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1 Introduction

1.1 THE OBJECTIVES OF THE BOOK

A recent article in the Economist notes that most large European
banks spend about two-thirds of their revenues on rent and employee
expense. Credit Suisse and Deutsche Bank have expense ratios in
excess of 70%. But Sweden’s Svenska Handelsbanken has an expense
ratio of barely 45%, despite relatively high wage rates. The article
then proceeds to describe how, ever since a near-fatal financial crisis
in the late 1960s, managements at Svenska Handelsbanken have
striven to cut costs while, at the same time, increasing revenues. The
impression one is left with is that, far from operating in a more favor-
able environment, Svenska Handelsbanken is more efficient than
other large European banks. This and countless other examples raise
the question of how conventional microeconomic theory and con-
ventional econometric analysis deal with variation in productive
efficiency.

Typical microeconomics texts develop models of production, cost,
and profit in something like the following sequence. They begin with
a production function, and producers are assumed to operate on
their production functions, maximizing outputs obtainable from the
inputs they use. First-order conditions for cost minimization are then
introduced, and producers are assumed to satisfy these conditions,
allocating inputs efficiently and ending up on their cost functions.
Finally, first-order conditions for profit maximization are introduced,
and producers are assumed to satisfy these conditions as well,

1



2 Introduction

allocating outputs and inputs efficiently and ending up on their profit
functions.

For many years econometricians have implemented the textbook
paradigm by estimating production, cost, and profit functions, on
the assumption that producers actually operate on these functions,
apart from randomly distributed statistical noise. Cobb and Douglas
(1928), Arrow et al. (1961), Berndt and Christensen (1973), and their
followers have estimated increasingly flexible production functions
in an effort to learn something about the structure of production.
Nerlove (1963) was perhaps the first to exploit duality theory to esti-
mate a cost function for the same purpose. Christensen, Jorgenson,
and Lau (1973) were perhaps the first to estimate a flexible profit
function. It is notable that each of these studies, and the vast major-
ity of subsequent studies, have used least squares techniques, or vari-
ants of least squares techniques, in which error terms were assumed
to be symmetrically distributed with zero means. The only source of
departure from the estimated function was assumed to be statistical
noise.

However the anecdotal evidence cited previously, and much other
empirical evidence as well, suggests that not all producers are always
so successful in solving their optimization problems. Not all produc-
ers succeed in utilizing the minimum inputs required to produce the
outputs they choose to produce, given the technology at their dis-
posal. In our jargon, not all producers are technically efficient. Con-
sequently not all producers succeed in minimizing the expenditure
required to produce the outputs they choose to produce. In addition,
even if they are technically efficient, not all producers succeed in allo-
cating their inputs in a cost-effective manner, given the input prices
they face, and this misallocation of inputs contributes further to their
failure to minimize the expenditure required to produce the outputs
they choose to produce. In our jargon, not all producers are cost
efficient. Consequently not all producers succeed in maximizing the
profit resulting from their production activities. In addition, even if
they are cost efficient, not all producers succeed in allocating their
outputs in a revenue-maximizing manner, given the output prices
they face, and this misallocation of outputs contributes further to
their failure to maximize profit. In our jargon, not all producers are
profit efficient.

In light of the evident failure of (at least some) producers to opti-
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mize, it is desirable to recast the analysis of production, cost, and
profit away from the traditional functions toward frontiers. Thus a
production frontier characterizes the minimum input bundles re-
quired to produce various outputs, or the maximum output producible
with various input bundles, and a given technology. Producers oper-
ating on their production frontier are labeled technically efficient,
and producers operating beneath their production frontier are
labeled technically inefficient. A dual cost frontier characterizes the
minimum expenditure required to produce a given bundle of outputs,
given the prices of the inputs used in its production and given the
technology in place. Producers operating on their cost frontier are
labeled cost efficient, and producers operating above their cost fron-
tier are labeled cost inefficient. Similarly a dual revenue frontier char-
acterizes the maximum revenue obtainable from a given bundle of
inputs, given the prices of the outputs produced and given the tech-
nology in place. Producers operating on their revenue frontier are
labeled revenue efficient, and producers operating beneath their
revenue frontier are labeled revenue inefficient. Finally a dual profit
frontier characterizes the maximum profit obtainable from produc-
tion activity, given the prices of the inputs used and the prices of
the outputs produced and given the technology in place. Producers
operating on their profit frontier are labeled profit efficient, and
producers operating beneath their profit frontier are labeled profit
inefficient. In each of these four cases interest naturally centers on the
magnitude of each type of inefficiency and on the determinants
of each type of inefficiency.

