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0 Review of Thin Sets

The purpose of this preliminary chapter is to give a brief review of facts
concerning thin sets which are particularly relevant to harmonic approxi-
mation. No proofs will be given, but appropriate references to the books by
Helms [Helm] and Doob [Doo] will be supplied.

0.1 Introduction

We use A, A and A° to denote respectively the closure, boundary and inte-
rior of a set A in Euclidean space R™ (n > 2), denote by |X| the Euclidean
norm of a point X, and denote by B(X,r) the open ball of centre X and
radius r. Also, we define ¢, : [0, +00) = R U {+00} by ¢2(t) = log(1/t), or
én(t) = t27™ if n > 3. (We interpret ¢,(0) as +oc in either case.) Let 2 be
an open set in R™. A function u on Q, taking values in (—o0, +00], is called
superharmonic if:

(i) u # 400 on any component of €;

(i1) u is lower semicontinuous, i.e. the set {X € @ : u(X) > a} is open for
each real number a; and

(iil) u(X) > M(u; X, r) whenever B(X,r) C Q, where M(u; X, ) denotes
the mean value of u over the sphere B(X,r).

A fundamental example of a superharmonic function on R" is given by
én (X 1), which is harmonic on R™\{O}, and which takes the value +oo at
the origin O. It is a consequence of the above definition that a superharmonic
function can take the value +o0o only on a rather small set of points. A set
A is called polar if there is a superharmonic function © on R™ such that
A C{X : u(X) = +oo}. Thus, for example, the set {0}™ x R*~™ is polar if
m € {2,3,...,n}, as can be seen by considering the superharmonic function

X ¢ ((23 +x§+...+x,2n)1/2).

However, the hyperplane {0} x R"~! is not polar. Polar sets always have
n~-dimensional Lebesgue measure 0.
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2 0 Review of Thin Sets

As the definition suggests, superharmonic functions need not be contin-
uous, even in the extended sense of functions taking values in [—o00, +00].
In fact, if {Yx : ¥ € N} is a countable dense subset of some ball, where
N = {1,2,...}, then a highly discontinuous superharmonic function is de-
fined by

0
u(X) =Y 27 (IX - Yi|) (X eRM).
k=1
Nevertheless, it is possible to assert that, if u is a superharmonic function
on 2 and Y € Q, then

u(X)-ouwy) (X-Y;X¢€E),

where the exceptional set F is, in a sense which becomes clear from Wiener’s
criterion in §0.5, “thin” at Y.

0.2 The Fine Topology

If 71, Ty are topologies on the same set and T3 C Ty, then T; is said to
be finer than T», and T3 is said to be coarser than T;. The fine topology
of classical potential theory is the coarsest topology on R™ which makes
every superharmonic function on R™ continuous. It is obtained by taking
the intersection of all topologies which make the superharmonic functions
continuous. The fine topology clearly contains all open balls, and hence the
Fuclidean topology. It is strictly finer than the Euclidean topology since, as
we have seen, there exist superharmonic functions which are discontinuous
with respect to the latter.

A set F is said to be thin at a point Y if Y is not a fine limit point of
E, i.e. if there is a fine (topology) neighbourhood N of Y such that F\{Y}
does not intersect N. The classical example of a thin set is the Lebesgue
spine in R3 defined by

E.={(z,y,2) : x>0 and y? + 22 < exp(—c/z)} (c>0), (0.1)

which is thin at O. A polar set is thin at every point of R".

Theorem 0.A. ([Helm, 10.8], [Doo, 1.XI1.2]) Let Y be a limit point of a
set E. Then E is thin at Y if and only if there is a superharmonic function
u on an open neighbourhood of Y such that

liminf u(X) > u(Y).
XY, XeE
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0.2 The Fine Topology 3

(Throughout these notes, limit concepts for a function » do not involve
the value of u at the point concerned.)

An open set 2 in R™ will be called Greenian if it possesses a Green
function Gq( -, -). When n > 3 all open sets are Greenian. When n = 2 an
open set 2 is Greenian if and only if its complement is a not a polar set (see
[Helm, 8.33]). If u is a non-negative superharmonic function on a Greenian
open set 2 such that the greatest harmonic minorant of  on € is the zero
function, then u is called a potential on €. In this case there exists a unique
{Borel) measure v, on ) such that v = Gqv, where

Gov(X) = / Ga(Y, X)dra(Y) (X € 9).
Q

Any non-negative superharmonic function « on  can be written as the sum

of its greatest harmonic minorant and a potential of the above form. The

measure v, is called the Riesz measure associated with u. It is given by

vy = —c,Au in the sense of distributions, where ¢,;! = ¢, max{n — 2,1}

and o,, denotes the surface area of the unit sphere in R™.

