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Group representation theory often relates quite different areas of mathe-
matics and we shall give yet another example of this phenomenon. A con-
struction from finite geometries will lead us to a new concept in represen-
tation theory which we shall then apply to the representation theory of Lie
type groups. This, in turn, will involve ideas from the homological approach
to modular representations. We shall, therefore, cover a spectrum of ideas.

One construction of finite projection planes involves the use of spreads.
Suppose that V is a 2n-dimensional vector space over a finite field k of char-
acteristic p. A spread S is a collection of n-dimensional subspaces whose
(set-theoretic) union is all of V but where the intersection of any two mem-
bers of the collection is zero. A group of linear transformations of V preserves
the spread § if its elements permute the members of S.

Proposition 1. If E is an elementary abelian 2-group of linear transfor-
mations of V which preserve S and p = 2 then there is a subgroup F of E
with the following two properties:

i) V is free as a kF-module;
ii) The space of fired-points VF | of V under F, equals V.

This is the key idea and we shall now formulate it in more generality. If
E is an elementary abelian p-group and k is any field of characteristic p then
the kE-module M is said to be subfree if there is a subgroup F of E with
the two properties of the proposition. Before proceeding, let us note that
this gives us some interesting parameters. The dimension of the subspace
VF = VF is called the breadth of M. Since M is a free kF-module we have
that dim M = |F|dim M7 so |F|is independent of the choice of F. If |F| = p?
then we say that d is the depth of M.

Returning to the geometry, we shall see that this property arises in a “lay-
ered” manner.

Proposition 2. Under the same hypotheses as Proposition 1, let Q) be a
2-group of linear transformations of V. which preserve S. Assume, moreover,
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that V@ is not contained in any single member of S. It follows that whenever
N is a normal subgroup of the subgroup P of Q and P/N is elementary abelian
then VN is a subfree k[P/N)-module.

We now turn to the study of how these ideas arise in the representation
theory of groups of Lie type. Assume that & is an algebraically closed field
of characteristic p and let G = SL(2, q), the special linear group over the
g-element subfield k; of k, where ¢ = p°. Let X be the subgroup of upper
uni-triangular elements of G so X is a Sylow p-subgroup of order ¢g. Let X ()
be the element of X which has A as the first row second column entry. We
can now state a surprising result [2].

Theorem 1. IfV is a kG-module, and ¢ > 1, then the following are
equivalent:

i) V is simple of dimension a power of p;

it) V is a subfree kX -module of breadih 1.

It is quite unexpected that simplicity can be described in these terms. The
motivation is again geometric. If p = 2 then a non-simple module with prop-
erty ii), written over a finite subfield of k, would be an interesting candidate
for a spread left invariant by G. Geometric motivation again suggests the
following question in the case p = 2: Which simple £G-modules are subfree
on restriction to every 2-subgroup?

This theorem is based, in part, on a determination of the non-identity
subgroups of X which act freely on particular simple modules. Such modules
are necessarily of dimension a power of p so let us describe all the simple
kG-modules of such a dimension. The basic Steinberg module St; for kG
is the (p — 1)st symmetric power of the standard two-dimensional module
so St; is p-dimensional and it is simple as well. Let oq,...,04 be d distinct
automorphisms of &, so d < e. Then Galois conjugate modules 0;(St;),1 <
1 < d, are distinct and

S = O'l(Stl) ®R...0 Ud(Stl)

is of dimention p? and simple. Such modules, called partial Steinberg modules,
give all the simple kG-modules of dimension a power of p. The tensor product
of all e conjugates is of dimension p* = ¢ and is the Steinberg module.

This situation generalizes considerably so we shall give the adjunct to the
theorem in this broader context. Now set G = SL(n,¢) and let X be the root
subgroup which consists of matrices with ones on the main diagonal, zeros
elsewhere, except perhaps in the first row second column entry. Let X(A) be
the corresponding element of X. There is a basic Steinberg module St; for
kG of dimension p™"~1/2 and partial Steinberg modules

S = Ul(Stl) ®...® O'd(Stl)
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(as well as the Steinberg module). The adjunct result is as follows [3].

Theorem 2. The subgroup generated by X(\1),...,X () is of order p?
and free on S if, and only if, det(oi(};)) # 0.

This is only a special case of the general result: we can deal with p-
subgroups of all orders, all simple kG-modules as well as some other groups
of Lie type. It would be also nice to have a generalisation of Theorem 1 to the
case of SL(n,q) but there is a significant obstacle: a basic Steinberg module
St1 need not be subfree on restriction to the root subgroup X. However, the
ideas in Proposition 2 are the way round this problem and we shall illustrate
this first by looking at another Lie type group.