The econometric implication of this proposed reformulation from
functions to frontiers is that symmetrically distributed error terms
with zero means are no longer appropriate when analyzing producer
behavior. The possibility remains that a producer will end up above
the deterministic kernel of an estimated production, revenue, or
profit frontier (or beneath an estimated cost frontier) due to an
unusually favorable operating environment. But it is considerably
more likely that a producer will end up beneath an estimated
production, revenue, or profit frontier (or above an estimated cost
frontier), because two factors work in this direction. First, if environ-
mental effects are random as is typically assumed, then an unfavor-
able operating environment is just as likely to occur as is a favorable
operating environment, and this causes a producer to end up beneath
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an estimated production, revenue, or profit frontier (or above an esti-
mated cost frontier). Second, failure to optimize in each of the senses
discussed previously also causes a producer to end up beneath an esti-
mated production, revenue, or profit frontier (or above an estimated
cost frontier).

Consequently error terms associated with frontiers are “com-
posed” error terms, composed of a traditional symmetric random-
noise component and a new one-sided inefficiency component. These
composed error terms cannot be symmetric and they cannot have
zero means. They must be skewed (negatively in the case of produc-
tion, revenue, and profit frontiers and positively in the case of cost
frontiers), and they must have nonzero means (negative in the case
of production, revenue, and profit frontiers and positive in the case
of cost frontiers).

In this reformulation production, cost, revenue, and profit frontiers
are stochastic, due to random variation in the operating environment,
and deviations from these stochastic frontiers are one-sided, due
to various types of inefficiency. The retention of symmetric error
components designed to capture the effects of random variation
in the operating environment is in keeping with the older least
squares-based approach to the estimation of production, cost,
revenue, and profit functions. The introduction of one-sided error
components designed to capture the effects of inefficiency is new,
and constitutes the econometric contribution to the estimation of
production, cost, revenue, and profit frontiers. Consequently we refer
to this body of work as Stochastic Frontier Analysis, the title of our
book.

1.2 A BRIEF HISTORY OF THOUGHT

In this section we recall some of the more influential antecedents,
both theoretical and empirical, of stochastic frontier analysis (which
we abbreviate SFA). We continue by recalling some of the origins of
SFA, the events that led to the original developments in the field. We
conclude with a brief summary of what we believe to have been some
of the most significant developments in SFA since its inception in
1977. Many of these developments are discussed in detail in the
remainder of the book.
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1.2.1 Intellectual Antecedents of
Stochastic Frontier Analysis

Many years ago Hicks (1935; 8) observed that “people in monop-
olistic positions . . . are likely to exploit their advantage much more
by not bothering to get very near the position of maximum profit,
than by straining themselves to get very close to it. The best of all
monopoly profits is a quiet life.” Hicks’s suggestion that the absence
of competitive pressure might allow producers the freedom to not
fully optimize conventional textbook objectives, and, by implication,
that the presence of competitive pressure might force producers to
do so, has been adopted by many writers. Thus Alchian and Kessel
(1962; 166) asserted that “[t]he cardinal sin of a monopolist . . . is to
be too profitable.” In a similar vein Williamson (1964) argued that,
given the freedom to do so, managers would seek to maximize a
utility function with staff and “emoluments” as arguments in addition
to profit.

An argument related to Williamson’s, arising from the property
rights literature, asserts that public production is inherently less
efficient than private production. This argument, due originally to
Alchian (1965), asserts that concentration and transferability of
private ownership shares creates an incentive for private owners to
monitor managerial performance, and that this incentive is dimin-
ished for public owners, who are dispersed and whose ownership is
not transferable. Consequently public managers have greater
freedom to pursue their own objectives at the expense of conven-
tional objectives. Thus Niskanen (1971) argued that public managers
are budget maximizers, de Alessi (1974) argued that public managers
exhibit a bias toward capital-intensive budgets, and Lindsay (1976)
argued that public managers exhibit a bias toward “visible” inputs.

