Fundamentals of Noise and Vibration Analysis for Engineers

Noise and vibration affects all kinds of engineering structures, and is fast becoming an integral part of engineering courses at universities and colleges around the world. In this second edition, Michael Norton's classic text has been extensively updated to take into account recent developments in the field. Much of the new material has been provided by Denis Karczub, who joins Michael as second author for this edition.

This book treats both noise and vibration in a single volume, with particular emphasis on wavemode duality and interactions between sound waves and solid structures. There are numerous case studies, test cases and examples for students to work through. The book is primarily intended as a text book for senior level undergraduate and graduate courses, but is also a valuable reference for practitioners and researchers in the field of noise and vibration.

Fundamentals of Noise and Vibration Analysis for Engineers

Second edition

M. P. Norton

School of Mechanical Engineering, University of Western Australia

and

D. G. Karczub

S.V.T. Engineering Consultants, Perth, Western Australia

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© First edition Cambridge University Press 1989 © Second edition M. P. Norton and D. G. Karczub 2003

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First edition published 1989, Reprinted 1994 Second edition published 2003

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times 10.5/14 pt and Helvetica Neue System LATEX 2 [TB]

A catalogue record for this book is available from the British Library

ISBN 0 521 49561 X hardback ISBN 0 521 49913 5 paperback

> To our parents, the first author's wife Erica, and his young daughters Caitlin and Sarah

1

Cambridge University Press 978-0-521-49561-5 - Fundamentals of Noise and Vibration Analysis for Engineers, Second Edition M. P. Norton and D. G. Karczub Frontmatter More information

Contents

Preface	<i>page</i> xv
Acknowledgements	xvii
Introductory comments	xviii
Mechanical vibrations: a review of some fundamentals	1
1.1 Introduction	1
1.2 Introductory wave motion concepts – an elastic continuum viewpoir	nt 3
1.3 Introductory multiple, discrete, mass-spring-damper oscillator cond	cepts –
a macroscopic viewpoint	8
1.4 Introductory concepts on natural frequencies, modes of vibration, for	orced
vibrations and resonance	10
1.5 The dynamics of a single oscillator – a convenient model	12
1.5.1 Undamped free vibrations	12
1.5.2 Energy concepts	15
1.5.3 Free vibrations with viscous damping	16
1.5.4 Forced vibrations: some general comments	21
1.5.5 Forced vibrations with harmonic excitation	22
1.5.6 Equivalent viscous-damping concepts – damping in real syste	ms 30
1.5.7 Forced vibrations with periodic excitation	32
1.5.8 Forced vibrations with transient excitation	33
1.6 Forced vibrations with random excitation	37
1.6.1 Probability functions	38
1.6.2 Correlation functions	39
1.6.3 Spectral density functions	41
1.6.4 Input–output relationships for linear systems	42
1.6.5 The special case of broadband excitation of a single oscillator	50
1.6.6 A note on frequency response functions and transfer functions	s 52
1.7 Energy and power flow relationships	52

viii	Conte	Contents			
	1.8	Multip	ele oscillators – a review of some general procedures	56	
		1.8.1	A simple two-degree-of-freedom system	56	
		1.8.2	A simple three-degree-of-freedom system	59	
		1.8.3	Forced vibrations of multiple oscillators	60	
	1.9	Contin	uous systems – a review of wave-types in strings, bars and plates	64	
		1.9.1	The vibrating string	64	
		1.9.2	Quasi-longitudinal vibrations of rods and bars	72	
		1.9.3	Transmission and reflection of quasi-longitudinal waves	77	
		1.9.4	Transverse bending vibrations of beams	79	
		1.9.5	A general discussion on wave-types in structures	84	
		1.9.6	Mode summation procedures	85	
		1.9.7	The response of continuous systems to random loads	91	
		1.9.8	Bending waves in plates	94	
	1.10	Relatio	onships for the analysis of dynamic stress in beams	96	
		1.10.1	Dynamic stress response for flexural vibration of a thin beam	96	
		1.10.2	Far-field relationships between dynamic stress and structural		
			vibration levels	100	
		1.10.3	Generalised relationships for the prediction of maximum		
			dynamic stress	102	
		1.10.4	Properties of the non-dimensional correlation ratio	103	
		1.10.5	Estimates of dynamic stress based on static stress and		
			displacement	104	
		1.10.6	Mean-square estimates for single-mode vibration	105	
		1.10.7	Relationships for a base-excited cantilever with tip mass	106	
	1.11	Relatio	onships for the analysis of dynamic strain in plates	108	
		1.11.1	Dynamic strain response for flexural vibration of a constrained		
			rectangular plate	109	
		1.11.2	Far-field relationships between dynamic stress and structural		
			vibration levels	112	
		1.11.3	Generalised relationships for the prediction of maximum		
			dynamic stress	113	
	1.12	Relatio	onships for the analysis of dynamic strain in cylindrical shells	113	
		1.12.1	Dynamic response of cylindrical shells	114	
		1.12.2	Propagating and evanescent wave components	117	
		1.12.3	Dynamic strain concentration factors	119	
		1.12.4	Correlations between dynamic strain and velocity spatial		
			maxima	119	
		Refere	nces	122	
		Nomer	nclature	123	

