is as much entitled as is the familiar concept of Lie group to be regarded
as the rigorous formulation of the 19th century notion which went un-
der the then vague term ‘continuous group of local transformations’; a
case could be made that the modern concept of Lie group has been a
transitional stage in the evolution of the notion of Lie groupoid.

Groups arise primarily, though not exclusively, in connection with
symmetry; that is, as sets of automorphisms of geometric or other math-
ematical structures. From this viewpoint, groupoids are the natural for-
mulation of a symmetry system for objects which have a bundle struc-
ture. The most immediate illustration from geometry is to think of a
tangent bundle: with each tangent space there is at first associated a
general linear group, and the presence of a geometric structure on the
manifold — such as a metric, or a complex structure — is reflected in
the replacement of this group by a subgroup — such as the orthogonal
or complex linear group. But a tangent space is a linear approximation
to the manifold only near a single point and any geometrical study will
involve moving from point to point within the manifold. This being so,
it is necessary to consider the isomorphisms between different tangent
spaces, and one is thus led to the groupoid of all linear isomorphisms
between all tangent spaces, or to a subgroupoid of isomorphisms which
preserve a given additional structure.

A distinct but equally important source of groupoid theory is the
fundamental groupoid of a space. Here one has a similar relationship
between fundamental group and fundamental groupoid: the fundamen-

xi
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xii Prologue

tal group at a specific point consists of (homotopy classes of) loops at
the chosen point, whereas in the fundamental groupoid one considers
(homotopy classes of) paths between arbitrary points. The fundamen-
tal groupoid acts upon the system of fundamental groups (and on the
systems of higher homotopy groups).

Both these cases are, in groupoid terms, somewhat special. They are
locally trivial in a sense which is similar to that for fibre bundles, and
because of this there is a compromise position, which yields a principal
bundle. In the first case, rather than considering the system of all iso-
morphisms between the tangent spaces of a manifold M , one fixes a ref-
erence point mo and considers isomorphisms from T,,, (M) to all other
tangent spaces; these can be readily identified with isomorphisms from
a standard reference space R, and one arrives at the full frame bundle
or a reduction of it. In the second case, fixing a reference point and con-
sidering (homotopy classes of) paths from it to arbitrary points within
the manifold yields the universal cover, with its structure as a principal
bundle over the given space. For a general Lie groupoid, however, not
locally trivial, choosing a point of the base manifold and considering the
arrows which radiate from it, yields a structure which is not equivalent
to the original groupoid.

It was at one time very common to find groupoid theory criticised as an
artificial generalization of group theory. Personally, I find generalization
an always useful technique for understanding basic concepts; certainly
as useful as the dual study of examples. A well-chosen generalization
supplies for a theory the effect of a frame on a painting, and enables it
to be looked at ‘from the outside’ as it were. Nonetheless, the case for
Lie groupoids and Lie algebroids does not rely on such considerations.
I outline here four of the most important.

(I) The Lie theory of Lie groups and Lie algebras is one of the cor-
nerstones of 20th century mathematics, and it is hard to disentangle
the importance of Lie groups and Lie algebras as encoders of symmetry
from the importance of the classification results for Lie algebras. There
is no comparable classification of Lie algebroids — and I personally do
not believe that such a classification is possible — but the basic pro-
cesses of Lie theory carry over to Lie groupoids and Lie algebroids and
provide a unified approach to many of the fundamental constructions in
first—order differential geometry. Differential geometry is, after all, the
study of geometry by means of differentiation — or linearization — and
the process of taking the Lie algebroid of a Lie groupoid demonstrates
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Prologue xiii

that this basic construction has no necessary relationship with the case
of groups and all the familiar symmetry which is present in that case.

The three classical results of Lie theory — the integrability of mor-
phisms, the integrability of subobjects, and the integrability of abstract
Lie algebras — all generalize to meaningful questions in the context
of Lie groupoids and Lie algebroids. The answers are of course more
complex, but what is important is that they embody results of intrinsic
geometric interest, both known and new.

In Part II T give a detailed exposition of this aspect in the case of
locally trivial Lie groupoids and transitive Lie algebroids. In this case
the integrability of morphisms embodies the triviality of a bundle which
has a flat connection and a simply—connected base; the integrability of
Lie subalgebroids embodies the Ambrose-Singer and Reduction Theo-
rems; and the integrability question for abstract transitive Lie algebroids
gives criteria for the existence of connections when curvature data is pre-
scribed. Expressed in terms of principal bundles these results fit into no
clear framework.

(IT) The relationship between the results of connection theory men-
tioned in (I) and the classical Lie theory of Lie groups and Lie algebras
is concealed — very effectively — by the awkward nature of the algebra
of principal bundles. Indeed, there hardly exists a recognizable algebraic
theory of principal bundles, perhaps in part because there has been no
clear model on which to build it: principal bundles do not behave very
much like modules, nor like vector bundles. Nonetheless, it is possible
to develop an algebraic theory of groupoids (set—theoretic and Lie) to
an extent which may be surprising at first. This algebraic theory be-
gins by being modelled on standard group theory, but diverges from it
in some important respects; it is possible, for example, to characterize
many algebraic constructions by classes of morphisms in a way which
is impossible for ordinary groups. These constructions have analogues
for Lie algebroids and together they form a technique of great value in
treating geometric questions involving linearization and globalization.
This process is described in detail in Chapters 2 and 4.