Ownership forms are more variegated than just private or public.
Hansmann (1988) identifies investor-owned firms, customer-owned
firms, worker-owned firms, and firms without owners (nonprofit
enterprises). Each deals differently with problems associated with
hierarchy, coordination, incomplete contracts, and monitoring and
agency costs. This leads to the expectation that different ownership
forms will generate differences in performance. Much of the theo-
retical literature on which this expectation is based is surveyed by
Holmstrom and Tirole (1989).
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At a somewhat more micro level, Simon (1955, 1957) analyzed the
performance of producers in the presence of bounded rationality and
satisficing behavior. Later Leibenstein (1966, 1975, 1976, 1978, 1987,
and elsewhere) argued that production is bound to be inefficient as
a result of motivation, information, monitoring, and agency problems
within the firm. This rather amorphous type of inefficiency, inele-
gantly dubbed “X-inefficiency,” has been criticized by Stigler (1976),
de Alessi (1983), and others, on the grounds that it reflects an incom-
pletely specified model rather than a failure to optimize. Unfortu-
nately the difficult problem of model specification — including a
complete list of inputs and outputs, and perhaps conditioning vari-
ables as well, a list of constraints, technological, and other (e.g., reg-
ulatory), and a proper specification of the objective function — has
faced us forever, and will continue to do so.

The extent to which the literature just cited actually influenced the
development of SFA is not obvious. Suffice it to say that most of us
were aware of this literature, but that it did not exert the impact that
hindsight suggests that it should have. Most of us were more directly
influenced by another literature. Nonetheless, in retrospect this liter-
ature does suggest that the development of SFA was a useful idea
if it could be used to shed empirical light on the theoretical issues
raised.

The literature that did directly influence the development of SFA
was the theoretical literature on productive efficiency, which began
in the 1950s with the work of Koopmans (1951), Debreu (1951), and
Shephard (1953). Koopmans provided a definition of technical
efficiency: A producer is technically efficient if, and only if, it is impos-
sible to produce more of any output without producing less of some
other output or using more of some input. Debreu and Shephard
introduced distance functions as a way of modeling multiple-output
technology, but more importantly from our perspective as a way of
measuring the radial distance of a producer from a frontier, in either
an output-expanding direction (Debreu) or an input-conserving
direction (Shephard). The association of distance functions with
technical efficiency measures was pivotal in the development of
the efficiency measurement literature.

Farrell (1957) was the first to measure productive efficiency em-
pirically. Drawing inspiration from Koopmans and Debreu (but ap-
parently not from Shephard), Farrell showed how to define cost
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efficiency, and how to decompose cost efficiency into its technical and
allocative components. He also provided an empirical application
to U.S. agriculture, although he did not use econometric methods.
His use of linear programming techniques inspired the unfortunately
neglected work of Boles (1966), Bressler (1966), Seitz (1966), and
Sitorus (1966) in agricultural economics and eventually influenced
the development of data envelopment analysis (DEA) by Charnes,
Cooper, and Rhodes (1978). DEA is by now a well-established non-
parametric (but in practice largely nonstochastic) efficiency mea-
surement technique widely employed in management science.

Of greater significance in the present context is the influence
Farrell’s work exerted on Aigner and Chu (1968), Seitz (1971),
Timmer (1971), Afriat (1972), and Richmond (1974), for it was the
work of these writers that led directly to the development of SFA.
Although the contributions of these authors differ in a number of
important respects, it is probably fair to say that each “estimated”
a deterministic production frontier, either by means of linear pro-
gramming techniques or by modifications to least squares techniques
requiring all residuals to be nonpositive. Afriat (p. 581) went so far
as to note that “a production function f{(x), together with a prob-
ability distribution pg(e) of efficiency, is constructed so that the
derived efficiencies e; = y;/f(x;) have maximum likelihood.” Afriat
suggested a beta distribution for pg(e) and a gamma distribution for
pe[-In(e)] in log-linear models, an idea that Richmond (1974)
explored further. Later Schmidt (1976) showed that the programming
estimators of Aigner and Chu were consistent with maximum likeli-
hood “estimation” with one-sided errors distributed as either expo-
nential or half normal. Thus began the association of technical
inefficiency with specific one-sided error distributions. However it is
worth reiterating that the only source of error in these models was
inefficiency; they were purely deterministic frontier models lacking a
symmetric random-noise error component. However Aigner and Chu
recommended, and Timmer experimented with, variants of chance-
constrained programming in an ex post attempt to test the sensitiv-
ity of their “estimates” to outlying observations.

