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BOOK III

GENERAL THEORY OF ALGEBRAIC
VARIETIES IN PROJECTIVE SPACE

CHAPTER X
ALGEBRAIC VARIETIES

1. Introduction. This volume is concerned with properties
of the points of projective space whose coordinates satisfy a set of
homogeneous algebraic equations, these points not being treated
as individuals, but as members of the aggregate of solutions of the
equations.

We begin by selecting the ground field K over which our pro-
jective space is to be constructed. We shall confine ourselves to the
case in which K is commutative and without characteristic, but
we shall not assume that K is algebraically closed unless this
requirement is specifically made. We then construct a projective
space of n dimensions over K, denoting it by S,,.

In 'V, §3, we saw that we could extend the ground field K to any
field K* containing K, and S, is then extended to a space S}
defined over K*. There are points (z¥,...,z%) in S%, where z¥
(¢ =0,...,n)is in K*, which are not points of the original space S,,.
When the ratios of the coordinates «F are all algebraic over K we
shall say that * = (zf, ..., #%) is an algebraic point of S, (over K).
If at least one of the ratios of the coordinates x¥ is transcendental,
we say that z* is a transcendental point of S,. In the course of our
investigations we shall have to extend the ground field many times,
thus introducing points which are algebraic or transcendental over
K, and we shall find it convenient to omit a reference to the ex-
tension K* on most of these occasions. We shall therefore be con-
sidering rational points of S, (that is, points the ratios of whose
coordinates are in K), algebraic points of 8, and transcendental
points. The term point without any further qualification will cover

these three kinds of point.
A restriction on the fields from which the coordinates of algebraic
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2 X. ALGEBRAIC VARIETIES

and transcendental points are chosen is, however, necessary. If
z* is a point which is not rational, the field K(z*) = K(«¥, ..., z¥)
is a proper extension of K, and since it is formed by adjoining a
finite number of elements to K, it is an extension of a finite degree
of transcendency. The geometrical content of any result which
depends only on the properties of this field is not altered if we replace
K(z*) by an equivalent extension of K, and z* by the corresponding
element of this new extension.

But we may have to consider a number (always finite) of exten-
sions of K, and as we saw in 111, § 4, p. 114, there may be no exten-
sion of K which contains them all. This gives rise to grave difficulties.
All the extensions which arise, however, are algebraic extensions of
pure transcendental extensions of finite dimension. If K| and K,
are extensions of K, K, being of dimension d, we can construct an
extension K, of K, which contains the algebraic closure of an exten-
sion of K of dimension d obtained by adjoining the independent
indeterminates ¢, ..., ¢;, and this will contain a field K; isomorphic
with K,. But we cannot simply replace K, by Kj;, for there is
ambiguity in the choice of Kj; for instance, the dimension of the
field which is the intersection of K; and K; depends on the number
of the t;in K,.

To overcome these difficulties we must ensure that the various
extensions of K which we consider all belong to the same extension
of K. When this condition is satisfied, the join of the various exten-
sions considered is contained in an extension K* of a finite degree of
transcendency (the enveloping field). Results will be unaltered if
K* is replaced by an equivalent extension of K.

We can lay down a field once and for all over a given ground
field K which will contain the isomorph of any enveloping field
K* which may arise, and agree that all extensions be subfields of
this. Let £,,¢,,... be a simple sequence of independent indeter-
minates over K, 2 the field consisting of rational functions of
these (each element of X being a rational function of a finite
number of ¢;), and let 2* be the algebraic closure of 2. Any en-
veloping field K* is clearly isomorphic to a subfield of 2*, and
hence if we replace K* by an isomorph in 2*, each of the extensions
in question is replaced by a subfield of 2*. We shall call 2* the
‘universal field’ associated with K, and in future we shall assume,
without mentioning the fact explicitly, that all extensions of K are
in this universal field.
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1. INTRODUCTION 3

We now choose an allowable coordinate system in S,, and we
consider the set of points whose coordinates satisfy the equations

Jilg, @y, s, ) =0 (1=1,2,...), (1)

where f;(%g,7,,...,%,) is a homogeneous polynomial over K. In
1V, §1, we saw that the polynomials over K which are satisfied by
the solutions of the set of equations (1) form an ideal, and in IV, § 2,
we proved the existence of a finite set of the equations (1), say

fi(x()’xl’ ’xn) = O (1' = 1) 2, '--,k)’ (2)

which is such that every solution of (2) satisfies the equations (1)
for all values of 4. Hence in considering the points of S, which
satisfy (1), we need only consider the solutions of the finite set of
equations (2).

