METHODS
OF

ALGEBRAIC GEOMETRY

by
W.V.D.HODGE, Sc.D., F.R.S.

Formerly Lowndean Professor of Astronomy and Geometry, and
Fellow of Pembroke College, Cambridge

and

D.PEDOE, Pu.D.

Emeritus Professor of Mathematics
University of Minnesota

VOLUME III
BOOK V: BIRATIONAL GEOMETRY

5% CAMBRIDGE

UNIVERSITY PRESS




Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP
40 West 20th Street, New York, NY 100114211, USA
10 Stamford Road, Oakleigh, Melbourne 3166, Australia
Copyright Cambridge University Press

First published 1954
Reissued in the Cambridge Mathematical Library 1994

ISBN 0 521 46775 6 paperback

Transferred to digital printing 2003



CONTENTS

PREFACE

page vii

BOOK V

BIRATIONAL GEOMETRY

CrarTER XV: IDEAL THEORY OF COMMUTATIVE RINGS

PAGE
1. Ideals in a commutative
ring 2
2. Prime ideals and primary
ideals 11
3. Remainder-class rings 27
4. Subrings and extension
rings 33

5. Quotient rings

6. Modules

7. Multiplicative theory of
ideals

8. Integral dependence

PAGE

42
52

56
71

CrarpTER XVI: THE ARITHMETIC THEORY OF VARIETIES

1. Algebraic varieties in af-

fine space 83
2. Ideals and varieties in af-

fine space 92
3. Simple points 106
4. Irreducible subvarieties

of V, 122

5. Normal varieties in af-
fine space

6. Projectively normal varie-
ties

CeapTER XVII: VALUATION THEORY

Ordered Abelian groups 163
. Valuations of a field 172
. Residue fields 192

0 0o k=

CrarTER XVIII: BIRATIONAL TRANSFORMATIONS

1. Birational correspond-
ences . 222
2. Birational correspond-
ences between normal
varieties 236

3. Monoidal transformations 244
4. The reduction of singular-
ities and the Local Uni-

formisation Theorem 261
5. Some Cremona transfor-
mations 265

BiBriograPHICAL NOTES

BIBLIOGRAPHY

INDEX

4. Valuations of algebraic
funetion fields
5. The centre of a valuation

6. The Local Uniformisa-
tion Theorem: the main
case

7. Valuations of dimension
s and rank k

8. Resolving systems

9. The reduction of the sin-
gularities of an alge-
braic variety

140

147

198
208

290

305
315

322

332

333

3356



BOOK V
BIRATIONAL GEOMETRY

CHAPTER XV
IDEAL THEORY OF COMMUTATIVE RINGS

Ix Volume IT we were concerned mainly with the geometry of
varieties in projective space, regarded as subvarieties of the space.
We had, however, occasion to consider relations between different
varieties of the same space, or of different spaces; for this we used
the correspondence theory of Chapter XI. In particular, use was
made from time to time of birational correspondences between
irreducible varieties; if U and V are irreducible varieties in spaces
with coordinate systems (x,,...,z,) and (¥, ...,¥,) respectively,
they are in birational correspondence if there exists a correspond-
ence between them whose equations include equations of the form

xifj(?/o: "'?ym)-xjfi(yoi "',ym) =0 (7’).7 = O: ""n)’
Y:95(@o, -0 Tn) = Y;9:(&g, -, %) =0 (1,5 = 0,...,m),

where not all forms f;(y) vanish on ¥V, and not all forms g,(x) vanish
on U. An important branch of the theory of algebraic varieties deals
with the investigation of properties common to birationally equi-
valent varieties. In this theory we are concerned, not so much with
the properties of individual varieties as varieties in projective
space, as with properties of sets of algebraic varieties which are
birationally equivalent to one another. This branch of the theory
of varieties is called birational geometry.

The purpose of this volume is to introduce the reader to the
algebraic methods which have proved most useful in birational
geometry, and to establish certain basic results with which a
geometer must be familiar before he embarks on a systematic
study of birational geometry. For this purpose, it is necessary to
develop more fully certain algebraic concepts introduced in
Volume I, and to introduce new ones. In Chapter I the notion of
a ring was introduced, and mention has also been made in earlier

HP Il I



2 XV. IDEAL THEORY OF COMMUTATIVE RINGS

chapters of ideals in a ring, but only the most elementary properties
of these have been used. It is now necessary to study commutative
rings, and ideals in them, more systematically, and the present
chapter is devoted to this end.