Aigner, Amemiya, and Poirier (1976) proposed a model in which
errors were allowed to be both positive and negative, but in which
positive and negative errors could be assigned different weights.
Ordinary least squares emerges as a special case of equal weights, and
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a deterministic frontier model emerges as another special case
(weights of zero and one in the case of production, revenue, and profit
frontier models). They considered estimation for the case in which
the weights are known, and for the considerably more difficult
case in which the weights are unknown and are to be estimated along
with the other parameters in the model. They did not actually
estimate the model, and to our knowledge no one else has estimated
the model. Nonetheless, it is a short step from the Aigner, Amemiya,
and Poirier model with larger weights attached to negative errors
to a composed error stochastic production frontier model. The step
took a year.

1.2.2 The Origins of Stochastic Frontier Analysis

SFA originated with two papers, published nearly simultaneously by
two teams on two continents. Meeusen and van den Broeck (MB)
(1977) appeared in June, and Aigner, Lovell, and Schmidt (ALS)
(1977) appeared a month later. The ALS paper was in fact a merged
version of a pair of remarkably similar papers, one by Aigner and the
other by Lovell and Schmidt. The ALS and MB papers are themselves
very similar. Both papers were three years in the making, and both
appeared shortly before a third SFA paper by Battese and Corra
(1977), the senior author of which had been a referee of the ALS
paper.

These three original SFA models shared the composed error
structure mentioned previously, and each was developed in a
production frontier context. The model can be expressed as y = f(x;
B)-exp{v — u}, where y is scalar output, x is a vector of inputs, and
B is a vector of technology parameters. The first error component
v ~ N(0, 6?) is intended to capture the effects of statistical noise, and
the second error component u = 0 is intended to capture the effects
of technical inefficiency. Thus producers operate on or beneath their
stochastic production frontier [f(x;p)-exp{v}] according as u = 0
or u > 0. MB assigned an exponential distribution to u, Battese and
Corra assigned a half normal distribution to u, and ALS considered
both distributions for u. Parameters to be estimated include B, ¢2,
and a variance parameter o, associated with u. Either distributional
assumption on u implies that the composed error (v — u) is negatively
skewed, and statistical efficiency requires that the model be estimated
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by maximum likelihood. After estimation, an estimate of mean tech-
nical inefficiency in the sample was provided by E(—u) = E(v — u) =
—(2/m)"?o, in the normal-half normal case and by E(-u) = E(v — u)
= —0, in the normal-exponential case.

1.2.3 Developments in Stochastic Frontier Analysis
since 1977

In an early survey of various approaches to frontier analysis and
efficiency measurement, Fgrsund, Lovell, and Schmidt (1980; 14)
wrote that “the main weakness of the stochastic frontier model [is
that] it is not possible to decompose individual residuals into their
two components, and so it is not possible to estimate technical
inefficiency by observation. The best that one can do is to obtain an
estimate of mean inefficiency over the sample.” Smart audiences in
Washington and Moscow in the winter of 1980-1981 quickly detected
the error in that statement. The result was the Jondrow et al. (1982)
(JLMS) paper, in which either the mean or the mode of the condi-
tional distribution [u|v; — 1] was proposed to provide estimates of
the technical inefficiency of each producer in the sample. The possi-
bility of obtaining producer-specific estimates of efficiency has greatly
enhanced the appeal of SFA.

The half normal and exponential distributions assigned to the one-
sided inefficiency error component are single-parameter distribu-
tions, and researchers soon developed more flexible two-parameter
distributions for the inefficiency error component. Drawing inspira-
tion from Afriat and Richmond, Greene (1980a, b) proposed a
Gamma distribution, and Stevenson (1980) proposed Gamma and
truncated normal distributions. Other, even more flexible, distri-
butions followed; Lee (1983) even proposed the four-parameter
Pearson family of distributions. Nonetheless the two original single-
parameter distributions remain the distributions of choice in the vast
majority of empirical work.

It is a simple matter to change the sign of the inefficiency error
component u and convert the stochastic production frontier model
to a stochastic cost frontier model E = c(y, w; B) -exp{v + u}, where E
is expenditure, [c(y, w; B) -exp{v}] is a stochastic cost frontier, and u
is intended to capture the cost of technical and allocative inefficiency.
The JLMS technique may be used to provide an estimate of overall
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cost inefficiency, but the difficult remaining problem is to decompose
the estimate of u into estimates of the separate costs of technical and
allocative inefficiency. Schmidt and Lovell (1979) accomplished the
decomposition for the Cobb-Douglas case. In a wonderful example
of why researchers attend international conferences, Kopp and
Diewert (1982) obtained the decomposition for the more general
translog case, although econometric difficulties with their decompo-
sition remain to this day.