All frame groupoids and all fundamental groupoids are locally triv-
ial. Lie groupoids which are locally trivial are symmetry structures of
vector bundles — or of more general fibre bundles — and it is precisely
the class of locally trivial groupoids for which the concept of principal
bundle provides an alternative. It is intrinsic to the nature of general
Lie groupoids that they are not determined by their vertex structure in
the way that is true in the locally trivial case.
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xiv Prologue

It is sometimes suggested that the notion of symmetry should be ex-
tended so that general Lie groupoids may be regarded as symmetry
structures. This seems to me debatable; the concept of symmetry as
it passes from ordinary usage into mathematics retains features which
link it firmly to group symmetry. To extend the word to encompass
arbitrary groupoids — in effect, to treat every equivalence relation as if
it were the orbit relation of a group action — robs the word of much of
its significance. However, one could distinguish groupoids from groups
by the possibility of a continuous variation of symmetry.!

(ITI) Large families of Lie groupoids which are not locally trivial
arise naturally: as the symplectic realizations of Poisson manifolds, in
the study of non-transitive Lie group actions, and in foliation theory,
for example. Whereas many basic constructions have been known for
general Lie groupoids for a number of years, it is only very recently
that strong results have been obtained in the general case. The fact
that practical results and working techniques now exist for general Lie
groupoids is a compelling argument for abandoning the concentration
on the principal bundle approach in the locally trivial case.

Most of Part I, and most of Part III, applies to general Lie groupoids
and Lie algebroids. However, it has not been possible to give a complete
account of all recent developments, and some topics are only described
in outline in the Appendix.

(IV) Where future developments are concerned, the most important
distinction between groupoids and groups lies in the existence of higher—
dimensional forms of the concept. It is widely appreciated that iterating
the group concept by considering a group object in the category of groups
leads to nothing new: a group object in the category of groups is merely
an abelian group, a result which is the abstract form of the fact that
the higher—order homotopy groups are all abelian. However, a groupoid
object in the category of groupoids is a genuinely new and different
object. These double groupoids arise naturally in Poisson geometry and
may be regarded as a semi—classical form of the use of multiple category
theory in quantization.

This theory lies largely beyond the present book, though some aspects
of double structures are treated in Part III. Further references are given
in the Appendix.

1 Plotinus (A.D. 205-269/70) defined beauty as symmetry irradiated by life: ‘There
must be symmetry, achieved by the perfect realisation of geometrical possibilities.
There must be a feeling of movement, for movement meant life.” [Runciman, 2004].
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Introduction

As with many books, this one is best read piecewise backwards. In
describing the contents, I accordingly begin with Part III.

Groupoid theory was transformed in the mid 1980s by the introduc-
tion of the notion of symplectic groupoid and the methods of Poisson ge-
ometry. The announcement by Weinstein [1987] and the seminar notes
of Coste, Dazord, and Weinstein [1987] on symplectic groupoids and
Poisson geometry became available about late 1986. In fact a similar
approach to the use of groupoid structures in Poisson geometry had
been given by Karasév [1989] in papers deposited in VINITI in Moscow
in 1981 but not generally available until much later. The two papers
of Zakrzewski [1990a,b], gave a third and independent treatment. In
most of the discussion in this Introduction I will treat these three very
different approaches as if they were a single body of work.

The work of these authors transformed both the subject and the ap-
plications of Lie groupoid and Lie algebroid theory. Until that time only
the case of locally trivial Lie groupoids and transitive Lie algebroids was
well-understood. Despite the very general programme and results an-
nounced by Pradines in four short notes [1966], [1967a], [1967b], [1968],
and some isolated work on specific aspects of general Lie groupoids and
Lie algebroids, there seemed to be little compelling reason to understand
the very difficult general theory.

The reciprocal influence — the importance of groupoid theory in Pois-
son geometry — is based on two fundamental observations. Firstly, that
the Poisson bracket of 1-forms on a Poisson manifold P makes the
cotangent bundle T* P a Lie algebroid — this fact in itself was found by
a number of authors; the survey of Huebschmann [1990] gives a detailed
account of the history. Secondly, on the relationship between realiza-

XV
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xvi Introduction

tions of Poisson manifolds and groupoid structures. A realization® of
a Poisson manifold P is a surjective submersion S — P which is a
Poisson map from a symplectic manifold S to P. The simplest inter-
esting example is that the linear Poisson structure on the dual g* of
a Lie algebra g has a realization Z: T*G — g* where G is any Lie
group integrating g and &% is right—translation. That this map, and
the corresponding left—translation .#, give symplectic realizations had
been known for a considerable time: the new and crucial observation
in the 1980s was that # and .Z are the source and target maps for a
natural groupoid structure on T*G defined by the coadjoint action, and
that the canonical symplectic structure on T*G is compatible with this
groupoid structure in a natural way.

The concept of symplectic groupoid extends this example and links
the two fundamental observations tightly together. For any symplectic
groupoid ¥ with base a Poisson manifold P, the target map is a sym-
plectic realization of P and the source map is a symplectic realization
of the opposite structure. Thus ¥ with its symplectic structure may be
regarded as a desingularization of P with its Poisson structure. Most
remarkably, the Lie algebroid AY. of the Lie groupoid structure and the
cotangent Lie algebroid TP of the Poisson manifold P are canonically
isomorphic. Thus the realization problem for Poisson manifolds has been
reduced to an aspect of a generalized Lie theory. (It is, furthermore, true
that for P a Poisson manifold, any Lie groupoid which integrates 7™ P
and which is suitably connected, has a canonical symplectic structure
making it a symplectic groupoid with base P.) In particular, integrating
a Lie algebra g and finding a symplectic realization of g* are equivalent
problems.

Thus the Lie theory of Lie groupoids and Lie algebroids embodies
the classical Lie theory of Lie groups and Lie algebras not only in its
standard form, but also in the dual form which is a special case of the
relationship between symplectic groupoids and Poisson manifolds.