1. Ideals in a commutative ring. Let # be any commutative
ring. A non-empty set i of elements of R is said to form an ideal in
R ifit hasthe two properties: (i)if « and fare any elements belonging
to i, then a — £ belongs to 1, (ii) if « belongs to i and p is any element
of R, then pe belongs to i.

The ring R contains a zero element; if we take this to be p in
(ii), then 0.a = 0is in i. Thus every ideal in R contains the zero of
3. On the other hand, if a set 1 consists solely of the zero of R, it
satisfies the conditions (i) and (ii); hence it is an ideal. We call this
the zero ideal of R. Again, if i includes every element of R, it also
satisfies conditions (i) and (ii); hence it forms an ideal, which we
call the unit ideal of R. Thus every commutative ring contains at
least two ideals, the zero ideal and the unit ideal. These two ideals
are sometimes called tmproper ideals, and any ideal distinet from
the zero ideal and the unit ideal is called a proper ideal.

If % has unity e and i contains e, i contains pe = p, where pisany
element of R. Hence i is the unit ideal if it contains e.

It is convenient to determine at the outset which commutative
rings possess no ideals other than the two improper ideals. We con-
sider two cases.

Case I. Suppose that R contains two elements p, w such that
pw=*0. (This is certainly the case when the ring has unity.) For
such an element w we consider the set i of elements ow, where o can
be any element in R. It is clear that i satisfies the conditions (i)
and (ii), and hence it is an ideal, and since i contains pw + 0 it is not
the zero ideal. If R has only improper ideals, it follows that i = R,
and hence if v is any element of R, there exists an element z in R
such that

0 = V.
Let e be a solution of this equation when v = w, and let « be a
solution for an arbitrarily chosen element v of ®. Then

ey = exw = x(ew) = TW = V.

It follows that R has unity, namely, e. Now let v be any non-zero
element of Ri. The set of elements of the form ov, where ¢ is any
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element of R, forms an ideal { which contains the element ev = v,
and i is therefore the unit ideal. Then there exists an element »’
in R such that »'v = e. Hence every non-zero element in # has an
inverse. N is therefore a field.

Conversely, suppose that R is a field, and let i be any ideal in &
which is not the zero ideal. i contains a non-zero element a. Let
# be any element of R. By property (ii), i contains fo1.x = S.
Hence i contains every element of R and is therefore the unit ideal.

Case I1. Suppose that R is a commutative ring, not consisting
solely of the zero element, such that, if «, § are any two elements
of R, af =0, and let w be any non-zero element of R. The set of
elements 0, + w, + 20, + 3w, ... clearly forms anideal i in R, different
from the zero ideal. Hence, if the only ideals in : are improper,
i = R. The elements 0, +w, + 2w, + 3w, ... cannot all be distinct,
for, if they were, the elements 0, + 2w, + 4w, ... would constitute
a proper ideal in R, and we are assuming that every ideal in R is
improper. Let m be the smallest positive integer such that mew = 0.
Then 0, v, 20, ..., {m—1)w are the elements of R. If m is com-
posite, say m = ab wherea > 1,b> 1, the set 0, aw, 2a0), ..., (b—1)aw
would, clearly, constitute a proper ideal in R, contrary to our hypo-
thesis. Hence m is a prime number p. From this it follows that if
Q is the 2 x 2 matrix over the ring of integers modulo p,

0 1
2=(o o)
%R is isomorphic with the ring consisting of 0, 2, 22, ..., (p—1) 2,

and we can verify at once that if R is isomorphic with this ring,
the only ideals in it are improper. Hence we have

TueoreM 1. A ring R which is a field contains only tmproper
ideals. Conversely, any ring whose only ideals are improper ideals 18
either a field or is isomorphic with the ring of matrices of the form

0k
0 0
over the ring of integers reduced modulo p, for some prime number p.
We now return to the general theory of ideals in & commutative
ring R. We can construct an ideal in R as follows. Let wy, ..., 0, be

a finite set of elements in R, and consider the set i of elements in N
which can be written in the form

A+ F 20+ N0+ ..+ ,0,, (1)

I-2
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where a,, ..., a, are any elements of i, and », v, stands for the sum
of n; elements each equal to w;. If R has unity e, we can write the
element as

