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Classical algebraic geometry, inseparably connected with the names of
Abel, Riemann, Weierstrass, Poincaré, Clebsch, Jacobi and other out-
standing mathematicians of the last century, has mainly been an ana-
lytical theory. In our century it has been enriched by the methods and
ideas of topology and commutative algebra and has the authority of one
of the most fundamental mathematical disciplines.

The traditional eclecticism (in the best sense of the word) of algebraic
geometry has always been a source of its numerous applications to other
branches of mathematics. The role of algebraic geometry as “an applied
science” has grown immensely in the last 15-20 years, when its new
applications to the problems of non-linear equations and quantum field
theory were found.

Mechanics, mathematical and theoretical physics can be called “new”
spheres of the application of algebraic geometry. These areas are non-
traditional only for the algebraic geometry of the second third of our cen-
tury, the period when the abstract language of Grothendieck’s schemes
seemed to replace once and for all the somewhat naive language of clas-
sical algebraic geometry.

The results of recent years, amongst which we should specially men-
tion the solution of the Riemann-Schottky problem and the applications
of topological gravity to the intersection theory of moduli spaces of al-
gebraic curves, show that now, as in the last century, the relationship
between algebraic geometry and physics is by no means a one-way street.

The sudden growth in the number of scholars for whom algebraic ge-
ometry has become a working tool has highlighted the lack of relevant
mathematical literature. Practically all the books on this subject that
are available to the reader of today have been written in abstract alge-
braic language. The idea of maximum generality inherent in the theory
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of schemes hampers the reader willing to be quickly introduced to the
subject, especially if the reader is a physicist.

It would be an exaggeration to state that suitable literature is com-
pletely lacking. The neo-classical style is quite evident in some books
of recent decades. Amongst them are Principles of algebraic geome-
try by Griffiths and Harris, Tate lectures on Theta by Mumford, and
Theta-functlions by Fay.

Undoubtedly, Baker’s book assumes a special place in the list, one
guaranteed by the mere fact that its first edition is dated at the end of
the last century. But that is not its only special feature. It is surprisingly
up-to-date and moreover contains some results which have until now
remained beyond the scope of present-day textbooks. It is noteworthy
that these particular results are closely related to the above-mentioned
applications of algebraic geometry to modern mathematical physics.

With all the variety of results obtained within the framework of classi-
cal algebraic geometry, its core consists of relatively few basic definitions
and theorems. The list includes the Riemann—Roch theorem, the notion
of Jacobian variety of an algebraic curve, Abel’s theorem and Jacobi’s
solution of the inversion problem with the help of theta-functions.

Though the author of the book put in its title only Abel’s theorem and
the theory of theta-functions, the modest words “and the allied theory”
mean “all the rest”. This “all the rest” includes, besides the theorems
above, elements of uniformization theory of algebraic curves and related
theory of automorphic forms and the Schottky model of algebraic curves.
Of special importance for modern applications are the sections devoted
to the “factorial functions”.

It is necessary to emphasize another, and possibly the principal, merit
of this book. It exhibits the characteristic feature of classical algebraic
geometry — the wish to express the final results in exact analytical
formulae. This presupposes the definition of a minimal set of new tran-
scendental functions — the “bricks” of which the whole building can be
constructed.

In order to demonstrate it we shall briefly present the key points of
the so-called finite-gap (or algebraic—geometrical) integration theory of
non-linear equations. At the same time this will allow us to do justice
to the author of this book, whose name is perpetuated in the “Baker—
Akhiezer” function, the concept of which plays a crucial role in various
modern applications of algebraic geometry to non-linear physics.