Symplectic groupoids are only rarely locally trivial, and their be-
haviour is very far removed from the features of the locally trivial case.
The existence of a symplectic groupoid structure is a very strong con-
straint on a groupoid. While symplectic groupoids provided a definite
reason for studying Lie theory without the restriction of local trivial-
ity, it has until recently proved difficult to construct large families of
examples of symplectic groupoids.

L This is actually a full realization in the terminology of Weinstein [1982]; T will not
consider realizations in which the map is not a surjective submersion.
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The importance of the work of Karasev, Weinstein and Zakrzewski
for Lie groupoid and Lie algebroid theory themselves rests primarily on
two further developments.

Firstly, one consequence is a duality between Lie algebroids and vector
bundles with a Poisson structure which respects the linear and bundle
structures: this book calls these simply Poisson vector bundles. This
duality, given in detail by Courant [1990], extends the classical duality
between Lie algebras and linear Poisson structures, and also gives a clear
meaning to the statement that the canonical symplectic structure on a
cotangent, bundle is the dual of the bracket of vector fields.

This duality is nontrivial in the specific sense that it takes place out-
side each of the categories with which it is concerned: one must consider
sections of the Lie algebroid and functions (or 1-forms) on the dual bun-
dle. Taken together with the process which associates the cotangent Lie
algebroid to any Poisson manifold, this means that there are two pro-
cesses which pass between the Poisson category and the Lie algebroid
category, and although these are far from giving an equivalence, they
frequently allow problems on one side to be usefully transformed into
problems in the other. Because these processes are non—trivial and not
genuinely inverse, they often deliver a substantial benefit.

Secondly, Weinstein [1988] introduced a concept of Poisson groupoid
which unites the two extreme cases of symplectic groupoids and Poisson
Lie groups. That such a unification would be possible does not seem
obvious even in retrospect: symplectic groupoids were introduced as
global realizations of Poisson manifolds, whereas the concept of Poisson
Lie group was introduced by Drinfel’d [1983] as a semi—classical form of
the notion of quantum group, and was then seen to also provide a valu-
able tool in work on complete integrability. Nonetheless the concept of
Poisson groupoid provides a continuum of structures linking symplectic
groupoids to Poisson Lie groups. Poisson groupoids have been shown to
provide an appropriate general framework in which to study the classical
dynamical Yang-Baxter equation [Etingof and Varchenko, 1998]. Their
infinitesimal form, the concept of Lie bialgebroid defined by myself and
Ping Xu [1994] is part of a family of algebraic concepts under develop-
ment in mathematical physics [Xu, 1999]. Poisson groupoids and Lie
bialgebroids have turned out to be crucially important in the study of
double Lie groupoids and double Lie algebroids [Mackenzie, 1998].

The account of Poisson groupoids which I give here is a theoretical
one — there has been no space to deal with examples beyond the most
fundamental. The treatment is new and appears in print here for the
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first time, though I have had the good fortune to be able to set it out
in series of lectures at Utrecht and Amsterdam in 2000, and at Queen
Mary, London in 2002.

The crux of this approach is the observation that the compatibility
condition between a Poisson structure and a Lie groupoid structure on
a manifold G is equivalent to a compatibility condition between the Lie
groupoid structure on T*G induced by the groupoid structure on G,
and the anchor of the Lie algebroid structure induced on T*G by the
Poisson structure on G'. This condition is of categorical or diagram-
matic type — it is of the same nature as the compatibility conditions
on double structures in the categorical sense: that the structure maps
of one structure be morphisms with respect to the other. In fact the
groupoid structure maps in T*G, for G a Poisson groupoid, are Lie alg-
ebroid morphisms, so that T*G is an £« —groupoid in the terminology
of [Mackenzie, 1992]. General £/ —groupoids occupy an intermediate
place between double Lie groupoids and double Lie algebroids. This
double Lie theory is not treated in the present book, but the treatment
of Poisson groupoids given here provides much of the background nec-
essary for it.

A more immediate consequence of this treatment of Poisson group-
oids is that the basics of symplectic groupoid theory may be developed
without any use of genuine symplectic geometry. I deduce the basic
properties of symplectic groupoids in §11.5 as an immediate corollary of
the general Poisson groupoid theory, merely by imposing the nondegen-
eracy condition of the Poisson anchor. The first accounts of symplectic
groupoid theory made extensive use of nontrivial and genuinely sym-
plectic results, but the approach given here avoids this entirely. This is
not, of course, because of any lack of appreciation of the power and im-
portance of symplectic geometry, but to demonstrate that those aspects
of symplectic groupoid theory which often surprise people new to the
subject, are not in fact consequences of symplectic geometry as such.
This procedure extends beyond the aspects treated in this book, and
may be applied, for example, to deduce results on symplectic groupoid
actions from general Lie theory.

One might call the principle underlying this approach a ‘cotangent
philosophy’ — that where general constructions with Poisson structures
are concerned, it is conceptually simpler to work with the cotangent Lie
algebroid rather than with the actual manifold. Readers not already
acquainted with this approach may at first question the word ‘simpler’
— there is, for instance, a good deal of apparatus in §11.5. However,
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the calculus of canonical isomorphisms which I develop here behaves in
a direct, categorical fashion, and applies with minor changes to much
more general situations.

It was not possible, in a book of reasonable length, to provide a treat-
ment of work on double Lie structures while also covering most of the ba-
sic theory and constructions of Lie groupoids and Lie algebroids. What
I have been able to do — I trust — is to show in how completely natural
a way work with Poisson groupoids (and hence Poisson Lie groups and
symplectic groupoids) is clarified by the consideration of double struc-
tures. One sees this already when considering Poisson structures on a
vector bundle: these can be very easily handled through the associated
double vector bundles.