(g +ne) o+ ...+ (o, +n,8) 0, = QLW + ... + X0,

where aj, ..., a; are in R, so that it is unnecessary to include the
terms 7,0y, ...,n,0, in (1). It can be verified at once that the set
i satisfies the conditions (i) and (ii), and hence forms an ideal. The
ideal is usually described as the ideal generated by v, ...,w,, or
having the basis wy, ..., »,, and is denoted by R. (v, ..., »,). From the
definition of the basgis, it is clear that the elements of a basis for an
ideal i belong to i. It is not, however, clear that every ideal in &%
has a finite basis, that is that, given an ideal i in R, there exists
afinite set of elements of i,say, w,, ..., w,, suchthati = R. (v, ...,0,).
If the ring R has the property that every ideal in i possesses
a finite basis, we say that the Basis Theorem holds in R. Many
results can be proved for rings in which the Basis Theorem holds
which are not true for more general rings. An example of a ring in
which the Basis Theorem holds is provided by the ring of poly-
nomials in 7 indeterminates over a commutative field [IV, §2,
Th. I]. For certain special rings, such as the ring of natural integers,
or the ring of polynomials in one indeterminate over a commutative
field, it can be proved that every ideal has a basis consisting of a
single element. An ideal in a ring R generated by a single element is
called a principal ideal, and a ring in which every ideal is a principal
ideal is called a principal ideal ring.

We now introduce certain notational conventions. If « is any
element of the ideal { we shall write x€1i, or, more usually,

a=0 (i),
and when i = R. (v, ..., »,), we shall also write this in the form
a=0 (modw,...,v,).
If j is an ideal every element of which is in 1, we shall write { <1, or,
more usually, i=0 @)
It is clear that if we have, simultaneously,

i=0 (1) and i=0 (j),
then i = .
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We now define the elementary operations which can be per-
formed on ideals.

I. Let i, j be ideals in the commutative ring ®. Consider the set
f of elements of R which can be written in the form « + 8, where

a=0 () and F=0 (j).
If o+ f and o’ + B’ are two such elements,
(@+B)= (@ +f) = (e} + (=),
where a—a'=0 () and F—-4 =0 (),
and if p is any element of R,
pla+p) = pa+pp,
where pe=0 (1), pf=0 ().
Hence t is an ideal, which we denote by (i,); it is called the join of
iand j.
The join (i, ) has the following properties, the proofs of which
are immediate:

(i) icsii), is@i);

(i) L) = @G, 1);

(iii) ti)=1;

(iv) if a=(i,1), b=(,¥), where!isany other ideal of i,
(a,%) = (i,b),

since these consist of the elements of & which can be written in the
form o+ f+7, where

Without ambiguity we can write (a,f) = (i,b) = (i,},f). By
extension, we can define the join of any finite number of ideals.

(v) If i and i both possess finite bases:
i=R.(0y...,0,),
i = 2R'(Vl’ seey Vs)y

then (t1) =R(wy, ..., 0, vy, ..., p).
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II. If1, i are ideals in R, the set of elements a of R such that
a=0 (i) and a=0 (j)

clearly form an ideal. We denote this by [i, {], and call it the infer-
section of i and j. The following properties of the intersection are
immediate:

(@) ilet, Lilsh
(ii) [i,i1 = [i, il
(iii) [L,il =1;
(iv) [i, [3, £ = [[i.i1. 11,

where f is any other ideal in . We can, without ambiguity, write
[i, [, ¥1] = [i,1, £]. We can, similarly, define the intersection of any
number of ideals in R.

IIT. Ifiand fareidealsin R, the set of elements of R of the form

af) where a=0@) and f=0 G,
do not form an ideal in R. But the elements of M which can be

8
written as finite sums 3} o, f;,, where
1

=0 (i) and g =0 (j),

fork =1,...,s, do form an ideal, as can be verified at once. We call
this the product of i and {, and denote it by ij. It can be verified at
once that the multiplication of ideals in a commutative ring is
commutative and associative:

i =i, ()= @)t = it

Moreover, we have if=0 (1),
if =0 (j),
hence i< i, {].

If we take | = i, we can define the powers i%,13, ...,17, ... of i for any
integer p (p > 1). If R has unity,and (1)is the unit ideal, any element
a of i can be written as ex, and is therefore in i (1). Hencei = 0 (i(1)).