ix	Contents	
2	Sound waves: a review of some fundamentals	128
	2.1 Introduction	128
	2.2 The homogeneous acoustic wave equation – a classical analysis	131
	2.2.1 Conservation of mass	134
	2.2.2 Conservation of momentum	136
	2.2.3 The thermodynamic equation of state	139
	2.2.4 The linearised acoustic wave equation	140
	2.2.5 The acoustic velocity potential	141
	2.2.6 The propagation of plane sound waves	143
	2.2.7 Sound intensity, energy density and sound power	144
	2.3 Fundamental acoustic source models	146
	2.3.1 Monopoles – simple spherical sound waves	147
	2.3.2 Dipoles	151
	2.3.3 Monopoles near a rigid, reflecting, ground plane	155
	2.3.4 Sound radiation from a vibrating piston mounted in a rigid baffle	157
	2.3.5 Quadrupoles – lateral and longitudinal	162
	2.3.6 Cylindrical line sound sources	164
	2.4 The inhomogeneous acoustic wave equation – aerodynamic sound	165
	2.4.1 The inhomogeneous wave equation	167
	2.4.2 Lighthill's acoustic analogy	174
	2.4.3 The effects of the presence of solid bodies in the flow	177
	2.4.4 The Powell–Howe theory of vortex sound	180
	2.5 Flow duct acoustics	183
	References	187
	Nomenclature	188
3	Interactions between sound waves and solid structures	193
	3.1 Introduction	193
	3.2 Fundamentals of fluid-structure interactions	194
	3.3 Sound radiation from an infinite plate – wave/boundary matching	105
	concepts	197
	3.4 Introductory radiation ratio concepts	203
	3.5 Sound radiation from free bending waves in finite plate-type structures3.6 Sound radiation from regions in proximity to discontinuities – point and	207
	line force excitations	216

x	Conte	Contents			
	3.7	Radiation ratios of finite structural elements	221		
	3.8	Some specific engineering-type applications of the reciprocity principle	227		
	3.9	Sound transmission through panels and partitions	230		
		3.9.1 Sound transmission through single panels	232		
		3.9.2 Sound transmission through double-leaf panels	241		
	3.10	The effects of fluid loading on vibrating structures	244		
	3.11	Impact noise	247		
		References	249		
		Nomenclature	250		
4	Nois	se and vibration measurement and control procedures	254		
	4.1	Introduction	254		
	4.2	Noise and vibration measurement units – levels, decibels and spectra	256		
		4.2.1 Objective noise measurement scales	256		
		4.2.2 Subjective noise measurement scales	257		
		4.2.3 Vibration measurement scales	259		
		4.2.4 Addition and subtraction of decibels	261		
		4.2.5 Frequency analysis bandwidths	263		
	4.3	Noise and vibration measurement instrumentation	267		
		4.3.1 Noise measurement instrumentation	267		
		4.3.2 Vibration measurement instrumentation	270		
	4.4	Relationships for the measurement of free-field sound propagation	273		
	4.5	The directional characteristics of sound sources	278		
	4.6	Sound power models – constant power and constant volume sources	279		
	4.7	The measurement of sound power	282		
		4.7.1 Free-field techniques	282		
		4.7.2 Reverberant-field techniques	283		
		4.7.3 Semi-reverberant-field techniques	287		
		4.7.4 Sound intensity techniques	290		
	4.8	Some general comments on industrial noise and vibration control	294		
		4.8.1 Basic sources of industrial noise and vibration	294		
		4.8.2 Basic industrial noise and vibration control methods	295		
		4.8.3 The economic factor	299		
	4.9	Sound transmission from one room to another	301		
	4.10	Acoustic enclosures	304		
	4.11	Acoustic barriers	308		
	4.12	Sound-absorbing materials	313		
		Vibration control procedures	320		