Cross-sectional data provide a shapshot of producers and their
efficiency. Panel data provide more reliable evidence on their per-
formance, because they enable us to track the performance of each
producer through a sequence of time periods. Long ago Hoch (1955,
1962) and Mundlak (1961) utilized panel data to purge agricultural
production function parameter estimates of bias attributable to vari-
ation in what Hoch called technical efficiency and what Mundlak
called management bias. Eventually Pitt and Lee (1981) extended
cross-sectional maximum likelihood estimation techniques to panel
data, and Schmidt and Sickles (1984) extended the pioneering work
of Hoch and Mundlak by applying fixed-effects and random-effects
methods to the efficiency measurement problem, where the effects
are one-sided. The objective of these latter studies was not so much
to eliminate bias from parameter estimates as to obtain producer-
specific estimates of technical efficiency, or of the management effect.
A significant advantage of (sufficiently long) panels is that they
permit consistent estimation of the efficiency of individual produc-
ers, whereas the JLMS technique does not generate consistent esti-
mators in a cross-sectional context.

Early panel data models were based on the assumption of time-
invariant efficiency. The longer the panel, the less tenable this
assumption becomes. Eventually this assumption was relaxed, in a
series of papers by Cornwell, Schmidt, and Sickles (1990), Kumb-
hakar (1990), and Battese and Coelli (1992).

If efficiency varies, across producers or through time, it is natural
to seek determinants of efficiency variation. Early studies adopted a
two-stage approach, in which efficiencies are estimated in the first
stage, and estimated efficiencies are regressed against a vector of
explanatory variables in a second stage. More recent studies, includ-
ing those of Kumbhakar, Ghosh, and McGuckin (1991), Reifschnei-
der and Stevenson (1991), Huang and Liu (1994), and Battese and
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Coelli (1995), have adopted a single-stage approach in which
explanatory variables are incorporated directly into the inefficiency
error component. In this approach either the mean or the variance
of the inefficiency error component is hypothesized to be a function
of the explanatory variables.

Abramovitz (1956) referred to productivity change, the residual
between an index of the rates of growth of outputs and an index of
the rates of growth of inputs, as a measure of our ignorance. Early
studies of productivity change, such as Solow (1957), associated pro-
ductivity change with technical change. As we became less ignorant,
productivity change was decomposed into the magnitude and biases
of technical change, and the effect of scale economies. However if
productive efficiency changes through time, then it must also con-
tribute to productivity change. Eventually Bauer (1990a) and others
incorporated efficiency change into models of productivity change.
Griliches (1996) provides an illuminating survey of research into “the
residual,” although the research surveyed makes only passing refer-
ence to the role of efficiency change.

1.3 THE ORGANIZATION OF THE BOOK

Chapter 2 is devoted to the analytical foundations of producer theory
and efficiency measurement. In Section 2.2 we characterize produc-
tion technology with production frontiers in the single-output
case and with distance functions in the multiple-output case. We
also characterize technology with dual cost, revenue, and profit
frontiers, which provide increasingly exacting standards against
which to measure producer performance. In Section 2.3 we define
producer performance in terms of technical efficiency, and we
measure technical efficiency with distance functions. In Section 2.4
we define producer performance in terms of economic (cost, revenue,
and profit) efficiency, and we measure economic efficiency relative
to cost, revenue, and profit frontiers. We also show how to decom-
pose each type of economic efficiency into technical and allocative
components.

Chapter 3 is concerned with the estimation of technical efficiency.
In Section 3.2 we develop and show how to estimate cross-sectional
production frontier models, both deterministic and stochastic,
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although most of our effort is directed toward stochastic production
frontiers. In Section 3.3 we develop and show how to estimate panel
data production frontier models, in which technical efficiency is ini-
tially time invariant and then is allowed to vary through time. In
Section 3.4 we discuss the problem of heteroskedasticity in stochas-
tic production frontier models.

Chapter 4 is concerned with the estimation and decomposition of
cost efficiency. In Section 4.2 we develop and show how to estimate
cross-sectional stochastic cost frontier models, in both single-
equation and simultaneous-equation settings. In Section 4.3 we
develop and show how to estimate panel data stochastic cost frontier
models, again in single-equation and simultaneous-equation settings.
In Section 4.4 we discuss a pair of novel approaches to the estima-
tion of cost efficiency.