But (1) =0 ().
Therefore i(l) =1.
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IV. Ifiand{are two ideals of R, let us consider the elements y
of R such that .
ye=0 (1),

for every element « of j. If v and ¢’ are two such elements, and p is
any element of i, we see that

(y=y)a=0 (i) and pya=0 (i)

for every element a of {. Hence the elements y with the stated
property form an ideal in }. We call this ideal the quotient of i by i,
and denote it by i:i. We have, at once,

i=0 (i),
and t:i=R.

We now prove certain properties of the four operations which
we have defined.

TarorEM 11, i1, f) = (i, if).
Let o), @y, ... be elements of i, £, fB,, ... elements of j, and yy, v, ...
be elements of f. Any element of i(j, f) is of the form
8 8 8
211 “a(ﬂa +Va) = % a’aﬂa + % %gVa € (ii7 if)»

hence i, £) = (i, if). (2)

Conversely, any element of (ij, if) is of the form

s t s+t
? “aﬂa'*' ? “s+b7's+b = % aa(ﬂa + ’}’a) € 1(1: f)’

where By = ... = fory= V1= .- = ¥s = 0. Hence
(i, i) =i(j, B). (3)
The result follows from (2) and (3).

TueoreMm IT1.
1775 PR ) B3 IECN F RN 08 73 SIS 3 1 X

If 'yi =0 ([ip iz, ...,ir]),
then Yi=0 () (@=1,..r1).
Hence y=0 (i,:)) (@=1,...,1),

and therefore v =0 ([i:1,12:5, ..., 111D
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Therefore [PPSR A B3 K=0 | SRS 08 7R3 AUUINS A3 | B 4)
Conversely, if veliiiigif oot il

Yi=0 () (a=1,...,7),

and hence vi =0 ([iyig.-.r 1),
that is, veliy, igy - onif]
Hence (7R3 S 785 O SE5 ¢ [=4 | 7% VOIS A 3 A (5)

and the theorem follows from (4) and (5).

TaEOREM IV. [t,i1(@,1) = 0 (if).
By Theorem IT,  [i,{]1(1.1) = (i, il% [i, i19)-
Since [Li1=0 () and [i,i]=0 (),

[Lili=0 (), [Lili=0 (),

and the result follows.

Corollary I. If (i,i) = R, and R has unity, then [i,i] = ij. For

(L1 = LR =1

Hence Lileiici, il

A mazximal ideal in R is defined as an ideal i+ R such that if { is
any ideal with the properties

i=0 (), i+0 (),
then j = R. From Theorem IV we deduce

Corollary 11. If R has unity and i is @ maximal ideal in R, and
10 (i), then [i,i] = ij. Since {+0 (i), (i,i) contains i, and at least
one element not in i. Since i is maximal, we must have

(i’ i) = m)
the unit ideal, and the result follows from Corollary I.

THEOREM V. 10y -l =iy oo it

If ’}’Gif(ip ---:ir)’ . ,
,yla=0 (1) (a: 1,...,7').

Hence velitiy, - -tz (6)
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On the other hand, if yefi:i,,...,1:1,],
Yie=0 (1) (@=1,..,r),
and hence vei:(ip oo fp)- (7)

The result follows from (8) and (7).

We conclude this section with a discussion of some consequences
of the assumption that the Basis Theorem holds in . We take R
to be any commutative ring for which the Basis Theorem holds.
Suppose that 1, 1,13, ... is a sequence of ideals in R such that

i1 =0 (i2)7 iz =0 (i3), (EEH) 11- =0 (ir+1)’
Let us consider the set t of elements of R which can be written as
k
finite sums 3 «;, where each «; belongs to some ideal i; of the se-
i=1

quence. It is clear that i satisfies the two properties which define
an ideal. Since the Basis Theorem holds in R, there exists in i a
finite set of elements wy, ..., , forming a basis for i. Since w,isinft,

Sa
(l)a = 2 (Zaj,
j=1

where ,;€1;. Let t = max[sy,...,s,]. Since
% =0 [, i;=0 (i),
for all relevant values of j, a,;€1, and hence
w,=0 () (@=1,..r),
and therefore 1=0 (i) (8)