Con	Contents		
	4.13.1 Low frequency vibration isolation – single-degree-of-freedom		
	systems	322	
	4.13.2 Low frequency vibration isolation – multiple-degree-of-freedom		
	systems	325	
	4.13.3 Vibration isolation in the audio-frequency range	327	
	4.13.4 Vibration isolation materials	330	
	4.13.5 Dynamic absorption	332	
	4.13.6 Damping materials	334	
	References	335	
	Nomenclature	336	
Th	e analysis of noise and vibration signals	342	
5.1	Introduction	342	
5.2	Deterministic and random signals	344	
5.3	Fundamental signal analysis techniques	347	
	5.3.1 Signal magnitude analysis	347	
	5.3.2 Time domain analysis	351	
	5.3.3 Frequency domain analysis	352	
	5.3.4 Dual signal analysis	355	
5.4	Analogue signal analysis	365	
5.5	Digital signal analysis	366	
5.6	Statistical errors associated with signal analysis	370	
	5.6.1 Random and bias errors	370	
	5.6.2 Aliasing	372	
	5.6.3 Windowing	374	
5.7	Measurement noise errors associated with signal analysis	377	
	References	380	
	Nomenclature	380	
	atistical energy analysis of noise and vibration	383	
6.1	Introduction	383	
6.2		384	
6.3		387	
	6.3.1 Basic energy flow concepts	388	
	6.3.2 Some general comments	389	
	6.3.3 The two subsystem model	391	

Conte	ents	
	6.3.4 <i>In-situ</i> estimation procedures	
	6.3.5 Multiple subsystems	2
6.4	Modal densities	-
	6.4.1 Modal densities of structural elements	-
	6.4.2 Modal densities of acoustic volumes	
	6.4.3 Modal density measurement techniques	
6.5	Internal loss factors	
	6.5.1 Loss factors of structural elements	
	6.5.2 Acoustic radiation loss factors	
	6.5.3 Internal loss factor measurement techniques	
6.6	Coupling loss factors	
	6.6.1 Structure-structure coupling loss factors	
	6.6.2 Structure–acoustic volume coupling loss factors	
	6.6.3 Acoustic volume–acoustic volume coupling loss factors	
	6.6.4 Coupling loss factor measurement techniques	
6.7	Examples of the application of S.E.A. to coupled systems	
	6.7.1 A beam-plate-room volume coupled system	
	6.7.2 Two rooms coupled by a partition	
6.8	Non-conservative coupling – coupling damping	
6.9	The estimation of sound radiation from coupled structures using total	
	loss factor concepts	
6.10	Relationships between dynamic stress and strain and structural vibration	
	levels	
	References	
	Nomenclature	
Pip	e flow noise and vibration: a case study	
- 7.1	Introduction	
7.2	General description of the effects of flow disturbances on pipeline noise and vibration	
7.3	The sound field inside a cylindrical shell	
7.4	Response of a cylindrical shell to internal flow	
/.4	7.4.1 General formalism of the vibrational response and sound	
	radiation	
	7.4.2 Natural frequencies of cylindrical shells	
	7.4.3 The internal wall pressure field	
	7.4.4 The joint acceptance function	
	7.4.5 Radiation ratios	