Part III therefore begins in Chapter 9 with an account of double
vector bundles. The notion of double vector bundle has been around
for some time — the general notion and an extensive account of much
general theory was given by Pradines [1974a], and the double tangent
bundle of a manifold and the tangent of a general vector bundle were
sometimes used in accounts of connection theory in the 1960s and 1970s
[Dieudonné, 1972], [Besse, 1978], [Yano and Ishihara, 1973]. Iterated
tangent and cotangent bundles have a well-established place in some
treatments of classical mechanics [Tulczyjew, 1989]. The chapter starts
with an account of the general concept and progresses immediately to re-
cent results on the duals of a double vector bundle, due independently to
myself [Mackenzie, 1999] and to Konieczna and Urbariski [1999]. Briefly
stated, a double vector bundle may be dualized either along its horizon-
tal structure or its vertical structure, and these two duals are themselves
dual. Thus successive dualizations of a double vector bundle return to
the original structure not at the second dual, but at the third. This phe-
nomenon is likely to be of great significance in further work on multiple
structures.

Applying this result to the tangent double vector bundle of a vec-
tor bundle, Chapter 9 recovers the canonical isomorphisms between the
cotangents of a vector bundle and of its duals, introduced by myself and
Ping Xu [1994, 1998] and the canonical pairing between the tangents of
a vector bundle and of its dual. These will be used repeatedly in the
subsequent chapters.

Chapter 10 gives the crucial relationships between Poisson struc-
tures and Lie algebroids. The basic definitions and properties of Poisson
structures are included, but a reader entirely new to Poisson geometry
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will need to supplement this with other sources. I give the construction
of the cotangent Lie algebroid of a Poisson manifold and in §10.3 treat
the duality between Poisson vector bundles and Lie algebroids. In §10.2
I briefly consider Poisson cohomology as an example of Lie algebroid
cohomology, and describe the associated Batalin—Vilkovisky structures.
810.4 gives the correspondences for subobjects and for morphisms be-
tween Poisson structures and Lie algebroids; in principle all concepts of
Poisson geometry may be translated to Lie algebroids, and reciprocally.

Chapter 11 treats Poisson groupoids, beginning with a brief resumé
of Poisson Lie groups in terms of the Lie groupoid and Lie algebroid
structures on T*G. The techniques normally used for a Poisson group
G exploit the fact that the tangent group T'G is trivializable as a bundle
and is thus a semi—direct product, with respect to the adjoint represen-
tation, as a group, Thus one commonly defines a Poisson structure and a
Lie group structure to be compatible if the map G — gA g derived from
the Poisson tensor 7 is an Ad—cocycle. This formulation fits into no pre—
existing framework and it can take some time to build up a feel for how
to proceed. Alternatively, one may define a Poisson structure and a Lie
group structure to be compatible if the multiplication map is Poisson.
This appears to be a compatibility condition of a standard type, but the
‘backward flipping’ or contravariant nature of Poisson structures means
that this intuition can mislead: group inversion is not a Poisson map,
but anti—Poisson, and right— and left— translations are neither Poisson
nor anti—Poisson; the analogy with more familiar compatibility condi-
tions breaks down. I demonstrate in §11.1 that naturality is restored by
working with the structures on the cotangent bundle.

For a general Lie groupoid G =3 P there is no simple version of the
adjoint and coadjoint representations. The original treatment of Wein-
stein [1988] was in terms of the coisotropic calculus introduced in the
same paper. Here I make systematic use of the structures on the cotan-
gent bundle. Both the tangent bundle T'G and the cotangent bundle
T*G are ‘double’ objects in a categorical sense: they possess a vector
bundle structure and a Lie groupoid structure, and the structure maps
of each structure are morphisms with respect to the other structure.
This kind of compatibility condition has been used in category theory
since at least the 1960s, when Ehresmann made what at the time must
have seemed to be a complete change of direction from differential geom-
etry to multiple category theory. This use of the word ‘double’ should
be carefully distinguished from its use in work on the Drinfel’d dou-
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ble, though in fact the two usages are related in a non—obvious fashion
[Mackenzie, 1998].

The double structure — more precisely the ¥Z%—groupoid structure
as defined by Pradines [1988] — of T'G and T*G supplies a replacement
for the actions which characterize the structure of a tangent or cotan-
gent group. In §11.2 T define the abstract notion of ¥%-groupoid, a
groupoid object in the category of vector bundles, and give the duality
which exists for such structures. This extends the duality for double
vector bundles which was treated in Chapter 9. The brief §11.3 deduces
explicitly the properties of the cotangent groupoid and §11.4 then gives
the basic properties of Poisson groupoids.

In §11.5 T first deduce the basic properties of symplectic groupoids
as a special case of Poisson groupoids. The main part of the section
proves that T*G = A*(G, for G a general Lie groupoid, is a symplec-
tic groupoid with respect to the canonical symplectic structure on T*G.
The proof proceeds by showing that the canonical isomorphisms R, [
and © associated with iterated tangent and cotangent bundles respect
the relevant groupoid structures. This ‘calculus of canonical isomor-
phisms’ can be readily extended to more general situations.

Chapter 12 is a short account of the basic theory of Lie bialgebroids.
I take as definition the Schouten calculus formula used by myself and
Ping Xu in the original paper [Mackenzie and Xu, 1994] and prove its
self-duality by a mixture of the proof given in [Mackenzie and Xu, 1994]
and the much improved formulation of Kosmann—Schwarzbach [1995].
812.2 gives the proof that this definition is equivalent to a morphism
criterion which is parallel to the definition of Poisson groupoid. The
following §12.3 gives an alternative and often preferable construction of
the Poisson structure on the Lie algebroid of a Poisson groupoid. Finally
in §12.4 I consider Poisson actions and moment maps for Poisson Lie
groups; this is an introduction to a large further subject.