We let p = 2 and let H = Sz(22/*1) be the Suzuki group, f > 1. Here
there is a basic Steinberg module S%; of dimension four and partial Steinberg
modules

T = Tl(Stl) ®...0 Tc(Stl), (& S 2f + 1,

which give all the simple #H-modules in fact (and the Steinberg module has
dimension 42/+1). Let Y be a Sylow 2-subgroup of H, so |Y| = 4%/  the
center Z of Y is elementary abelian of order 22/*! as is Y/Z.

Theorem 3. As a kZ-module, T is subfree of breadth 2*t! while TZ is a
subfree k[Y/Z]-module of breadth one.

Presumably these conditions are also sufficient to characterize simple mod-
ules and give a result analogous to Theorem 1.

We have not indicated the ideas of the proofs. There are direct methods
[2,3] but Carlson has shown that complexity theory and homological ideas are
important [5]. In order to return to the special linear groups we require a first
instalment of these techniques. Let F be an elementary abelian p-group and
let aug(kE) be the augmentation ideal. If gy,..., g4 is 2 minimal generating
set of E then Vg = aug(kE)/aug(kE)? is a d-dimensional vector space with a
basis consisting of the cosets of the elements g1 —1,...,94—1. f zq,...,2; are
elements of aug(kE) whose cosets modulo aug(kF)? are linearly independent
elements of Vg then the units 1 +2¢,...,1+z; are of order p and generate an
elementary abelian p-group of order p in the unit group of kE. Such a group
is called a shifted subgroup (e.g. see [6]) of E. If M is a kE-module then M
is called shifted subfree if there is a shifted subgroup F such that M¥ = M¥
and M is a free kF-module. Again we can speak of the breadth and depth of
M.

We now return to the group G = SL{n,q). Let L be the subgroup sta-
bilizing a fixed m-dimensional subspace, 0 < m < n, of the standard n-
dimensional space on which G acts. Let @ be the normal subgroup of L of
all elements which induce the identity on the m-dimensional subspace and in
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its (n — m)-dimensional quotient so ¢ is an elementary abelian p-group of
order ¢™(n=m) = pem(n=m)  We are going to state a result about the action
of @ on the partial Steinberg module S (as above). Since L/Q contains a
subgroup isomorphic with SL(m,q) x SL(n —m,q) and S? is a tensor prod-
uct of partial Steinberg modules for this direct product, it becomes possible
to use our result to give, inductively, a “layered” result about the action of
a Sylow-p-subgroup of G on S analogous to the previous theorem. However,
we shall restrict ourselves to @.

Theorem 4. The kQ-module S is shifted subfree of depth dm(n —m).

We also believe that when ¢ > p the partial Steinberg modules can be
characterized in terms of subfree “layers” and the parameters involved and
already have made considerable progress towards such a goal. The proof
involves complexity theory, to which we turn for out last theorem.

Let G be an arbitary finite group and let M be a kG-module. The com-
plexity Ce(M) of M is a non-negative integer, a homological invariant of M.
It is zero exactly when M is projective and it is one, when it is not zero, but
there is a projective resolution

P, —-...o P >FP—-M-—-0

of M such that dim P, is bounded, independently of n, (i.e. dim P, is bounded
by a degree zero polynomial in n). Similarly, it is two, if it is not less than
two and there is such a resolution where dim P, is bounded bu a degree one
polynomial in n, and so on for higher complexities.

Theorem 5. The complezity of the basic Steinberg module Sty for SL(n,q)
is (e — 1)[n?/4].

The way this result is connected with our previous results is as follows. The
complexity Ce(M) equals the maximum of the complexities Ce(MEg) as E
runs over all elementary abelian p-subgroups of G [1]. In turn, Cg(Mg) can
be calculated in two complementary fashions, using Carlson’s rank variety [4]
or Kroll’s shifted subgroup approach [7]. The rank variety Vg (M) is defined
as follows, as a subset of Vg (notation as above). If X is in aug(kE) and not
in aug(kE)? then the coset z + aug(kE)? lies in Vg(M) if, and only if, M
is not a free module for < 1 + z >; this does not depend on the choice of
coset representative. The variety Vz(M) consists of these elements together
with the zero vector, it is a homogeneous affine variety of dimension Cg(MEg).
If |E| = p® then there are subspaces of Vg of dimension s — Cr(Mg) which
intersect V(M) in zero, by the homogeneity of Vi(M), and no such subspaces
of any larger dimension. This implies that there are shifted subgroups of E of
order p*~C=(M=) for which M is a free module and none of any greater order
with this property.
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THE STRUCTURE OF METABELIAN FINITE
GROUPS

ZVI ARAD, ELSA FISMAN and MIKHAIL MUZYCHUK

Department of Mathematics and Computer Science, Bar-Ilan University, Ramat-
Gan, 52900 Israel

1. Introduction

Let G be a group and H C G a proper subgroup of G, then Core(H) is the
maximum normal subgroup of G contained in H.