The aggregate of poin ts defined by a set of equations (1) is called
an algebraic vartety. It may happen, of course, that there are no
points satisfying the equations. While this case is of no geometrical
interest, it cannot always be avoided in theoretical reasoning; but
the statement of theorems will be simpler if, for the present, we
assume that the varieties we are considering have at least one point.
This point may, of course, be rational, algebraic or transcendental.

An algebraic variety in S, has been defined in a particular allow-
able coordinate system. Let us consider what happens to the set of
equations (2) when we carry out the allowable transformation of
cpordinates given by the equations

n

Y= 2ayx; (¢=0,..,n),

n
or x.i =Eob"jyj (i = O, seey n),
j=

where (b;;) is the matrix inverse to (a;;).
If (x5, ..., x,) satisfies (2), the coordinates (¥}, ..., %) of the same
point in the new coordinate system satisfy the set of equations

fi(§bojyj, ...,Ejjbnjyj) =0 (i=1,..k), (3)

and conversely, if (yg, ...,y,) are the coordinates of a point in the
new coordinate system which satisfy (3), the coordinates (y, ..., z/,)
of the same point in the original coordinate system satisfy (2).
Hence, if an aggregate of points in S, form an algebraic variety in
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4 X. ALGEBRAIC VARIETIES

one coordinate system, they form an algebraic variety in any other
allowable coordinate system, although the equations in the two
systems may be different. In this sense the definition of an algebraic
variety is independent of the coordinate system chosen.

2. Reducible and irreducible varieties. If V;, ¥, are two
algebraic varieties given by the equations

Jilgs ..sx,) =0 (=1,...,7), (1)
gi(xo,...,xn)zo (t=1,...,8) (2)

respectively, the points common to V; and V, satisfy both sets of
equations simultaneously, and therefore define a third algebraic
variety. We call this aggregate of points the intersection of V; and
¥, and denote it by the symbol

V14V,
'This set of points is the point-set theoretic intersection of the sets
7, Va. Evidently V.V, =7,V

The points which satisfy the set of equations
fil@e - 2,) g5(%gs - 2,) = O t=1,...,r55=1,...,8) (3)

are those points, and only those, which satisfy either (1) or (2).
Points which satisfy (1) or (2) evidently satisfy (3). On the other
hand, let (g, ...,2,) be a point which is not on V,, say, but which

satisfies (3). Then for some value of j
gj(xéi sy x;l) * 0.
If we consider the equations of the set (3) for which j has this
particular value and ¢ = 1, ...,7, we see that
fi@gs @) =0 (2=1,...,7).

Hence (xy, ..., z,) lies on V. Similarly, points satisfying (3) which
do not lie on ¥, lie on V.
We call the algebraic variety defined by (3) the sum of V; and V,

d denote it by the symbol .
an v y ViV,

We have shown that this symbol defines the point-set theoretic
sum of the points in ¥, and the points in V;. Evidently

W4V =+W.
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2. REDUCIBLE AND IRREDUCIBLE VARIETIES 5
If 7, is an algebraic variety given by the equations
hi(tg, ..y 2,) =0 (2=1,...,1),
our definitions lead to the following associative and distributive
laws, as in point-set theory:
(2) V].A(Vz/\l{s) = (HAV;)AI/:;’
®) N+ G4 =0+ +h,
(c) Vl;\(Vz'i'I/:v;):VIAV2+VlAV3
Now let us suppose that every solution of the equations (1) in
any algebraic extension of K satisfies (2); that is, that every
algebraic point of V; lies on ¥,. Then by Hilbert’s zero-theorem
[IV,§8]

[gi(xO: nery xn)]Pi = 'Elaij(xm ’xn) j:'i(xo’ sy xn):
j=

where p; is a positive integer, and the a(,, ..., z,) are forms in
K[z, ...,x,]. Hence g,(,, ..., x,) vanishes on the variety V;, that is,
g5, -+, %) = 0for all points (zy, ..., «,) on¥;, not only for algebraic
points. Hence every solution of (1) satisfies (2).
We then say ‘V; lies onV}’, or ‘¥ is contained in ¥;’, and write
Nel,
or say ‘¥, contains ¥;’ and write
V2V
IfV, =V, and V,<V,, we must have V; = ¥,. If there are points of
which are not on ¥}, and V] lies on V,, we write
el or K=
If V. <V, and V, <V, then V; =V,. ‘Similarly, if V, <V, and V, <},
then ¥, <V,. Hence the relations = and < are transitive. Equi-
valently, the relations = and D are transitive.