xiii	Contents	Contents			
		dence – vibrational response and sound radiation due to higher			
		acoustic modes	461		
	-	pipe flow noise sources	467		
		tion of vibrational response and sound radiation characteristics	471		
		general design guidelines	477		
		ation damper for the reduction of pipe flow noise and vibration	479		
	Refere		481		
	Nomer	nclature	483		
8	Noise an	d vibration as a diagnostic tool	488		
	8.1 Introdu	uction	488		
	8.2 Some	general comments on noise and vibration as a diagnostic tool	489		
	8.3 Review	v of available signal analysis techniques	493		
	8.3.1	Conventional magnitude and time domain analysis techniques	494		
	8.3.2	Conventional frequency domain analysis techniques	501		
	8.3.3	Cepstrum analysis techniques	503		
	8.3.4	Sound intensity analysis techniques	504		
	8.3.5	Other advanced signal analysis techniques	507		
	8.3.6	New techniques in condition monitoring	511		
	8.4 Source	e identification and fault detection from noise and vibration			
	signals	3	513		
	8.4.1	Gears	514		
	8.4.2	Rotors and shafts	516		
	8.4.3	Bearings	518		
	8.4.4	Fans and blowers	523		
	8.4.5	Furnaces and burners	525		
	8.4.6	Punch presses	527		
	8.4.7	Pumps	528		
	8.4.8	Electrical equipment	530		
	8.4.9	Source ranking in complex machinery	532		
		Structural components	536		
		Vibration severity guides	539		
	8.5 Some	specific test cases	541		
	8.5.1	Cabin noise source identification on a load-haul-dump vehicle	541		
	8.5.2	Noise and vibration source identification on a large induction			
		motor	547		
	8.5.3	Identification of rolling-contact bearing damage	550		
	8.5.4	Flow-induced noise and vibration associated with a gas pipeline	554		

8.5.5 Flow-induced noise and vibration associated with a racing	
sloop (yacht)	557
8.6 Performance monitoring	557
8.7 Integrated condition monitoring design concepts	559
References	562
Nomenclature	563
Problems	566
Appendix 1: Relevant engineering noise and vibration control journals	599
Appendix 2: Typical sound transmission loss values and sound absorption	
coefficients for some common building materials	600
Appendix 3: Units and conversion factors	603
Appendix 4: Physical properties of some common substances	605
Answers to problems	607
Index	621

Preface

The study of noise and vibration and the interactions between the two is now fast becoming an integral part of mechanical engineering courses at various universities and institutes of technology around the world. There are many undergraduate text books available on the subject of mechanical vibrations and there are also a relatively large number of books available on applied noise control. There are also several text books available on fundamental acoustics and its physical principles. The books on mechanical vibrations are inevitably only concerned with the details of vibration theory and do not cover the relationships between noise and vibration. The books on applied noise control are primarily designed for the practitioner and not for the engineering student. The books on fundamental acoustics generally concentrate on physical acoustics rather than on engineering noise and vibration and are therefore not particularly well suited to the needs of engineers. There are also several excellent specialist texts available on structural vibrations, noise radiation and the interactions between the two. These texts do not, however, cover the overall area of engineering noise and vibration, and are generally aimed at the postgraduate research student or the practitioner. There are also a few specialist reference handbooks available on shock and vibration and noise control – these books are also aimed at the practitioner rather than the engineering student.

The main purpose of this second edition is to attempt to provide the engineering student with an updated unified approach to the fundamentals of engineering noise and vibration analysis and control. Thus, the main feature of the book is the bringing of noise and vibration together within a single volume instead of treating each topic in isolation. Also, particular emphasis is placed on the interactions between sound waves and solid structures, this being an important aspect of engineering noise and vibration. The book is primarily designed for undergraduate students who are in the latter stages of their engineering course. It is also well suited to the postgraduate student who is in the initial stages of a research project on engineering noise and vibration and to the practitioner, both of whom might wish to obtain an overview and/or a revision of the fundamentals of the subject.