Part 11

Part IT of the book is devoted to the theory of transitive Lie algebroids
and locally trivial Lie groupoids. This case is inextricably bound up
with connection theory.

Connection theory was a very large and important area of differential
geometry for most of the 20th century; there now seems to be some
danger of it falling out of common knowledge. From the introduction
of Christoffel symbols and the identities of Bianchi around 1870 to the
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explosive development of gauge theory about a hundred years later, con-
nection theory was understood to be a fundamental concept in geometry
and mathematical physics. In the late 19th century a connection was a
structure associated with a surface or higher—dimensional Riemannian
manifold; in modern terminology this is the Levi—Civita connection of
a Riemannian manifold. The concept was then separated from a metric
structure by Weyl in an early attempt at a unified field theory, giving rise
to what we now think of as an affine connection in a manifold. Some 20
to 30 years later, in the late 1950s, Ehresmann formulated a very general
notion of connection in a principal bundle or locally trivial Lie groupoid.
It was this notion, in its principal bundle form, which Kobayashi and
Nomizu [1963] put at the start of their classic treatment of the founda-
tions of differential geometry. In the 1970s the treatment of [Kobayashi
and Nomizu, 1963, Chap 2] was widely regarded as mysterious and dif-
ficult; some 20 or 30 years of gauge theory has lessened that attitude
somewhat, but it is still I think the case that the treatment of connection
theory in principal bundles is regarded as a less easily assimilated piece
of mathematics than one expects of such a fundamental concept. Indeed
many treatments still focus almost exclusively on Koszul connections in
vector bundles, a concept which is much more easily absorbed. However,
to dismiss principal bundles as an optional elaboration of vector bundles
is a modern version of the old misconception that the only Lie groups
which matter are matrix groups.

The formulation of connection theory in terms of Lie groupoids and
Lie algebroids makes clear that connection theory follows the pattern of
the Lie theory of Lie groups and Lie algebras. Indeed connection theory
18, in a sense which is made precise below, the Lie theory of locally trivial
Lie groupoids and Lie algebroids. To justify this statement quickly, recall
first of all the basic three theorems® of Lie:

[Lie-1] Let G and H be Lie groups with G simply—connected and
with Lie algebras g and h. Let ¢: g — h be a morphism of
Lie algebras. Then there is a unique morphism of Lie groups
F: G — H which induces ¢.

[Lie—2] Let G be a Lie group with Lie algebra g and let h be a Lie

subalgebra of g. Then there is a unique connected Lie subgroup
H of G for which the Lie algebra is §.

1 These are, of course, modern formulations and do not exactly correspond to the
three theorems as stated in, for example, expository books of the early 1900s.
Perhaps they should be called the three integrability theorems of Lie.
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[Lie—3] Given a Lie algebra g, there is a Lie group G with Lie algebra
isomorphic to g.

Throughout the book, I take all Lie groups and Lie algebras to be
finite-dimensional and real, except where explicitly indicated otherwise.
Cognate with these theorems are the following important riders:

[Lie—4] Let G be a Lie group. Then the connected component of the
identity element, Gg, is a Lie group and the inclusion Gy — G
induces the identity map of Lie algebras g — g.

[Lie-5] Let G be a connected Lie group. Then the universal cover G
is a Lie group and the covering projection G — G induces the
identity map of Lie algebras g — g.

I show in Part II that each of these results, [Lie—1] to [Lie—5], has an
extension to locally trivial Lie groupoids and transitive Lie algebroids,
which embodies substantial results for principal bundles or their con-
nection theory. The extension of [Lie—1] to locally trivial Lie groupoids
(6.2.11) has the same form and implies the following well-known result
for principal bundles:

[CT-1] Let P(M,G) be a principal bundle with M simply—connected.
If P admits a flat connection, then it is trivializable.

Likewise, the extension of [Lie—2] to locally trivial Lie groupoids
(6.2.1) has the same form and implies the following result, which com-
bines the Ambrose—-Singer and Reduction Theorems for principal bun-
dles:

[CT-2] Let P(M, Q) be a principal bundle and let v be a connection in
P(M,G). There is a least Lie subalgebroid of the Lie algebroid
constructed from P(M,G) which contains the values of v and
the values of its curvature form, and this Lie subalgebroid is the
Lie algebroid corresponding to any holonomy bundle of ~.

The extension of [Lie—3] to transitive Lie algebroids is a more complex
matter, treated in Chapter 8. For a real valued closed 2-form w on a
manifold M, a classical lemma of Weil states that w is the curvature
of a connection in a circle bundle over M if and only if the Cech class
corresponding to the de Rham class of w is integral. The extension of
[Lie—3] to transitive Lie algebroids gives a comprehensive generalization
of this to 2—forms which take values in an arbitrary Lie algebra bundle.
See 8.3.9 for a precise statement.
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The two riders extend to locally trivial Lie groupoids in a straight-
forward fashion. The corresponding results for principal bundles are as
follows:

[CT-4] Let P(M,G) be a principal bundle and let Py be any connected
component of P. Then there is an open subgroup G; of G such
that Py(M,G1) is a principal subbundle of P(M,G), and the
inclusion Py — P induces an isomorphism of the corresponding
Lie algebroids.

[CT-5] Let P(M,G) be a principal bundle with P connected. Then
the universal cover P has a principal bundle structure P (M, H)
for a certain Lie group H , which is an extension of G, such that
the covering projection P> Pisa morphism of principal bun-
dles over M and induces an isomorphism of the corresponding
Lie algebroids.