Let & be any integer greater than t. If aei,, then aei, from the
definition of i, and hence

i, =0 (i).
Therefore, by (8), =0 (i)
But since k> ¢, i, =0 (i),
and therefore i =1

Thus for the sequence iy, i,, ... there exists a finite integer £ such that

Y =Ty T hye T e
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Conversely, suppose that the ring i has the property that if i, i, ...
is any sequence of ideals in i such that

i =0 (i), i3=0 (i5),...,

then there necessarily exists a finite integer ¢ such that

U= N1 T 2 = oo

We show that this implies that the Basis Theorem holds in R.
Let { be any ideal in R, and let w, be any element of j. Then, clearly,

iy =R. () =0 (j).
If i, is not equal to §, { contains an element w, not in i;, and we have
iy = R.(0,0,) =0 (i),
il = O (iz).
If i, is not equal to j, we select an element w, in j but not in i,, and

proceed as before. We apply the hypothesis on R to the sequence
i;, 1, ... Then there exists an integer ¢ such that

It = It+1 = eee

(unless the sequence ends at {;). From the equation i, = i,,4, it
follows that v, ; €1;, which conflicts with the method of constructing
w,;- Hence the sequence ends at i, But the sequence can only end
there if i, = j. It follows that =1, = R.(w,...,»;). Hence j has
a finite basis.

If i and j are two ideals of R such that

i=0 ()

iis said to be a multiple of j, and i is said to be a factor of i. If
i+0 (i),

iis a proper multiple of {, and j is a proper factor of i. In this ter-

minology the result just proved is equivalent to

THEOREM VI. A necessary and sufficient condition that the Basis
Theorem hold in R is that any sequence of ideals in R with the property
that each ideal of the sequence is a proper multiple of its successor is
a finite sequence.

Sometimes it is convenient to take as the fundamental property
of & the property that any sequence of ideals such that each is
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a proper multiple of its successor is finite. We then say that the
‘ascending chain-condition’ holds in HR.
Two corollaries of Theorem VI may be noted.

Corollary I. If the Basis Theorem holds in R, any non-vacuous set
of ideals contains at least one ideal which is not a proper multiple of
any ideal of the set.

The proof is obvious.

Corollary I1. (Principle of Induction for Ideals.) If the Basis
Theorem holds in R, and E is any property which (i) holds for the unit
ideal, (ii) holds for an ideal i when it holds for all proper factors of 1,
then B holds for all ideals in R.

Suppose that the corollary is false, and consider the set S of
ideals for which  does not hold. By Corollary I, there exists in the
set an ideal i which is not a proper multiple of any ideal of the set.
iis not the unit ideal since, by hypothesis, E holds for the unit ideal.
i has proper factors (for instance, the unit ideal, which satisfies our
definition of a proper factor), and since none of these proper factors
can belong to S, i being maximal in 8, it follows from condition (ii)
that & holds for i. But i is in S, and hence E does not hold for it.
We thus have a contradiction. It follows that S must be vacuous,
and our assumption that the corollary is not true is invalid.

2. Prime ideals and primary ideals. An ideal p in the com
mutative ring R is said to be a prime ideal if the equation

af =0 (p)
implies either a=0 (p)
or B=0 (p)

It is clear that the unit ideal is always prime, and that the zero
ideal is prime if and only if & contains no divisors of zero. Again,
if p is prime, and i and j are two ideals of R such that

if=0 (p),
then either 1=0 (p)
or i=0 (p).

Indeed, suppose that i%0 (p).
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Then there exists an element « in i which is not in p. If g is any
element of {, af€ij, and hence

aff =0 (p).
Since « is not in p, and p is prime, it follows that £ is in p. Hence
i=0 (p)
An ideal q in R is said to be primary if the equation
af =0 (q),
together with the inequality
a* 0 (q),
implies £ =0 (q),

for a suitable integer p. A prime ideal is, of course, primary.

If R is the principal ideal ring formed by the natural integers,
the ideal R.(d) is prime if and only if d is a prime number, and is
primary if and only if d is a power of a prime number. For our
purposes, however, a more suggestive example is provided by the
ring R = K[z, y] of polynomials in two independent indeterminates
over the ground field K. Let p = R.(z,y). The elements of p are
just those polynomials whose constant term is zero. If « and £ are
two polynomials whose product has constant term zero, then either
a or § must have constant term zero and hence belongs to p. Thus
p is prime. Next, let g = R. (2, ¥?). Any element of g is of the form

ax + (cx? + 2dxy + ey?) + (I3 + 3ma’y + 3nxy? + py3) + ....
Let a=a;+bx+cy)+...
and B =as+(byx+cy)+....
If afe q, we must have
a8, =0, a;co+asc; =0.