The algebraic-geometrical integration scheme of non-linear equations
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is applicable to all the equations that are considered in the framework
of the inverse problem method. Among them are:
the Korteweg-de Vries (KdV) equation

3 1
U — §uux + Zumx =0, (0.1)
its two-dimensional generalization the Kadomtsev—Petviashvili (KP)
equation
3 . 3 1 .
Zuyy = (u‘t - §uux + Zuxa::c):cy (02)
the non-linear Schrodinger equalion
Wy = Yo + ]1/)|21/) = O> (03)
the sine-gordon equation
Uy — Uy = SINU (0.4)

and many other fundamental equations of modern mathematical physics.
All equations that are considered in the framework of the inverse
problem can be represented as compatibility conditions for an over-
determined system of auxiliary linear problems.
For example, for the KdV equation (0.1), this system has the form

Ly =0, O = Ay, (0.5)

where L and A are

3 3

L=-8+u(xt), A=05- Su0s = S (0.6)
The compatibility of (0.5) implies
[0, — A, L) =0 <= L, = [4, L]. (0.7)

The operator equation (0.7) is called the Laz equation. A wide class of
non-linear equations can be represented in the form (0.7), where L and
A are ordinary differential equations in the variable z with matrix or
scalar coefficients that are functions of the variables «,¢:

L=> wu(w,)dh, A=) v (0.8)
i=1 i=1

Each Lax equation is an infinite-dimensional analogue of the com-
pletely integrable systems. In particular, it can be included in a hierar-
chy of an infinite set of commuting flows. For the KdV equation they
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have the form

2"“)), w=u(e,t,tsty,...), O :8%’ {0.9)

Onu = folu, ug, ..., ul

and are equivalent to the operator equation
OnL = [Asny1, L], (0.10)

where L is the Schrodinger operator and Agp 4 is a differential operator
of order 2n + 1.

The initial definition of n-gap solutions of the KdV equation was pro-
posed by Novikov who considered the restriction of the KdV equation
to the space of stationary solutions of (0.10)

Falu g, u® D) = 0 = [L, Agaga] = 0. (0.11)

The operator equation (0.11) is a particular case of the more general
problem of the classification of commuting ordinary differential operators
L, and L., of orders n and m, respectively. As a purely algebraic
problem it was considered and partly solved in the remarkable works of
Burchnall and Chaundy [1], [2] in the 1920s. They proved that for any
pair of such operators there exists a polynomial R(A, i) in two variables
such that

R(Ln, L) = 0. (0.12)

If the orders n and m of these operators are coprime, (n,m) = 1, then
for each point @ = (A, u) of the curve T, that is defined in C? by the
equation R(A,u) = 0, there corresponds a unique (up to a constant
factor) common eigenfunction (z,Q) of L, and Ly,:

LIIQI)(:I:»Q) = /\'l/)(.’lf,Q); Lml/}(l',Q) = /‘“/)(TaQ) (013)
The logarithmic derivative 1,1 ~! is a meromorphic function on T. In
the general position (when I' is smooth) it has ¢ poles vi(z),...,7,(z)

in the affine part of the curve, where ¢ is the genus of I'. The commuting
operators Ly, Ly, (in this case of coprime orders) are uniquely defined
by the polynomial R and by a set of g points v;(zq), ..., v4(20) on T.

In such a form, the solution of the problem is one of pure classification:
one set is equivalent to the other. Even the attempt to obtain exact
formulae for the coefficients of commuting operators had not been made.
Baker proposed making the programme effective by pointing out that
the eigenfunction v has analytical properties that were introduced by
Clebsch, Gordan and himself as a proper generalization of the notion of
exponential functions on Riemann surfaces.
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The Baker program was rejected by the authors of [1], [2] consciously
(see the postscript of Baker’s paper [3]) and all these results were for-
gotten for a long time.