Thus the basic Lie theorems for locally trivial Lie groupoids and tran-
sitive Lie algebroids give results for connection theory. The proofs are
not, in themselves, fundamentally different to the standard proofs given
by [Kobayashi and Nomizu, 1963]. Rather, the Lie groupoid/Lie algebr-
oid formulation provides a conceptual framework in which the results
arise naturally and inevitably. This formulation is scarcely possible if
one works solely with principal bundles.

Perhaps more surprisingly, one may prove [CT-1] and [CT-2] di-
rectly and then deduce from them the locally trivial Lie groupoid/Lie
algebroid versions of [Lie—1] and [Lie—2]. Thus connection theory is
actually coextensive with the Lie theory of locally trivial Lie groupoids
and Lie algebroids.

From a pedagogical point of view, the demonstration that connection
theory is a generalization of Lie theory fits it firmly into the broad frame-
work of contemporary mathematics: Lie theory is the study of a functor,
and its fundamental results concern the faithfulness and fullness of this
functor.

Nonetheless this has not been the place to give a full expository treat-
ment of connection theory: considerations of space and balance mean
that Part II contains no significant examples or motivation outside the
theory itself.

Looking at connection theory in a broad sense, there have always
been three distinct approaches. One may treat it ‘globally’ in terms of
differential forms and exterior calculus; one may treat it ‘locally’, either
by a localization of the differential form approach, or by some form of
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tensor analysis; finally, one may treat it in terms of path lifting and
holonomy. These approaches correspond respectively to the three great
cohomology theories which concern differential geometry: the de Rham
cohomology, Cech cohomology, and singular cohomology.

The close relationships between these approaches sometimes obscures
the fact that they may be treated independently: I demonstrate in the
course of Part II that both the global and the local approaches are
intrinsic to transitive Lie algebroids and may be developed entirely in-
dependently of any underlying Lie groupoid. The place of classical de
Rham cohomology is taken by Lie algebroid cohomology, which emerges
from a straightforward extension of the calculus of differential forms.
On the other hand, considerations involving path-lifting and holonomy
require an underlying locally trivial Lie groupoid. The relationships be-
tween these three approaches can now be seen as instances of the Lie
theory of Lie groupoids and Lie algebroids.

In the writing of Part II, T have had in mind a reader who has met
the standard theory of connections in vector bundles, and who does not
need to be given geometric motivation for the notion. Nonetheless, all
basic definitions are included.

Here now is a brief description of the contents of the individual chap-
ters. Chapter 5 is an account of the infinitesimal part of the theory
of connections in transitive Lie algebroids, both the global calculus and
the local description. For the latter, I anticipate Chapter 8 by using a
temporary concept of locally trivial Lie algebroid; Theorem 8.2.1 shows
that all transitive Lie algebroids are locally trivial.

Chapter 6 is primarily concerned with path connections and holon-
omy. I begin however with proofs of [Lie—1], [Lie—2] and [Lie—5] for
locally trivial Lie groupoids, with [Lie—5] in §6.1 and [Lie—1] and [Lie—
2] in §6.2. The proofs (given for the first time in [Mackenzie, 1987a])
depend heavily on local triviality, but are for that reason more imme-
diately accessible. Path connections and their holonomy are treated in
86.3. The important §6.4 deduces forms of the Ambrose—Singer and Re-
duction Theorems of connection theory from [Lie—1] and [Lie—2]. Using
the results of §6.4, §6.5 establishes several ‘local constancy’ results for
transitive Lie algebroids: the kernel of the anchor map is a Lie algebra
bundle; morphisms of transitive Lie algebroids are of locally constant
rank, and so on.

Chapter 7 is an extended account of the cohomology of Lie alg-
ebroids. On a formal level this cohomology is a simple generalization
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of Chevalley—Eilenberg cohomology of Lie algebras and de Rham coho-
mology, and has been studied on many occasions; however, to make use
of this formalism for smooth structures, it is necessary to ensure at all
stages that the constructions respect the underlying vector bundle struc-
ture, and this requires the results of §6.5. The account of non-abelian
extension theory in §7.3 is (I hope the reader will agree) an elegant
demonstration of the geometric content of a purely algebraic formalism:
for example the (second) Bianchi identity emerges as the condition that
the obstruction class of the coupling (abstract kernel in the terminology
of Mac Lane [1995]) associated to a transitive Lie algebroid is zero. The
results of this section are the foundation for Chapter 8.

§7.4 treats the spectral sequence of a transitive Lie algebroid; this
unites the Hochschild—Serre spectral sequence of an extension of Lie
algebras with the Leray—Serre spectral sequence of a principal bundle.

Chapter 8 is concerned with the integrability problem for transitive
Lie algebroids; that is, with [Lie—3]. The main result, Theorem 8.3.9,
produces a Cech class associated to any transitive Lie algebroid, the
(cohomological) integrability obstruction. If M is the universal cover of
the base of the Lie algebroid A, and ZG is the centre of the universal
covering Lie group of the fibre type of the adjoint bundle of A, then
the integrability obstruction is in H? (M , Z@). For the Lie algebroid to
be integrable, it is not necessary that this class be zero, but that it lie
within a discrete subgroup of Z C:’; equivalently, that it can be sent to
zero by the map on cohomology induced by a covering map G- G , for
some G. This class is thus a non—abelian version of the first Chern class
of a circle bundle and §8.1 is spent in recalling the various aspects of
the first Chern class which are relevant here. The detailed construction
of the class is in §8.3. The construction of the integrability obstruction
depends crucially on the result 8.2.1 that a transitive Lie algebroid on a
contractible base admits a flat connection. This result also provides, in
§8.2, a local description of transitive Lie algebroids by families of local
Maurer—Cartan forms; this is an infinitesimal analogue of the description
of principal bundles by transition functions.