Theorem 0.B. ([Doo, 1.X1.2], ¢f. [Helm, 10.4]) Let Q2 be a Greenian open
set and suppose that a set F is thin at a limit point Y in Q. Then there is
a potential u on Q) such that

w(Y) < liminf u(X) = +oc.
X-Y XeFE
Corollary 0.C. ([Helm, 10.5]) If a Borel set E is thin at a point Y, then

o(0B(Y,r)NE)
o (0B(Y,r))

-0 (r = 0+),

where o denotes surface area measure on 8B(Y,r).

Theorem 0.D. ([Helm, 10.14]) If a set E in R? is thin at a point Y, then
there are arbitrarily small positive values of r such that 8B(Y,r)N E = (.

Theorem 0.E. ([Helm, 10.9], [Doo, 1.X1.6]) Let E C R™. The set of points
of E where E is thin forms a polar set.

We note from Theorem 0.E that, since an (n—1)-dimensional hyperplane
(or line, if » = 2) is non-polar, it cannot be thin at any of its constituent
points, in view of its translational symmetries.
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4 0 Review of Thin Sets

0.3 Reduced Functions and Thinness

Let © be a Greenian open set, let u be a non-negative superharmonic func-
tion on Q, and let E C Q. The réduite, or reduced function, of u relative to
E in  is defined by

RE(X) = inf{v(X) : v is a superharmonic function on (,
v>0o0nQ,v>uon E}

when X € Q. Its lower regularization, that is
RE(X) = min {nminfRf(Y), RE(X)} (X €Q),
Y—=X

is called the balayage, or regularized reduced function, of u relative to E
in §2. The balayage is a superharmonic function on Q. It is obvious that
u> RE > RE >0 o0n Q, that u = RE on E, and that u = RZ = RE on
E°. Some further properties of reduced functions are listed below:

(i) RE (and hence also RE) is harmonic on Q\E ([Helm, 7.11]);
(ii) RE = RE on Q\E ([Helm, 8.36));

(iii) RE = RE on Q if E is open (cf. (ii));

(iv) RE differs from RE at most on a polar set ([Helm, 7.39));
(v) if F is a polar set, then ROV = RE on Q ([Helm, 8.37));

(vi) if (E%) is an increasing sequence of sets and E = U Ey, then REx + RF
and REx 1 RE (cf. [Helm, 8.38]).

(All the above properties can also be found in [Doo, 1.V1.3].)

Theorem O0.F. ([Doo, 1.XI1.10]) Let § be a Greenian open set. Then there
is a bounded continuous potential u# on Q with the property that a set E is
thin at a point Y in Q if and only if RE, (V) < u#(Y).

0.4 Thin Sets and the Dirichlet Problem

We refer to [Helm, Chapters 8,9] and [Doo, 1.VIII] for accounts of the
Perron-Wiener-Brelot solution to the Dirichlet problem on a Greenian open
set @ with boundary function f : 8*Q — [-00,+00]. Here 8*Q denotes
o if Q is bounded, or 9 U {oo} if Q is unbounded, and co denotes the
Alexandroff point for R™. We recall that a function u on 2 is said to be
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0.4 Thin Sets and the Dirichlet Problem 5

in the upper (resp. lower) PWB class if, on each component of Q, either
¥ = 400 (resp. u = —00) or u is superharmonic (resp. subharmonic) and
bounded below (resp. above), and if
li)Enigfu(X) > f(Y) (resp. limsup u(X) < f(Y)) (Y € Q).
—

XY
Further, the infimum (resp. supremum) of the upper (resp. lower) PWB class
is denoted by _I:T? (resp. H' Sf)) If TI_? and H ? are identical and harmonic on
1, then we denote them by H ;2 In this case f is said to be resolutive for £,
and H [9 is called the PWB solution for f. A point Y in 8*Q is called regular
if H?(X) — f(X) as X = Y for every continuous function f : 8*Q — R.
Otherwise Y is called irregular. The set 2 is called regular if every point in

0*Q is regular. For each X in Q there is a unique (Borel) measure pq x on
0*Q such that

70 = [ (0 duax(v)  (Xew)

for every resolutive boundary function f. The measure pg x is called har-
monic measure for 2 and X. If Q is connected, then the class of Borel sub-
sets of 0*(2 which have zero uq x-measure is independent of X. In connec-
tion with the following results we emphasize that 9§ denotes the Euclidean
boundary of €2, and so does not include co even if Q is unbounded.

Theorem 0.G. ([Helm, 10.12], [Doo, 1.XI1.12]) Let Q be a Greenian open
set and let Y € 9Q. Then Y is a regular boundary point for the Dirichlet
problem on Q if and only if R*\Q is not thin at Y.