In 1955 It6 [1], using a surprisingly short commutator calculation, obtained
the following classic result:

Theorem. (1t6 1955) Let the group G = AB be the product of two abelian
subgroups A and B. Then G is metabelian. Furthermore, if G is finite, then
either Core(A) or Core(B) is not trivial.

The following natural question ([AFG, p.18]) arises: Describe all metabelian
groups which are factorized by two abelian subgroups.

Our interest in factorizable groups by two abelian subgroups was inspired
by the following conjecture stated at the Groups 1993 Galway / St Andrews
Conference:

Conjecture. Lel G = AB be a finite factorizable group where A is abelian
and B is cyclic. Assume that Z(G) = Core(B) =1. Then A< G.

Counterexamples to this conjecture are constructed in Section 2, Theo-
rem A.

The following Theorem B gives a description of finite factorizable groups
G = AB by two abelian subgroups such that Z(G) = Core(B) = 1 and
A 4G

Theorem B. Let G = AB be a finite factorizable group by two abelian
subgroups A and B. Assume Core(B) = Z(G) = 1 and A 4 G. Then the
following hold:

(i) G=BG,BNG =1, |G| =|A| and G' = G¥;
(i) G'A is nilpotent;
(iii) Z(G'A)=G' N A = Core(A);

(iv) B is a Carter subgroup of G.
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The proof of Theorem B can be found in Section 3 of this paper.
The converse of It6’s theorem for finite metabelian groups with trivial cen-
tre is stated in Theorem C of Section 4.

Theorem C. Let G be a finite metabelian group with trivial centre. Then
G = CG, where C is an abelian Carter subgroup of G, and G is the semidirect
product of two abelian subgroups C' and G' = G¥.

Corollary 1. If G is a finite metabelian group and Z,(G) ts the last term

of the upper central series of G then G = G/Z,(G) satisfies the assump-
tions of Theorem B and consequently G is a semidirect product of two abelian
subgroups as described in Theorem B.

Our notation is standard and taken mainly from [G].

2. Main Results

Let us construct counterexamples to the conjecture.
Consider the group GLy(Z,m), p an odd prime and m > 2, where Zpym is a
residue ring modulo p™.

Define G = {( g Cf )\ﬂ € Zpm, @ € Z,,m} , where Z7n is the set of all

units of Z=. The cyclic subgroup B = { ( g } )‘ﬂ € Z;m} C G is of order

Zym).
The subgroup 1 + pZym = {1+ pl : £ € Zyn} of Z3m is a cyclic group of

order p™~! > 1. Denote by f the generator of this subgroup. Now take A to

g1

01/

be the cyclic subgroup of G generated by the matrix a =

Theorem A. The group G is the product of the two cyclic subgroups A and
B. The following properties hold for G :

(1) Core(B) = Z(G) = 1;
(2) A4AG.

In particular, G is a counterezample to the conjecture.

To prove Theorem A we need the following proposition.

Proposition 2.1.  The following properties hold:
(i) |Al=pm;
(i) BNA=1;
(1i7) A f_l G.
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ProoF. (i) Clearly, |A| coincides with the order of a as an element of G. The
k-th power of a has a form

k-1
k i
d=| P ; gl (1)
0 1
Since A3 is an element of order p™1, it follows from (1) that p™~! | |A] and

m—1__

P 1

apm—l - ]_ Z ﬂl
1=0

0 1

The sum Zf:o_l_l % is a sum of all elements of 1 + pZ,m. Hence

Pl -1 m—1
; N L+l4p(pmT 1) o
Y p =Y (g = S
=0 =0
2_p m— ™m—
= —2 p 1:p 1.

(We note that all calculations are done in Zyn.) Thus, we have

o1 lpm—l
14 —
()

which immediately implies that a?” = ( (1) (1J ) and |A| = p™.

k-1
E ;
i) Let a* = A Zﬁ € B. This implies 1 + 8+ ... 4+ ¥ = 0.
2=0

0 1
Multiplying both sides of the latter equality by § — 1 gives us B* =1, where
10
E_
=141

(iii) Assume the contrary, i.e. A 4 G. Let v € Z3n be an element such that
4 # 1 (mod p). Such a 7 exists because p # 2. Then one has

GHEDE D=6 e

for an appropriate k.
After computations we obtain that (2) is equivalent to the following equal-
ities:

B=p y=1+...+p8"

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521477492
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521477492 - Groups '93 Galway / St Andrews, Volume 1

Edited by C. M. Campbell, T. C. Hurley, E. F. Robertson, S. J. Tobin and J. J. Ward
Excerpt

More information

ARAD ET AL.: METABELIAN FINITE GROUPS 9

whence 857! = 1 and (8—1)y = #F—1 = B~1. This gives us (8—1)(y—1) = 0.
Buty# 1 (mod p) and therefore y—1 is invertible in Z,=. This immediately
implies 8 = 1, a contradiction. ]

ProOOF OF THEOREM A. Clearly, |G| = p™|Zn| = |A] - [B]. On the other
hand, AN B is trivial. Therefore, G = AB = BA. Since A 4 G, then to show
that G is a counterexample, we have to prove that Core(B) = Z(G) = 1.