Chapter 5 is concerned with the estimation and decomposition of
profit efficiency. In Section 5.2 we develop and show how to estimate
single-output stochastic profit frontier models, using both primal and
dual approaches. In Section 5.3 we develop and show how to estimate
multiple-output stochastic profit frontier models, again using both
primal and dual approaches. We pay little attention to the distinction
between cross-sectional and panel data models, since the various esti-
mation techniques developed in Chapters 3 and 4 apply equally well
to the estimation of stochastic profit frontiers.

In Chapters 3-5 inefficiency is modeled by introducing additional
error components and assigning distributions to them. Inefficiencies
are then estimated as functions of the parameters of these distribu-
tions. In Chapter 6 we take a very different approach, in which both
technical and allocative inefficiencies are modeled parametrically,
on the assumption that producers optimize with respect to shadow
prices, which are parametrically related to actual prices. In Section
6.2 we develop and show how to estimate and decompose both cost
and profit efficiency in a cross-sectional setting. In Section 6.3 we do
the same thing in a panel data setting. This parametric approach has
some advantages, and some disadvantages, relative to the error com-
ponent approach developed in Chapters 3-5.

Estimation of efficiency is the first of two tasks. The second task
is to explain variation in estimated efficiency. In Chapter 7 we discuss
alternative approaches to the explanation of variation in efficiency.
In Section 7.2 we discuss some early approaches to explanation, and
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we find these approaches wanting. In Section 7.3 we discuss a variety
of recent approaches to explanation, which we find superior to the
early approaches. Essentially these recent approaches achieve expla-
nation by making the one-sided inefficiency error component a func-
tion of the explanatory variables.

If efficiency varies, either across producers or through time, its vari-
ation constitutes a source of producer performance variation. One
measure of performance is productivity change, and so if efficiency
changes through time, it makes a contribution to productivity change.
Chapter 8 concludes the book by incorporating efficiency change
into models of productivity change, which heretofore have tended
to neglect the contribution of efficiency change. In Section 8.2 we
develop a primal approach, based on a stochastic production frontier,
to the estimation and decomposition of productivity change. In
Sections 8.3 and 8.4 we develop a pair of dual approaches, based on
stochastic cost and profit frontiers, to the estimation and decom-
position of productivity change.

At least four topics are missing from the book. First, we do not
discuss the estimation and decomposition of revenue efficiency rela-
tive to stochastic revenue frontiers. This is because all of the tech-
niques developed in Chapter 4 for the estimation and decomposition
of cost efficiency relative to stochastic cost frontiers can readily be
applied to the revenue efficiency problem. Variables and regularity
conditions change, as discussed in Chapter 2, but nothing else of
import changes.

Second, we do not explore the efficiency with which producers
pursue nonconventional objectives. One prominent example is pro-
vided by Shephard’s (1974) indirect production frontier, relative to
which it is possible to estimate and decompose both cost-indirect
output-oriented technical efficiency and revenue-indirect input-
oriented technical efficiency. The former allows the measurement of
the performance of producers seeking to maximize output (or
revenue) subject to a conventional technology constraint and a
budget constraint. The latter allows the measurement of the perfor-
mance of producers seeking to minimize input use (or cost) subject
to a conventional technology constraint and a revenue target. The
two indirect models of producer behavior are analyzed in Fire,
Grosskopf, and Lovell (1988, 1992) and Fire and Grosskopf (1994),
and the estimation techniques developed in Chapters 3 and 4 can be
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adapted to the estimation of cost-indirect and revenue-indirect
efficiency. Another example is provided by the literature on labor-
managed firms pioneered by Ward’s (1958) “Illyrian” firm and
Domar’s (1966) Soviet collective farm. The duality properties of a
stylized labor-managed firm model have been worked out by Neary
(1988) and Kahana (1989), and the econometric techniques discussed
in Chapters 3-6 can be modified to estimate primal and dual efficien-
cies in this framework.

The third and fourth omissions are perhaps more serious. We do
not discuss the Bayesian approach to stochastic frontier analysis, and
we do not discuss semiparametric approaches to stochastic frontier
analysis. Our reason for omitting these two topics is that the two lit-
eratures are small and not yet influential. However we refer inter-
ested readers to van den Broeck et al. (1994) and Osiewalski and
Steel (1998) for good treatments of the Bayesian approach to SFA,
and to Park and Simar (1994) and Park, Sickles, and Simar (1998) for
good treatments of the semiparametric approach to SFA.