Briefly, the key points of a proof of the above results are the following.
The commutativity of L, and L, implies that the space £{)) of solutions
of the equation

Loy(z) = Ay(z) (0.14)
1s invariant with respect to the operator L,. The matrix elements
L3, 4,7 =0,...,n~1, of the corresponding finite-dimensional operator
Lm(/\)a

Lml[,(/\) = Lm(/\) : L:(/\) — ;C(/\) (015)

i the canonical basis
ci(z, M xo) € LX), iz, A 20)lo=e, = 65, (0.16)

are polynomial functions in the variable A. They depend on the choice of
the normalization point & = z, i.e. L = L# (), zo). The characteristic
polynomial

R(A, 1) = det(p — L (X, z0)) (0.17)

is a polynomial in both variables A and p and does not depend on xg.
According to the property of characteristic polynomials we have

R(Ln, Ly)y(z, A) = 0. (0.18)

R(L,, Ly,) is an ordinary differential operator. Therefore, if it is not
equal to zero then its kernel is finite-dimensional. Hence, {(0.18) implies
(0.12), and the first statement of [1],[2] is proved.

The equation

R(A,p)=0 (0.19)

defines the affine part of the algebraic curve I' in C2.

Surprisingly, the presentation of the contents in the present book is
“parallel” to the solution of this problem. In the first lines we read:
This book is concerned with a particular development of the theory of
the algebraic irrationality when a quantity y is defined in terms of
quantity & by mean of an equation of the form

apy” + ary* "+t apo1y +a, = 0. (0.20)

Possibly, this formulation and the consequent detailed discussion of
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“what 1s a place” of a Riemann surface, looks too naive for a mod-
ern reader, but it has its own advantages, because it allows us to touch
the main subjects of the theory right from the start. The general struc-
ture of the book is from the particular definitions to a general structure
and back to specific problems. For example, in the first chapter of the
book just after the definition of algebraic irrationality (0.20) the notion
of their rational equivalence is introduced. The invariance of the genus
(deficiency) of irrationalities with respect to rational transformations is
proved. At the end of this chapter it is proved that “the greatest num-
ber of irremovable parameters” for algebraic irrationalities of genus g is
equal to 3g — 3 (in modern language this number is the dimension of the
moduli space of genus g algebraic curves). And all this in only 13 pages!

Let us return to the classification problem of commuting ordinary
differential operators. The consideration of the asymptotic behaviour of
the algebraic equation (0.19) in a neighbourhood of “infinity” ( A — oo)
allows one to prove that if the orders n and m of L,, and L,,, are coprime,
then the affine curve (0.19) is compactified by one smooth point, in a
neighbourhood of which A=1/" is a local co-ordinate, i.e. infinity is an
n-fold branching point of I'. Hence, equation (0.19) for a generic value
of X has n distinct roots and for each point @ = (A, ) of T there exists
a unique eigenvector h(Q) = (h1(Q),...,hn(Q)) of the operator L, (),

Ln(MA(Q) = ph(Q), (0.21)

normalized by the condition 2¢(Q) = 1. All the other components h; of
this vector are rational functions in A and g, i.e. meromorphic functions
onI'. They depend on the choice of normalizing point zo, h; = h;(Q, z5).
In the affine part of T’ the poles of h coincide with zeros on the curve I’
of the minor L¥()), i, =1,...,n — 1. If the curve is smooth then the
number of poles is equal to the genus of . The poles v1(z¢), . .., v4(2a)
depend on z,.

The common eigenfunction ¥(z,Q) of L, and L, is defined up to
a constant factor, therefore its logarithmic derivative 1,91 is defined
uniquely. It follows from the definition of the canonical basis (0.16) that

2/):L”(:l"'rQ)l/)—’l(m’ Q)l:v:a:n - hl(Q, 170)- (0.22)

That proves the second statement of [1],[2]. In order to prove the final
statement that the coeflicients of R and the divisor v,(zo) on the corre-
sponding curve uniquely define the commuting operators, let us consider
the analytical properties of hi(Q, x¢) on I', including the infinite point
Py. It turns out that besides the poles +;(zo) in the affine part of T it
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has a simple pole of the form
hl(Q)‘T’O) =k + O(k—l)v k= /\a Q - (AJ‘): (023)

at infinity.