I have not considered the construction of non-integrable transitive
Lie algebroids at any length; this, of course, requires techniques out-
side of Lie groupoid theory. The most natural source is the theory of
transversally complete foliations developed by Molino [1988]; the orig-
inal examples of non-integrable Lie algebroids of Almeida and Molino
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[1985] are of this type. A thorough account of the Molino theory and its
relation to integrability has been given by Moerdijk and Mr¢un [2003].

The extension of [Lie—1] to [Lie—5] to general Lie groupoids and Lie
algebroids is a far more complex matter, and has been the subject of
much recent work. Some account of the problems involved and recent
achievements are given in the Appendix.

Part I

Lie groupoids (groupoides différentiables) were introduced by Charles
Ehresmann in the 1950s as an alternative to the principal bundle lan-
guage which he had developed at about the same time as Steenrod.
(A detailed history is given in [Ehresmann, 1984, Vol. I].) Ehresmann
appears to have been most concerned with higher—order prolongation
processes and the notion of a connection of arbitrary order, but it is
evident that from the outset he was also concerned with Lie groupoids
as holonomy structures in foliation theory.

Lie algebroids were defined by Pradines in the second of a series of
short papers [1966, 1967a, 1967b, 1968] outlining a Lie theory for Lie
groupoids. The cognate, purely algebraic concept of a Lie pseudoalgebra
had already been discussed by a number of authors, and forms of this
concept have continued to be introduced since; Pradines’ concept of Lie
algebroid is unique in positing an underlying structure of smooth vector
bundle, and it is this which makes possible the Lie theory of Lie group-
oids. Pradines’ four short papers were mainly concerned with setting
out the theory, which in the case of general Lie groupoids is intimately
bound up with foliation theory. This theory lay largely undeveloped for
several years.

In [Mackenzie, 1987a] I set out to establish Pradines’ Lie theory in
rigorous detail for the locally trivial case and, at the same time, to
demonstrate the close links with connection theory which have been
described above. As well as the restriction to the locally trivial case,
[Mackenzie, 1987a] also largely restricted itself to morphisms which are
base—preserving; the two restrictions are equally natural when connec-
tion theory is the main application.

Arbitrary morphisms of general Lie algebroids are — rather surpris-
ingly — hard to handle; a detailed treatment was given by Philip Higgins
and myself [Higgins and Mackenzie, 1990a]. This paper showed that Lie
algebroids possess an infinitesimal version of the properties characteris-
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tic of general groupoids and introduced a notion of quotient, or descent,
for Lie algebroids which had hitherto been lacking.

Part I is concerned with the differentiation processes which relate Lie
groupoids and Lie algebroids. Chapter 1 is concerned with the most
basic constructions and fundamental examples for Lie groupoids. Lo-
cal triviality is treated in full, including the relationship with principal
bundles: the fact that this is not a true equivalence has as a conse-
quence that the automorphism groups of a locally trivial Lie groupoid
and of a corresponding principal bundle do not correspond. Most of this
chapter deals with constructions which resemble processes familiar from
Lie group theory, with [Lie—4] in §1.5. One exception is the notion of
bisection treated in §1.4. Bisections — or ‘generalized elements’ — cor-
respond to left— and right— translations on a groupoid and are needed
later for the adjoint formulas and exponential map. Iinclude the striking
description, due to Xu [1995], of the multiplication in a tangent groupoid
in terms of bisections.

The algebraic properties of groupoids differ fundamentally from those
of groups in that several basic processes may be characterized in terms
of morphisms. The first of these is the characterization of actions given
in §1.6. From a groupoid action may be constructed an action groupoid
and a morphism from it to the acting groupoid; these action morphisms
may be characterized intrinsically and are in bijective correspondence
with the actions. This construction enables groupoid actions, and their
infinitesimal forms, to be subsumed under the study of the Lie functor for
morphisms. This construction goes back to [Ehresmann, 1957]. It was
considerably developed by Ronnie Brown who gave a detailed demon-
stration that, in particular, it provides an algebraic model of covering
spaces [Brown, 1988].

The final §1.7 presents the theory of frame groupoids and linear actions
of Lie groupoids on vector bundles. Theorem 1.6.23, which shows that
stabilizer subgroupoids are, under simple conditions, locally trivial Lie
subgroupoids, is applied to tensor structures on vector bundles. This
material is central to the connection theory of Part II.

Chapter 2 is chiefly concerned with quotienting processes for Lie
groupoids. I begin with the case of vector bundles, which are a simple
special case of both Lie groupoids and of Lie algebroids. Here it is
well known that the kernel of a surjective morphism F: E — E' over
a surjective submersion f: M — M' does not determine F except
when the base map is a diffeomorphism; one may say that the ‘First
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Isomorphism Theorem’ breaks down. To restore it, one clearly needs
to use the kernel pair R(f) = {(y,z) | f(y) = f(©)} S M x M of f,
but it is also necessary to have R(f), regarded as a Lie groupoid on
M, acting on E/K, where K is the usual concept of kernel. With
the concept of kernel enlarged to incorporate R(f) and the action, one
recovers a First Isomorphism Theorem for vector bundles [Higgins and
Mackenzie, 1990a].

The class of vector bundle morphisms which is thus characterized
by the enlarged concept of kernel, is that where both the map of the
total spaces and of the base spaces are surjective submersions. For Lie
groupoids the corresponding class of morphisms is the fibrations; these
arose in the context of set—groupoids as models of Hurewicz fibrations
in topology [Brown, 1988], and elsewhere in category theory, and are
the broadest simply—defined class of Lie groupoid morphisms for which
a First Isomorphism Theorem can be expected. This is the subject of
§2.4.