This book is divided into eight chapters. Each of these chapters is summarised in the introductory comments. Because of the wide scope of the contents, each chapter has

xvi Preface

its own nomenclature list and its own detailed reference list. A selection of problems relating to each chapter is also provided at the end of the book together with solutions. Each of the chapters has evolved from lecture material presented by the first author to (i) undergraduate mechanical engineering students at the University of Western Australia, (ii) postgraduate mechanical engineers in industry in the form of short special-ist courses. The complete text can be presented in approximately seventy-two lectures, each of about forty-five minutes duration. Suggestions for subdividing the text into different units are presented in the introductory comments.

The authors hope that this book will be of some use to those who choose to purchase it, and will be pleased and grateful to hear from readers who identify some of the errors and/or misprints that will undoubtedly be present in the text. Suggestions for modifications and/or additions to the text will also be gratefully received.

M. P. Norton and D. G. Karczub

Acknowledgements

This book would not have eventuated had it not been for several people who have played an important role at various stages in our careers to date. Whilst these people have, in the main, not had any direct input into the preparation of this book, their contributions to the formulation of our thoughts and ideas over the years have been invaluable to say the least.

Acknowledgements are due to several of our colleagues and the first author's postgraduate students at the University of Western Australia. These include Graham Forrester, Paul Keswick, Melinda Hodkiewicz, Pan Jie, Simon Drew and Gert Hoefakker.

Last, but not least, special acknowledgements are due to our families: our parents for encouraging us to pursue an academic career; and the first author's wife Erica, for enduring the very long hours that we had to work during the gestation period of this second edition, and his young daughters, Caitlin and Sarah.

Introductory comments

A significant amount of applied technology pertaining to noise and vibration analysis and control has emerged over the last thirty years or so. It would be an impossible task to attempt to cover all this material in a text book aimed at providing the reader with a fundamental basis for noise and vibration analysis. This book is therefore only concerned with some of the more important fundamental considerations required for a systematic approach to engineering noise and vibration analysis and control, the main emphasis being the industrial environment. Thus, this book is specifically concerned with the fundamentals of noise and vibration analysis for mechanical engineers, structural engineers, mining engineers, production engineers, maintenance engineers, etc. It embodies eight self-contained chapters, each of which is summarised here.

The first chapter, on mechanical vibrations, is a review of some fundamentals. This part of the book assumes no previous knowledge of vibration theory. A large part of what is presented in this chapter is covered very well in existing text books. The main difference is the emphasis on the wave-mode duality, and the reader is encouraged to think in terms of both waves and modes of vibration. As such, the introductory comments relate to both lumped parameter models and continuous system models. The sections on the dynamics of a single oscillator, forced vibrations with random excitation and multiple oscillator are presented using the traditional 'mechanical vibrations' approach. The section on continuous systems utilises both the traditional 'mechanical vibrations' approach and the wave impedance approach. It is in this section that the wave-mode duality first becomes apparent. The wave impedance approach is particularly useful for identifying energy flow characteristics in structural components and for estimating energy transmission and reflection at boundaries. A unique treatment of dynamic stress and strain has been included due to the importance of considering dynamic stress in a vibrating structure given the risk of fatigue failure. The treatment provided uses travelling wave concepts to provide a consistent theoretical framework for analysis of dynamic stress in beams, plates and cylindrical shells. The contents of chapter 1 are best suited to a second year or a third year course unit (based on a total course length of four years) on mechanical vibrations.

The second chapter, on sound waves, is a review of some fundamentals of physical acoustics. Like the first chapter, this chapter assumes no previous working knowledge

xviii

xix Introductory comments

of acoustics. Sections are included on a classical analysis of the homogeneous wave equation, fundamental sound source models and the inhomogeneous wave equation associated with aerodynamic sound, with particular attention being given to Lighthill's acoustic analogy and the Powell–Howe theory of vortex sound. The distinction between the homogeneous and the inhomogeneous acoustic wave equations is continually emphasised. The chapter also includes a discussion on how reflecting surfaces can affect the sound power characteristics of sound sources (this important practical point is often overlooked), and the use of one-dimensional acoustics to analyse sound transmission through a duct with mean flow (with applications including muffler/exhaust system design, air conditioning ducts, and pulsation control for reciprocating compressor installations) based on the use of acoustic impedance and travelling wave concepts developed earlier in the chapter. The contents of chapter 2 are best suited to a third year or a fourth year course unit on fundamental acoustics.