Let T’ be a smooth genus ¢ algebraic curve with a local co-ordinate
k~1(Q) in a neighbourhood of a puncture P;. Then according to the
Riemann—-Roch theorem for a generic set of g points v, there exists a
unique function h; that has at most simple poles at these points and
has the form (0.23) in the neighbourhood of P;.

The proof of this particular case of the Riemann-Roch theorem can be
found in Chapter IV of the book. In the book the corresponding function
is sometimes called a “Weierstrass function”. It is one of the fundamen-
tal rational functions through which all the other rational functions can
be expressed.

Let 2,(Q) be a local co-ordinate near the point 7,, then the corre-
sponding function has an expansion

hl(Q)

_ ay
B ZS(Q) - 25(75)
The coefficients a, of the expansion (0.24) are uniquely defined by the
set Yi,...,Yg, 1e. a4y = as(y1,. .., Y)-

The common eigenfunction ¥(z, @, x¢) of the operators L,, L, which
is normalized by the condition ¥(z = z¢,Q,z¢) = 1 is equal to

+0(1). (0.24)

n—1
B Qz0) = 3 hi(Q, 20)eilz, A, o). (0.25)

i=0
The functions ¢; are entire functions of the variable A. Hence, ¢ is a
meromorphic function on T' except for infinity. It has poles at v;(zo)
and ¢ zeros ys(z) that are poles of its logarithmic derivative. In their
vicinity we have

925 (7s(2))

Pep” T = m + 0(1). (0.26)

The comparison of (0.24) and (0.26) implies that

Oz z:(7:(2)) = as(y1(x), . .., 74(2)). (0.27)

Equations (0.27) consist of a well-defined system of differential equations
of the first order. A solution of this system is defined by the initial data
1(20), .-, vg(xe). That proves the final statement of Burchnall and
Chaundy.
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In [3] it was proposed to consider the analytical properties of the
common eigenfunction 3 on the compactified curve I'. From the purely
algebraic point of view it is a “forbidden” function, because it has an
essential singularity at the infinite point Py. But this essential singularity
is of a very special form — it is of exponential type. It follows from (0.23)
that

Pz, Q,20) = exp(/~ hi(Q, z)dz)

Lo

= ek(f_-’b’o)(l + Z&s(i‘, :L'O)k_s)v A= kn(Q) - oo
s=1 (028)

The theory of such functions, considered as a natural generalization of
the exponential function to Riemann surfaces, is very deeply connected
with the theory of the so-called factoriel functions that can be found
in Chapter XIV of the book. These functions are single-valued on the
surface dissected along cycles and their values on different sides of the
cuts satisfy special boundary conditions. In modern language they are
solutions of the Riemann—Hilbert problem on a Riemann surface. The
expression of such functions in terms of Riemann theta-functions is one
of the main goals of the chapter.

Baker pointed out that these results should make it possible to find
the exact formulae for the coefficients of the commuting operators of
coprime orders. It turned out that this program was realized only in
[4],15] (though at that time the author was not aware of the remarkable
results of Burchnall, Chaundy and Baker) where the commuting pairs
of ordinary differential operators were considered in connection with the
problem of constructing solutions to the KP equation.

The common eigenfunction of commuting operators is a particular
case of the general definition of scalar the multi-point and multi-variable
Clebsch~Gordan-Baker~Akhiezer function (or more simply the Baker—
Akhiezer function). Let I' be a non-singular algebraic curve of genus ¢
with N punctures P, and fixed local parameters k7*(Q) in neighbour-
hoods of these punctures. For any set of points 7i,...,7, in general
position, there exists a unique (up to constant factor, ¢(t4,;)) function
P(t,Q), t = (tui)ya=1,...,N,i=1,..., such that:

(1) the function 4 (as a function of the variable @ € T') is meromorphic
everywhere except for the points P, and it has at most simple poles at
the points vy,...,7, (if all of them are distinct);
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(ii) in a neighbourhood of the point P, the function ¥ has the form

o0 o
¥(t,Q) = exp(D_ taikh) O Eal®b®) ko = ka(Q).  (0.29)
i=1 s=0
We see that the Baker—Akhiezer function 1 depends on the variables
t={t1,... .15} and on external parameters.
From the uniqueness of the Baker—Akhiezer function it follows that
for each pair (a,n) there exists a unique operator Lq n of the form

n-—1
Lan =01+ 3w (@), (0-30)
Jj=1

(where 8, ; = 0/t ;) such that

(Ou,i = Lan)¥(t,Q) = 0. (0.31)

The idea of the proof of theorems of this type which was proposed in [4]
is universal.