If a does not belong to q, @, and ¢, cannot both be zero. It follows
at once that we must have a, = 0. But if a, is zero,

B2 = (bia2+ 2byc,xy + cEy?) + ...

has the form of an element of q. Hence q is primary. If ¢,+0,
£ does not belong to g, hence q is not a prime ideal.
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Now let q be any primary ideal in a commutative ring R, and
consider the set of elements «, §, ... of ! which have the property
that some power of them belongs to q. If

a’ =0 (q) and f7=0 (q),

then (@ — B)#+o-1is equal to a sum of terms each of which is either
the product of «? by an element of R or the product of § by an
element of R, and is therefore in q. Hence (o —fF)*+t"1eq, and so
a— f is in the set. Similarly, if £ is any element of H,

(fa)p = &rar = 0 (q).

Hence £« is in the set, which is therefore an ideal, which we denote
by p. We now show that p is a prime ideal. Suppose that o and g

are such that
aff =0 (p), a*0 (p).
Since xfep, there exists an integer p such that

arfr =0 (q).

Since o is not in p, «? is not in q, and, since q is primary, there exists
an integer 7 such that #r7e q. Hence £ is in p. This proves that p is
prime. p is called the prime ideal belonging to q, or the radical of q.
It is clear that

q=0 (p)

and that q = p if and only if q is prime.
From the definition of a primary ideal and its radical, we see
that if aff =0 (q) and a0 (q),
then L=0 ().
Hence q and its radical p are related by the following properties:
@ if of=0(q) and a=*0 (q), then =0 (p);
(ii) q=20 (p),
(1ii) B =0 (p) implies fr =0 (q),

for a suitable integer p.

We may note that if i has unity and q is not the unit ideal, then
(1) implies (ii). (If q is the unit ideal, (i) does not define p.) If £ is
any element of g, we have

1.p =0 (g),
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and since q is not the unit ideal it does not contain 1. Hence, by (i),

B =0 (p)
Therefore q=0 (p).

We now show that if q and p are two ideals in R satisfying the
properties (i), (ii), (iii), then q is primary, and p is its radical. More
briefly, we shall say that q is p-primary. From (i) and (iii) it follows
that q is primary. To show that p is its radical, let £ be any element
of R such that freq for some integer p. If feq, then fep, by (ii).
If B does not belong to q, let p (p> 1) be the smallest integer such
that freq. Then

B.pr1 =0 (q),
and, Br1 £ 0 (q),
hence, by (i), B=0 (p)

This, taken with condition (iii), gives

THEOREM 1. 4 primary ideal q and its radical p are characterised
by the properties (1), (ii), (iii).

TuroreM I1. If qis p-primary, and i and | are ideals of R such that
if =0 (q), i+0 (q),
then i=0 (p).

Since 1 is not contained in g, there is an element « of i not con-
tained in q. If § is any element of j, ®feq, and « is not in gq.
Hence, by property (i} above, fep, that is

i=0 (p).
Corollary I. If

{i=0(q) and j+0 (p), then i=0 (q).

Corollary I11. If
{40 (p), then q:i=aq.

TrroreM II1. If g and o' are p-primary, then [q, q'] s p-primary.
@) If  af=0(qq]) and a+0 ([.q7),

we have af =0 (q) and af =0 (q'),

and either a+0 (q) or a0 (q).
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Suppose, for instance, that
aff =0 (q) and a0 (q).
Then since g is p-primary,

B=0 (p)
If a0 (q),
a similar argument gives £ =0 (p).
(ii) q=0(p) and ¢' =0 (p);
hence [9,.9'T1 =0 {(p).

(iii) If pep, there exist integers p, o such that
A =0 (q) and g7=0 (q).
If 7 = max[p, o], £ =0 (4,9
It follows from Theorem I that [q, q'] is p-primary.
TreEOREM IV. If q is p-primary and q' is p'-primary, where
PEDL OGS g qleq and [0.q7+0,

then [q, q"] is not primary.
Since p+p’, there exists an element a which is in one of these
ideals, but not in the other. Suppose that

a=0 (p), a0 (p').
Then no power of a belongs to ', while there exists an integer p
such that
af =0 (q).
Then a’£0 ([q,q']).