Again, if V —V,4V,
then V=2V, and V 2V,. If there are points of V] not on ¥}, so that
Ni€Ve
we must have VoV,.
It is also clear that | A=1 NS
and that, if Vi€V,
then VoW, W
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6 X. ALGEBRAIC VARIETIES

With these preliminaries we now introduce the notion of reduci-
bility. A variety V is said to be reducible if it can be expressed as
the sum of two algebraic varieties, each distinct from ¥; that is, if

V =V,4¥,
where V<V, V,< V.

If V is not reducible it is said to be ¢rreducible.

Lemma. If an irreducible varicty V lies in the sum of two varveties
V, and V,, then it is contained in one or in the other.

We have V<V iV,
Then V="V,H+V)
ANIAA
Since V is irreducible we must have either
V.v,=V
or V=7,

that is, V is contained in V; orin ;.
This lemma is easily extended to the case of r varieties V},V,, ..., V.
We use it to prove

THEOREM 1. A necessary and sufficient condition for the reducibility
of a variety V 1is the existence of a product fq of two forms f(z,, ..., x,)
and g(%,, ..., %,) which vanishes at all points of V without either form
having this property.

We suppose in the first place that V isirreducible and that fg = 0
on V. If f = 0 defines the variety ¥}, and ¢ = 0 defines the variety
V,, then fg = 0 defines ¥, +¥,, and

Vel +7,

since fg = 0 at all points of V. By the above lemma V is. con-
tained in V] or inV,, and so either f = 0 or g = 0 at all points of V.

Now let us suppose that V is reducible. Then we can construct
a product fg of two forms f and ¢ which vanishes on ¥V without
either f or g doing so. In fact,

V="+V,
where the varieties ¥, and V, are distinct and neither contains

the other, by hypothesis. Hence, among the forms defining V}
there must be at least one, f, say, which does not vanish on V.
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2. REDUCIBLE AND IRREDUCIBLE VARIETIES 7

Similarly, there must be a form g which vanishes on ¥, but not on
¥;. The product fg vanishes for all points of ¥, but neither f nor g
vanishes for all points of ¥. This proves the theorem.

We note that the question of the irreducibility of an algebraic
variety depends on the choice of the ground field, and that a variety
which is irreducible over K may become reducible when K is
replaced by an extension K*. We illustrate this by considering the
algebraic variety V defined over K by a single equation

flx) = flxgy .nx,) = 0.
Let us suppose that f(x) is irreducible over K. Then if g(x), A(z)
are two forms such that their product vanishes on V, we have, by
Hilbert’s zero-theorem,

[9(z) h(@)]? = a(z) f(2),

where p is a positive integer, and a(x) is some form in K[x]. By the
unique factorisation theorem [I, §8, Th.II] it follows that f(x),
which is irreducible, is a factor of g(z) or of k(z), and hence either
g(x) or h(x) vanishes on V. Hence, by Theorem I, V is irreducible.

On the other hand, let us suppose that f(z) is reducible, and that
it can be written in the form

f(@) = fi(z) fo®),
where f,(x), fy(x) are forms in K[z] not having a common factor.
Then if V, V, are the varieties defined, respectively, by the equations
filx) =0
and Sfao(x) =0,

neither variety contains the other. For instance, if V,<V,, we
should have, by Hilbert’s zero-theorem,

[fol®)]” = a(x) fi(=),
and hence every irreducible factor of fi(x) would be a factor of
fa(x), contrary to hypothesis. Hence, since f(z) = f(x) f3(%),

V=I/1'¥'V23

where V; £V, V, &V}, and so V is reducible.
Now let f(z) be a form in K[x] which is irreducible over K. Then

the variety V defined by f@) =0

is irreducible. But it may happen that there is an extension K* of

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521469015
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521469015 - Methods of Algebraic Geometry, Volume II - W. V. D. Hodge and D. Pedoe
Excerpt

More information

8 X. ALGEBRAIC VARIETIES

K such that f(z) is reducible in K*[x]. Since K is without charac-
teristic, all the irreducible factors of f(z) over K* are distinct, and
therefore, by what has been proved above, ¥V is reducible over the
ground field K*. An example of a form f(x) with this property in the
case n = 1 is given by the form 23+ x}. When K is the field of real
numbers this is irreducible, but it is reducible over the field of
complex numbers.