For any formal series of the form (0.29) there exists a unique operator
L of the form (0.30) such that

o
(Oai = Lan)h(t,Q) = O(k™ ) exp(D _ta,ikh). (0.32)
i=1
The coefficients of L, ,, are differential polynomials with respect to &
They can be found after substitution of the series (0.29) into (0.32).
It turns out that, if the series (0.29) is not formal but is an expan-
sion of the Baker-Akhiezer function in the neighbourhood of P,, then

the congruence (0.32) becomes an equality. Indeed, let us consider the
function

P = (au,n - La,n)‘/}(tyQ)~ (033)

It has the same analytical properties as 1, except for one. The expansion
of this function in a neighbourhood of P, starts from O(k~!). From the
uniqueness of the Baker-Akhiezer function it follows that v, = 0 and
the equality (0.31) is proved.
A corollary is that the operators L n satisfy the compatibility condi-
tions
[Oun = Layns8aym — Lam) = 0. (0.34)

The equations (0.34) are gauge invariant. For any function ¢(t) operators

if(x'.n. = .(/Loz,nf/—l + (aa,ng)f/(_l) (035)
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have the same form (0.30) and satisfy the same operator equations
(0.34). The gauge transformation (0.35) corresponds to the gauge trans-
formation of the Baker—Akhiezer function

hi(t, Q) = g()¥(t, Q) (0.36)

In the one-point case the Baker—Akhiezer function has an exponential
singularity at a single point P; and depends on a single set of vari-
ables. Let us choose the normalisation of the Baker—Akhiezer function
with the help of the condition & ¢ = 1, i.e. an expansion of 1 in the
neighbourhood of P; equals

Yt ty, ... Q) = exp(>_t:k") D& (0)k™*). (0.37)
i=1 s=0
In this case the operator L,, has the form
n—2
Lo =087+ u™ai. (0.38)
=0

If we denote t1,15,t3 by =,y,t, respectively, then from (0.34) it follows
(for n = 2, m = 3) that u(a,y,t,14,...) satisfies the KP equation (0.2).
The exact formula for these solutions in terms of the Riemann theta-
function is based on the exact formula for the Baker—Akhiezer function.
Let us fix the basis of cycles a;,b;, i = 1,..., g on T with the canonical
matrix of intersections: a; oa; = b;0b; = 0, a; 0b; = 6;;. The basis of
normalized holomorphic differentials w;(Q), j = 1,...,¢ is defined by

conditions
f Wy = (5,']'. (039)

a;

The b-periods of these differentials define the so-called Riemann matrix

b.

3

The basic vectors e; of C¥ and the vectors By, which are the columns
of matrix (0.40), generate a lattice 5 in CY. The g-dimensional complex
torus

J()y=C*%/B, B= anek +mg By, ng,mi € Z, (0.41)

is called the Jacobian variety of I'. A vector with co-ordinates

Q
AdQ) = [ (0.42)
qo
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defines the Abel map
A: Tr— J(I) (0.43)

which depends on the choice of the initial point gg.
The Riemann matrix has a positive-definite imaginary part. The en-
tire function of g variables

0(z) = 0(z|B) = Y e*rilemtmilBmm) (0.44)
meZ9
z={(z1,...,2p),m=(my,...,mu),(z,m) = zym; + ...+ z,m,,

is called the Riemann theta-function. It has the following monodromy
properties;
0(z+er) = 0(2), 6(z+ By)=e 2 x=miBrig(z) (0.45)

The function §( A(Q)— Z) is a multi-valued function of . But according
to (0.45), the zeros of this function are well-defined. For Z in a general
position the equation

6(AQ)—-2)=0 (0.46)
has g zeros v1,...,7,. The vector Z and the divisor of these zeros are
connected by the relation

g
Zy = Aln) +K, (0.47)
i=1

where K is the vector of Riemann constants.