Fibrations also arise in connection with semi-direct products. The
general concept of action appropriate to groupoids leads in §2.5 to a very
general concept of semi—direct product. It turns out that the natural
projection from a general semi—direct product to the acting groupoid is
a fibration which is split in a specific sense, and conversely, every split
fibration defines a semi—direct product.

The long Chapter 3 contains the basic theory of Lie algebroids and
the properties of the Lie functor. For the convenience of readers who
know the theory of principal bundles well, and who wish to start directly
with Lie algebroids, §3.1 and §3.2 give the construction of the Atiyah
sequence of a principal bundle independently of Chapters 1 and 2. The
basic definitions and examples of abstract Lie algebroids are in §3.3.

In order to prepare for the Lie algebroids of frame groupoids, §3.4
treats linear vector fields on vector bundles in some detail. A linear
vector field on a vector bundle (E,q, M) corresponds to a derivation in
E — that is, to a first—order differential operator with scalar symbol
(named a ‘covariant differential operator’ in [Mackenzie, 1987a]) — and
there are several different formulations, in part developed by myself and
Ping Xu [1998], which will be needed throughout the rest of the book.
For any Koszul connection V in E, the operators Vx, X € X(M), are
derivations and some of the results of this section are intrinsic forms of
results well known for connections.

The construction of the Lie algebroid of a Lie groupoid and the basic
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examples are given in §3.5. The two sections which follow, §3.6 and §3.7,
treat the exponential map and the adjoint formulas for a general Lie
groupoid. The exponential map of a Lie groupoid takes values in (local)
bisections rather than in elements and I have endeavoured to make clear
how to work in practice with these formulas. §3.6 also contains the
calculation of the Lie algebroids of the frame groupoids of a vector bundle
with a tensor structure; these results are basic to Part II.

Chapter 4 is concerned with infinitesimal versions of the results
of Chapter 2. Whereas most constructions for Lie groupoids differen-
tiate readily enough to Lie algebroids, if can be unexpectedly difficult
to give an abstract form of these results for arbitrary Lie algebroids,
independently of any integrability assumptions.

Although the crucial difficulty is with the concept of morphism, I begin
with the case of actions of Lie algebroids. A natural abstract definition
presents itself (4.1.1) in this case. Given an action of a Lie algebroid A
with base M on a smooth map f: M' — M, there is an action Lie alg-
ebroid A < f on M’ and the natural projection from A < f to A enjoys
an infinitesimal form of the property characteristic of action morphisms
of Lie groupoids. I take this infinitesimal property as defining an action
morphism of Lie algebroids and establish an equivalence between action
morphisms of Lie algebroids and Lie algebroid actions, which commutes
with the Lie functor and the corresponding equivalence on the groupoid
level.

The case of actions provides a paradigm for the other results of this
chapter: (i) characterize a groupoid construction in terms of a class of
groupoid morphisms or maps; (ii) apply the Lie functor to this class and
characterize the resulting Lie algebroid morphisms abstractly, without
reference to the differentiation process by which they were obtained; (iii)
prove that this class of Lie algebroid morphisms corresponds to a Lie
algebroid construction analogous to the original groupoid construction.
This method, developed in [Higgins and Mackenzie, 1990a], avoids a
considerable amount of unilluminating computation.

The general concept of morphism for Lie algebroids is dealt with in
84.3, following necessary preliminaries on direct products and pullbacks
in §4.2. The Lie functor set out in §3.5 is straightforward; what is at
issue in §4.3 is the abstract definition. The definition given here includes
maps arising from the Lie functor, base—preserving morphisms, pullback
projections, and action morphisms. It has been shown [Mackenzie and
Xu, 2000] to pass the final test, that such a morphism between the Lie
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algebroids of Lie groupoids integrates suitably to a morphism of Lie
groupoids.

Using this concept of morphism and the paradigm described above,
I give concepts of fibration and quotient (§4.4) and general semi—direct
product and split fibration (§4.5) for Lie algebroids. This, like most of
the material of this Chapter, is based upon work of Philip Higgins and
myself [1990a].

The general concepts of morphism for Lie groupoids and Lie algebroids
have been crucial for much subsequent work: the criterion 12.2.1 for a
Lie bialgebroid requires a general concept of Lie algebroid morphism, as
does the development of a Lie theory for double groupoids.
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Preface

This book was originally intended to be largely disjoint from my earlier
book Lie groupoids and Lie algebroids in differential geometry, [Macken-
zie, 1987a], written in the period from 1980 to mid 1985 and published
in the London Mathematical Society Lecture Note series in 1987. How-
ever I have included, in Part II of the present book, the central chapters
of the earlier book on transitive Lie algebroids, their cohomology and
connection theory and their integrability. Despite the dramatic results
since 2000 on the integrability problem for general Lie algebroids, and
work on more sophisticated cohomology theories, it seems to me well
worth while to continue to treat the case of locally trivial Lie groupoids
and transitive Lie algebroids independently of the general theory. As I
have noted already, the systematic use of Lie groupoids and abstract Lie
algebroids provides a thoroughgoing reformulation of standard connec-
tion theory, and is likely to retain its own character independent of the
more general results. This material has in some cases been rewritten
and in others left almost unchanged, though typos and obscurities have,
I hope, always been caught.

The earlier book was intended to be readable without a detailed prior
knowledge of connection theory, and certainly without any acquaintance
with groupoids or Lie algebroids, and was consequently leisurely in pace.
I feel it is no longer necessary to argue throughout the book for the
importance of groupoids in differential geometry, and I have now also
assumed that readers have a basic knowledge of connection theory and
principal bundles, as well as the standard processes of manifolds, vector
bundles and Lie groups.

XXXil
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