The third chapter complements chapters 1 and 2, and is about the interactions between sound waves and solid structures. It is very important for engineers to come to grips with this chapter, and it is the most important fundamental chapter in the book. Wave–mode duality concepts are utilised regularly in this chapter. The chapter includes discussions on the fundamentals of fluid–structure interactions, radiation ratio concepts, sound transmission through panels, the effects of fluid loading, and impact noise processes. The contents of chapter 3 are best suited to a third year or a fourth year course unit. The optimum procedure would be to combine chapters 2 and 3 into a single course unit.

The fourth chapter is a fairly basic chapter on noise and vibration measurements and control procedures. A large part of the contents of chapter 4 is readily available in the noise and vibration control handbook literature with three exceptions: firstly, constant power, constant volume and constant pressure sound source concepts are discussed in relation to the effects of rigid, reflecting boundaries on the sound power characteristics of these sound sources; secondly, the economic issues in noise and vibration control are discussed; and, thirdly, sound intensity techniques for sound power measurement and noise source identification are introduced. The contents of chapter 4 are best suited to a fourth year course unit on engineering noise and vibration control. By the very nature of the wide range of noise and vibration control procedures, several topics have had to be omitted from the chapter. Some of these topics include outdoor sound propagation, community noise, air conditioning noise, psychological effects, etc.

The fifth chapter is about the analysis of noise and vibration signals. It includes discussions on deterministic and random signals, signal analysis techniques, analogue and digital signal analysis procedures, random and bias errors, aliasing, windowing, and measurement noise errors. The contents of chapter 5 are best suited to a fourth year unit on engineering noise and vibration noise control, and are best combined with chapters 4 and 8 for the purposes of a course unit.

The sixth and seventh chapters involve specialist topics which are more suited to postgraduate courses. Chapter 6 is about the usage of statistical energy analysis

xx Introductory comments

procedures for noise and vibration analysis. This includes energy flow relationships, modal densities, internal loss factors, coupling loss factors, non-conservative coupling, the estimation of sound radiation from coupled structures, and relationships between dynamic stress and strain and structural vibration levels. Chapter 7 is about flow-induced noise and vibrations in pipelines. This includes the sound field inside a cylindrical shell, the response of a cylindrical shell to internal flow, coincidence, and other pipe flow noise sources. These two chapters can be included either as optional course units in the final year of an undergraduate course, or as additional reading material for the course unit based on chapters, 4, 5 and 8.

The eighth chapter is a largely qualitative description of noise and vibration as a diagnostic tool (i.e. source identification and fault detection). Magnitude and time domain signal analysis techniques, frequency domain signal analysis techniques, cepstrum analysis techniques, sound intensity analysis techniques, and other advanced signal analysis techniques are described here. The chapter also includes five specific practical test cases; discussions on new techniques used in condition monitoring such as expert systems and performance monitoring; and a review of design concepts for a plant-wide condition monitoring system integrating performance monitoring, safety monitoring, and on-line and off-line condition monitoring. The contents of chapter 8 are best suited to a fourth year unit on engineering noise and vibration noise control, and are best combined with chapters 4 and 5 for the purposes of a course unit.

Based upon the preceding comments, the following subdivision of the text is recommended for the purposes of constructing course units.

(1)	2nd year unit	mechanical vibration (\sim 14 hrs)
		chapter 1 (sections 1.1–1.8)
(2)	3rd year unit	waves in structures and fluids (~14 hrs)
		chapter 1 (section 1.9), chapter 2 (sections 2.1, 2.2)
(3)	3rd or 4th year unit	structure-sound interactions (~18 hrs)
		chapter 2 (sections 2.3, 2.4), chapter 3
(4)	4th year unit*	engineering noise control (~18 hrs)
		chapters 4, 5, 8
(5)	optional specialist units	statistical energy analysis and pipe flow noise
	and/or additional reading	$(\sim 8 \text{ hrs})$ chapters 6, 7.

* Chapters 2 and 3 should be a prerequisite for the engineering noise control unit.