Let us introduce the normalized Abelian differentials dQq ; of the sec-
ond kind. The differential d€2,; is holomorphic on T' except for the
puncture P,. In the neighbourhood of this point it has the form

dQq i = d(k, + O(1)). (0.48)

“Normalized” means that it has zero a-periods

}{ Qs = 0. (0.49)

3

Consider the function
-Q
£, Q)= exp(ZtaJ dQq ;). (0.50)
O'j qo

It has the same exponential singularities of the form (0.29) at the punc-
tures as the Baker—~Akhiezer function, but it is a single-valued function
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on I dissected along a-cycles only. Its values on two sides of the cycle
a; differ by the factor

e?™ U = exp (Zta,jUé’j), {0.51)
a,j
where
. 1
J = b dQy . .52
(0,] i f;‘ W] (05 )

Consider the function

AQ)+V - 2)
where V' is a vector with co-ordinates Vy, ..., V,. This function is mero-
morphic on I' dissected along a-cycles and has ¢ poles (depending on
Z). It follows from the monodromy properties (0.45), that the bound-
ary values of ¢ on two sides of the a; cycles satisfy the relation

¢t = e TVig—, (0.54)

Such multi-valued functions are called “factorial” functions in the book.
Equalities (0.50-0.54) imply that the function

0(AQ) + 2y tajUa — Z)

9(AQ) - 2)
is a single-valued function on I and has all the other properties of the de-
sired function. Therefore, the existence of the Baker—Akhiezer function
is proved. Let ¢ be any function with the same analytical properties.
The ratio z/;/ % 1s a meromorphic function with at most g poles. The
Riemann-Roch theorem implies that such a function is equal to a con-
stant. Hence, the uniqueness of the Baker—Akhiezer function (up to a
constant factor) is also proved.

The coefficients of the operators L, ; which are defined by the equa-
tions (0.31) are differential polynomials in the coefficients of the expan-
sions of the second factor in (0.55) near the punctures. Hence, they
can be expressed as differential polynomials in terms of Riemann theta-
functions. For example, the.algebraic—geometrical solutions of the KP
hierarchy have the form

(0.53)

W(L,Q) = £(t,Q) (0.55)

u(x,y,t,ty,...) = 202In0(xUy + yUsy +tUs + - -+ Z) + const. (0.56)

The common eigenfunction of commuting operators of coprime or-
ders is the particular case of a one-point Baker-Akhiezer function cor-
responding to t; = x,t» = 0,43 = 0,.... Therefore, the coefficients of
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such operators (i1, general position) are differential polynomials in terms
of the Riemann theta-functions. This has an important corollary. The
coefficients of commuting differential operators of coprime orders are
meromorphic functions of the variable 2. Moreover, in general position
they are quasi-periodic functions of . The last statement presents ev-
idence that the theory of commuting operators is connected with the
spectral Floquet theory of periodic differential operators. These connec-
tions were missing in [1], [2], [3].

The origin of Riemann surfaces in the spectral theory of ordinary
periodic differential operators appears now to be self-evident. Indeed,
for such an operator the space £(X) of solutions of equation (0.14) is
invariant with respect to the monodromy operator

T :y(z) — y(z +T). (0.57)

Let T(A) be the corresponding finite-dimensional operator. The charac-
teristic equation

R(w, ) = det(w —T(A)) =0 (0.58)

defines the Riemann surface of Bloch solutions; the common eigenfunc-
tions for the operator L and monodromy operator, i.e.