The criterion for reducibility given in Theorem I can be described
in another way. We have seen [IV, §1] that the polynomials in
K{x] which vanish on a variety V form an ideal in this ring. Every
element of the ideal is a sum of homogeneous polynomials, each of
which belongs to the ideal. Such an ideal is called a homogeneous
tdeal. If V is irreducible this homogeneous ideal has the property
that if f(z), g(z) are two forms whose product belongs to the ideal,
then either f(x) or g(x) belongs to the ideal. A homogeneous ideal
with this property is said to be prime; thus the polynomials in
Klx,, ...,z,] which vanish on an irreducible algebraic variety form
a prime homogeneous ideal, and conversely, a prime homogeneous
ideal in K[z, ...,z,] defines an irreducible variety.

We remark that an algebraic variety V which is irreducible over
K in a given coordinate system is also irreducible in any allowable
coordinate system. This follows immediately from the definition
of irreducibility, and the remark made at the end of § 1.

As a preliminary to the main theorem of this section we prove

TurorEM II. A sequence of varieties V,V,,... in S,, where
VioV,...o¥V, 2V, ..., must terminate after a finite number of terms.
Let the equations of V; be

f1 Lo, ---» n —0 (7’= 1:"'77‘1)7
and those of 7,
fil@gs ooty ny) =0 (E=r+1,..,7).

Since V; oV, we may take the equations of ¥, to be

Jilgsosz,) =0 (E=1,...,7).
Similarly, let the equations of ¥, be
fz Ly --v» 7: =0 (7' - 1 )

By Hilbert’s basis theorem [IV, § 2] there is a finite integer & such
that there exist forms a,,(), ..., @,,(x) with the property that

k
I E.E aijfj
i=1
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2. REDUCIBLE AND IRREDUCIBLE VARIETIES 9
for each value of 7. Let us suppose that
r_ <k<n.

Then, inserting zero polynomials a,; if necessary, we can write

i Ejzglaijfj- (4)
If there is a variety ¥}, in the given sequence, we deduce from (4)
that V..oV,
But this contradicts the hypothesis
VoV

The sequence therefore terminates at V.
We can now prove

THEOREM 1II. Every algebraic variety V can be expressed as the
sum of a finite number of irreducible varieties.

Let us suppose that the theorem is not true for V. Then ¥V must be
reducible, say V=V, +V,, where V>V, and V >V,. If the theorem is
true for both V; and V), it is true for V. Hence the theorem is false
for either V; or ¥,. Let us suppose that it is false for ¥}. Then V] is
reducible, and we can write V; = Vi+ V;, where V;> V1, V2 V.
As before, we see that the theorem must be false for either V] or
V3, say for V{. We can repeat this process indefinitely, and obtain
an infinite sequence of varieties

VoV, Vi>...,
for each of which the theorem is false. By our previous theorem a
strictly descending infinite sequence of varieties does not exist, and

we therefore conclude that every algebraic variety V is the sum of
a finite number of irreducible varieties.

In the expression VYV, iVd .. iV,
we may omit any component V; which is contained in the sum
Vim Vit Vk o Vg Vi o AT

of the remaining component varieties. For if V,< V;, then by the
lemma proved above, ¥, must lie in one of the component varieties
whose sum is V7, and therefore

V=V4Vi=V;
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10 X. ALGEBRAIC VARIETIES

A component ¥, which can be omitted in this way is said to be
redundant. When all redundant components of a sum have been
omitted we say that we have a non-contractible representation of
V as a sum of irreducible varieties.

TeEOREM IV. The representation of an algebraic variety V as a
non-contractible sum of irreducible varieties is essentially unique.

If co e s s e s
V=W+V+.. .+, =Vid+ Vo+ ...+ V]
are two non-contractible representations of V, we prove that k = I,
and that ¥, = V; (4 = 1,..., k), after the components have been
suitably arranged.

It follows from the representation that

VeV = Vit Vid .. 47},

and therefore, by the lemma above, there exists a value of ¢ (1 <)

such that V.oV,

We rearrange the varieties Vi, ..., V; so that ¢ = 1. Then
Ve Vi

A similar argument shows that for some value of j (j <k)
VieV,.

Hence hevicy,

and therefore Vel

Since the representations are non-contractible it follows that
j =1, and since V; = V1 =V;, we must have V; = V1.
In the same way we show that

Ve Vi,
where ¢ £ 1, since V, &£V, = V. We order the varieties so that i = 2,
and prove, asabove, thatV, = V3. The theorem follows by induction.

The varieties ¥,,V,, ..., ¥, are called the ¢rreducible components
of V.

3. Generic points of an irreducible variety. A point
£ = (&,...,£,), where the £, lie in some extension K* of the ground
field K, is said to be a generic point of a variety V (over K) if
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