Theorem 0.H. ([Doo, 1.X1.13]) Let Q be a connected Greenian open set.
Then the set of points of O at which  is thin forms a set of zero harmonic
measure for ).

We also record here the relationship between reduced functions and
Dirichlet solutions.

Theorem 0.I. ([Helm, 9.25], [Doo,1.VIIL.10]) Let Q be a Greenian open
set, let w be an open subset of 2, and let u be a positive superharmonic
function on Q. Then R\ = HY on w, where

W(X) = u(X) (X e Qndw)
0 (X € 30N 0w; X = oo if w is unbounded).
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6 0 Review of Thin Sets

0.5 Wiener’s Criterion

Let € be an open set in R™ with Green function Gg(-, - ), let E C R™ and
Y € Q, and let o denote a fixed number satistying e > 1. For each positive
integer k we define

Er={X€E:a"<¢, (X -Y][) <o*t'}.

Also, we choose k' such that the closed ball {X : o < ¢,(|X - Y|)} is
contained in €2. In what follows, C* denotes outer capacity with respect to
Q2 (see [Helm, Chap. 7] or [Doo, 1.XIII]). When n > 3 we may take Q@ = R",
in which case C* is outer Newtonian capacity.

Theorem 0.J. ([Helm, 10.21], [Doo, 1.X1.3 and 1.XIII.17]) The following
are equivalent:

(i) E is thin at Y;
(15) Y pp @FC*(Ex) < 0o (Wiener’s criterion);

(i) / C{X eE:¢(|X —Y|) > t})dt < +o0;
ak’
(tv) ﬁgn(Y, .y # Gal(Y, +) (unegual as functions).

Theorem 0.K. ([Doo, 1.X1.4]) Let Q be a Greenian open set, and let u be
a positive superharmonic function on 0 with associated Riesz measure v,,.
Then u/Gq(Y, - ) has fine limit v, ({Y}) at Y.
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1 Approximation on Compact Sets

1.1 Introduction

If Q is an open set in C or R"(n > 2), then we will use Q* to denote the
Alexandroff, or one-point, compactification of €2, and will use A to denote
the ideal point. Thus * = QU {4}, and a set A is open in Q* if either A
is an open subset of Q or A = Q*\ K, where K is a compact subset of €. In
the special case where  is C or R™ we continue to write oo for A.

If A is a subset of C, we denote by Hol(A) the collection of all functions
which are holomorphic on an open set containing A. Historically the follow-
ing result (essentially in [Run]; cf. [Con, pp.198, 201]) can be regarded as
the starting point of the theory of holomorphic approximation.

Runge’s Theorem (1885). Let Q0 be an open subset of C and K be a
compact subset of Q). The following are equivalent:

(a) for each f in Hol(K) and each positive number €, there exists g in Hol(2)
such that |g — f| <€ on K;

(b) Q*\K is connected.

Condition (b) above is equivalent to asserting that no component of
Q\K is relatively compact in Q. Also, when Q = C, this condition is clearly
equivalent to saying that C\K is connected.

We record below one further important development in the theory of
holomorphic approximation, which deals with approximation of a much
larger class of functions on a given compact set K. It can be found in
[Mer] or [Rud, Chap. 20]. As usual we denote by C(A) the collection of all
complex- (or real-, depending on the context) valued continuous functions
on a set A.

Mergelyan’s Theorem (1952). Let K be a compact set in C. The fol-
lowing are equivalent:
(a) for each f in C(K)N Hol(K°) and each positive number €, there is an
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8 1 Approximation on Compact Sets

entire function (and hence, by suitably truncating the Taylor series, a poly-
nomial) g such that |g — f| < e on K;
(b) C\K s connected.

Turning now to the history of harmonic approximation in R™(n > 2),
we take as our starting point the following result [Wal, p.541].

Walsh’s Theorem (1929). Let K be a compact set in R™ such that R*"\ K
is connected. Then, for each function u which is harmonic on an open set
containing K and each positive number ¢, there is a harmonic polynomial v
such that |v —u| < € on K.

Important progress concerning uniform harmonic approximation was
made in the 1940’s, in which connection we mention particularly the contri-
butions by Keldys [Kel], Landkof (see the references in [Lan]), Brelot [Brel],
and Deny [Denl], [Den2]. However, somewhat surprisingly, the analogue of
Runge’s Theorem (as stated above) for harmonic approximation in R™ was
obtained rather more recently. In this chapter we present analogues of both
Runge’s Theorem and Mergelyan’s Theorem for harmonic functions. First,
however, we deal with the question of local harmonic approximation, i.e. ap-
proximation by harmonic functions defined merely on some neighbourhood
of a given compact set.