Ly(z,Q) = Mp(2,Q), ¥(z+T,Q)=wy(z,Q), Q= (w,A). (0.59)

For the general periodic operator the Riemann surface of Bloch solu-
tions has an infinite genus. Periodic operators for which this surface
has a finite genus are operators that commute with some other ordinary
differential operators. In this case the Riemann surface of Bloch solu-
tions and the algebraic curve of common eigenfunctions of commuting
ordinary differential operators are isomorphic.

Originally, the classification problem of commuting ordinary differ-
ential operators was posed for operators of arbitrary orders. In [1],[2]
it was mentioned that there are no approaches to the solution of this
problem if the orders of these operators are not coprime. The complete
solution of the problem was obtained in [6]. It turned out that such
operators are defined uniquely by the polynomial R(A, ) (0.17), by a
vector bundle over T of rank r and degree rg and by a set of r — 1
arbitrary functions wg(z),...,w,-2(z). Here r is a common divisor of
the orders n, m. It equals the number of linear independent solutions of
the equations (0.13). The problem of reconstruction of the coefficients
of commuting differential operators of the rank » > 1 is reduced to the

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521498775
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521498775 - Abelian Functions: Abel’s Theorem and the Allied Theory of Theta Functions
H. F. Baker

Frontmatter

More information

XXX Foreword

system of linear integral equations and is beyond the framework of the
book.

To conclude let us give the list of reviews of finite-gap theory [7]-[11].
We would like to specially mention the work {12], where it was proved
that the function that is given by formula (0.56) is a solution of the KP
equation if and only if the matrix B that defines the theta-function is
the Riemann matrix of some algebraic curve. This statement solves the
Schottky problem and was conjectured by Novikov.

It would be fair to say that the most exciting results of recent years
in algebraic geometry and in mathematical physics are connected with
the application of so-called topological field theories, matrix integrals to
the intersection theory on the moduli spaces of algebraic curves with
punctures [13]-[14].

There is no doubt that this book will provide an excellent introduction
to the algebraic—geometrical techniques that are necessary for those who
are interested in this field.

We wish success to those who now begin to turn the pages which
follow.
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PREFACE.

It may perhaps be fairly stated that no better guide can be found to the
analytical developments of Pure Mathematics during the last seventy years
than a study of the problems presented by the subject whereof this volume
treats. This book is published in the hope that it may be found worthy to
form the basis for such study. It is also hoped that the book may be
serviceable to those who use it for a first introduction to the subject.
And an endeavour has been made to point out what are conceived to be the
most artistic ways of formally developing the theory regarded as complete.

The matter is arranged primarily with a view to obtaining perfectly
general, and not merely illustrative, theorems, in an order in which they can
be immediately utilised for the subsequent theory; particular results, however
interesting, or important in special applications, which are not an integral
portion of the continuous argument of the book, are introduced only so far
as they appeared necessary to explain the general results, mainly in the
cxamples, or are postponed, or are excluded altogether. The sequence and
scope of ideas to which this has led will be clear from an examination of the
table of Contents.

The methods of Riemann, as far as they are explained in books on the
general theory of functions, are provisionally regarded as fundamental; but
precise references are given for all results assumed, and great pains have
been taken, in the theory of algebraic functions and their integrals, and in
the analytic theory of theta functions, to provide for alternative developments
of the theory. If it is desired to dispense with Riemann’s existence theorems,
the theory of algebraic functions may be founded either on the arithmetical
ideas introduced by Kronecker and by Dedekind and Weber; or on the
quasi-geometrical ideas associated with the theory of adjoint polynomials;
while in any case it does not appear to be convenient to avoid reference to
either class of ideas. It is believed that, save for some points in the
periodicity of Abelian integrals, all that is necessary to the former ele-
mentary development will be found in Chapters IV. and VIL, in connection
with which the reader may consult the recent paper of Hensel, Acta
Mathematica, xvir. (1894), and also the papers of Kronecker and of
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