(30 ) emarmen (V1) (00)=(00)(5 1),

) ) B y 0 1 o _ l o 8
which gives us 6 = 1. Furthermore, ( 01 ) ( 0 1 ) = < 01 ) ( 0
e

should hold for all v € Zjm. Therefore, ya = a for all ¥ € Z;, whence
(we recall that p # 2). Thus, Z(G) is trivial.

§ 0 1 1Y(6 o0\ (1 1\
Let(o 1>€Core(B).Then(O 1)(0 1><0 1) € B, whence

((1) i)((é) (1)><(1) _11)=<g 1_1-6>GB.Thisimmediatelyim-

plies that 6 = 1, i.e. Core(B) is trivial. 0

3. Products of finite abelian groups

Throughout this section let G = AB be a finite factorizable group by two
abelian subgroups A and B.

To study the structure of such factorizable groups we need the following
propositions and lemmas.

Proposition 3.1. [G,G] = [4, B].

PROOF. The inclusion [G,G] 2 [A, B] is evident. To show the inverse, it
is sufficient to prove that [A,B] < G. Let [a,b] € [A, B]. Then [a,b]" =
[ab,b] = byabybbia~1b7 07! = byabila™! - abbia~lb'b7t = [by,d][a,bby] =
[a,b]7! - [a, bb)] € [A, B]. The analogous calculations show [a,b]** € [A, B].O

As a corollary we obtain
Proposition 3.2. (A%,cq = AG".

PrOOF. The inclusions A C AG’ <4 G imply (A% ,e¢ © AG'. Now take
a commutator [g,a], g € G, a € A. Cleatly, [g,a] € (A%)4ce. Therefore,
[G, A] C (A9),cc. Now the sequence of inclusions

[G,G) 2 [G,A] 2 [B,A] =[G, (]

gives us G' =[G, G] = [G, A] C (A9) - Therefore, AG' C (A%) eq. 0
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Proposition 3.3.
(i) Core(A) C Z(AG").
(i) ANG C Z(AG").

PROOF. (i) Take any a € Core(A). Then a belongs to all 49, ¢ € G, and,
therefore, a lies in the centre of (A%)eq = AG'.

(ii) Since A and G’ are abelian, this inclusion is evident. a

Since A and B appear symmetrically in the above propositions, these
propositions remain true after the substitution of B instead of A.

Lemma 3.4. Assume Z(G) = 1. Then
(i) ANB=1,Ce(B) =B, Ca(A)=4;
(it) Core(A) = Z(AG") 2 ANG'; Core(B) = Z(BG') 2 BNG'.

PROOF. (i) The equality AN B =1 is evident. Furthermore, B C Cg(B) =
B[Cs(B)NA]. Hence Cq(Ce(B)NA) 2 (A,B) = G and Cg(B)NA C Z(G) =
1. The same arguments applied to A yield Cg(4) = A.

(i1) By the previous statement, Core(4) C Z(AG") and AN G’ C Z(AG").
But Cg(A) = A, hence Z(AG') C A. The centre Z(AG') is a characteristic
subgroup of AG’ 4 G. Hence Z(AG") C Core(A) and this gives us Z(AG') =
Core(A). 0

If Z(G) is trivial, then G is not nilpotent. On the other hand, G is
metabelian, and therefore it contains a Carter subgroup, say C. By [S, Theo-
rem VII 4a, p.227] G admits the following decomposition G = CG* where G*
is the intersection of all elements of the lower central series of G. Moreover,
by [S, Proposition VII 4b, p.229] C N G C (G¥) € G” = 1. Thus, we have
G =CG¥ CNGY=1.The claim below gives the structure of the Carter
subgroup in our particular case.

Lemma 3.5. Let G = AB where A and B are abelian. Assume that
Z(@) = Core(B) = 1. Then

(i) B is a Carter subgroup of G,

(ii) G=GB, GNnB=1, G =G |G'=]|Al

PrROOF. The subgroup B is abelian. Therefore, it is a Carter subgroup
iff it is self-normalized. By Lemma 3.4, part (ii), 1 = Core(B) 2 BN G,
whence BN G’ = 1. This immediately implies that Ng(B) = Cg(B). Indeed,
if g € Ng(B), then ¥6™* € BN G' = 1 holds for all b € B. Therefore,
g € Cg(B). But part (i) of Lemma 3.4 yields Ce(B) = B. Thus we have
shown that B is a Carter subgroup of G.
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