1.2 Local Approximation on Compact Sets with
Empty Interior

In this section and the next we will be concerned with uniform approxi-
mation of functions on a compact set K in R™ by functions harmonic on
a neighbourhood of K. Clearly the functions to be approximated must be
continuous on K and harmonic on the interior K°. It will be convenient to
denote by #H(A) the collection of all functions which are harmonic on some
open set containing A. The question we are concerned with is this. Which
compact sets K have the property that every v in C(K) N H(K®) can be
uniformly approximated by functions in H(K)? This question simplifies if
we restrict our attention to compact sets K with empty interior, so this spe-
cial case will be treated first. In §1.3 the more general question will be dealt
with. Of course, if K° = @, then we are approximating arbitrary continuous
functions on K.

Theorem 1.1. Let K be a compact subset of R™ such that K° = 0. The
following are equivalent:
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1.2 Local Approzimation on Compact Sets with Empty Interior 9

(a) for each f in C(K) and each positive number ¢, there exists h in H(K)
such that |h — f]| < e on K;
(b) R*"\K is nowhere thin.

Before proving this theorem we present an example of a compact set K
which has empty interior yet fails to satisfy condition (b).

Ezample 1.2. Let {Y) : k € N} be a dense subset of [0,1]"~! x (0,1], and

define
wX)=> 2. (IX -Yi|) (XeR"),
k=1
E=([0,1]"""x {0}) U {(X',z,) € [0,1]*7" x (0,1] : u(X', z) < Pn(zn)}
and

K= {(ml,...,xn) ER™: (21,...sZTn_1,|Zn|) € E}

Then u is a superharmonic function on R"™, and the lower semicontinuity of
u ensures that E is closed. Thus K is compact and, because u(Y;) = +o0
for each k, the interior K° is empty. (The set K is an example of what is
sometimes called a “Swiss cheese”: cf. [Rotl, p.96].) If Z € (0,1)"~! x {0}
and X = (X', z,), where x,, > 0, then

w(X) > ¢n(@n) 2 6n(|X = Z) (X € (0,1)"\E).

Since the Riesz measure associated with u does not charge {Z}, it follows
easily from Theorem 0.K that (0,1)"\E is thin at Z, and hence R™\ K is
thin at Z.

In both parts of the proof below, K will denote a compact set with empty
interior, B will be a fixed open ball which contains K, and reductions will
be with respect to superharmonic functions on B. Also, we define

Up ={X e R" : dist(X, K) < 1/m} (m e N).
Proof that (b) implies (a). Suppose that R™\K is nowhere thin, let

f € C(K) and € > 0. There exist (see [Helm, 8.10]) positive continuous
superharmonic functions w1, us on B such that

|f — (u1 —u2)| < €/2 0n K. (1.1)
We know that

RENU-(X)t REM(X) (X € Bik=1,2m — ). (1.2)
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10 1 Approxzimation on Compact Sets

Now let v, be a positive superharmonic function on B such that vy > ug
on B\K, where k € {1, 2}. It follows by fine continuity that vy —ux > 0 on
K, since B\K is non-thin at each X in K and so every fine neighbourhood
of such a point X meets B\K. Thus vy > u) on B and hence

Up = Rfk\K on B.
From (1.2) we see that
RE\U=(X) 1 wi(X) (X e K;k=1,2;m— o0)

and, since u, is continuous and K is compact, Dini’s theorem shows that
this convergence is uniform on K. Thus there exists ' such that

up(X) > RENUn (X)) > up(X) —¢/2 (X € Kjk=1,2). (1.3)
It follows from (1.1) and (1.3) that

f—Rfl\Um’-l-sz\U'"’ <f—-ur+e€/2+ur<ce on K|

and similarly
f—RBWUn 4 RB\Un 5 ¢ on K.

Since the above reduced functions are harmonic on the open set U, which
contains K, the argument is complete.

Proof that (a) implies (b). Suppose that condition (a) of Theorem 1.1
holds, let u# be the bounded continuous potential on B described in The-
orem 0.F, and let € > 0. By hypothesis there exists h¢ in H(K) such that

|he —u#| < € on K. (1.4)

By continuity the above inequality remains true on the open set U, for all
sufficiently large m. Thus, solving the Dirichlet problem in U,,, we obtain

—e<h.—HYr =h.—R2\"" <e¢ onK

(See Theorem 0.I) Letting m — oo, it follows that

he—Rf#K‘Se on K.

Combining this with (1.4) we see that
‘u#—ﬁfﬂiK‘z‘u#—ngK[<2e on K.

Since € can be arbitrarily small,

u? = ﬁu#}’{ on K.

From Theorem 0.F we can conclude that B\K, and hence R*\K, is not
thin at any point of K. Certainly R™\ K is not thin at any point of R"\ K,
so condition (b) of the theorem is established.
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