Since [q, ']+ q’, there exists an element £ which is in q’ but not in
[a, 4], and hence not in q. Then

arfeqq’ <[q,9'],
[§1, p. 6]. Now B+0 ([a,9']),

and it would follow, if {q, q'] were primary, that some power of a?
lay in [q, '], and hence that some power of a was in ¢’. Since « is
not in p’, this contradicts the fact that q’ is p’-primary. Hence we
conclude that [g, q'] is not primary.
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The theorems so far proved in this section do not require the
assumption that the Basis Theorem holds in . We now go on to
prove some results which depend on the assumption that any ideal
in R has a finite basis. For the remainder of this section we assume
that the Basis Theorem holds in R.

Let q be a p-primary ideal in R, and let vy, ..., , be a basis for p.
Corresponding to w; there exists an integer o; such that

wii =0 (q).
r
Let p=3(o;—1)+1.
i=1
Any element of p# is of the form
k k
X8+ Xn 2,
i=1 i=1
where ¢, ..., are in R, and n,, ..., n, are integers, and 2,, ..., 2,
are products of degree p in wy, ..., w,. If, for instance,
2, = wp... wfr,
r r
then Xpp=p=2(0;—1)+1,
i=1 i=1
and hence, for some value of j, p;> 0;. Thus £;€q, and hence
pr =0 (q).
There may, of course, be an integer o (o < p) such that
p7 =0 (q);

the smallest integer o with this property is called the index of g.
A primary ideal is prime if and only if its index is 1.

TEEOREM V. Let q be a primary ideal and p a prime ideal. If
q=0 (), »7=0 (q)

for some integer o, then ( is p-primary.
Let p’ be the radical of q; there exists an integer p such that

PP =0 (a).
Hence preqceh,

that is, p’e =0 (p),
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and, since p is prime, we deduce that

"=0 (p). (1)
On the other hand, we have
q="0 (p"),
and hence preqeyp’.
Therefore, since p’ is prime,
p=20 (p). (2)

From (1) and (2) we deduce that p = p’.
Anidealtin 3 is said to be reducible if it can be written in the form

i=101l

where | and f are proper factors of i; otherwise it is trreducible.
A prime ideal (and, in particular, the unit ideal) is irreducible.
For if i is prime and

i=11],
we have it<i.f] =1,
and hence i=0(@3) or ¥=0 (i),

and therefore { and ¥ cannot both be proper factors of i.

It is easy to show, by means of the Principle of Induetion for
ideals [§ 1, Th. VI, Cor. IT], that any ideal i is the intersection of a
finite number of irreducible ideals. Ifiisirreducible, there is nothing
to prove. Suppose that i is reducible:

t=1[1]
where { and f are proper factors of i. If
i= [il, far ""ir]’
where j;, ..., j, are irreducible ideals, and if
f= [fv f2’ L) fs],
where f,, ..., {, are irreducible ideals, then
Ll §CERRFS * SPRRNS A

is the intersection of a finite number of irreducible ideals. The
property of being the intersection of a finite number of irreducible
ideals is true for the unit ideal, and also for any ideal when it is

HPIII 2
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true for its proper factors. Hence it is true for all ideals in R.
Thus we have

TrrOREM VI. Every ideal in a ring for which the Basis Theorem
holds is the intersection of a finite number of irreducible ideals.

TarEorREM VII. Every irreducible ideal is primary.
Suppose that the ideal i is not primary. We can then find two
elements a and f# in R such that

af =0 (1), a0 (i), p°+0 (i),

for every positive integer p. The elements of R of the form £4°,
where § is any element of % and a is a fixed integer, clearly form an
ideal, which we denote by j,; if R has unity, i, = R.(#2), but in
general if R has not unity i, is a proper multiple of K. (f%). We see
immediately that Cos s s
tif;Stifasitjgs....
By §1, Th. VI, there exists an integer r such that
1, =1l = -oon

Let ¥ = R.(a). The ideal (i, ¥) is a proper factor of i, since it contains
i and also «, which is not in i. Similarly, the ideal (i, ],,) is a proper
factor of i, since it contains i and fr+2 = £. ™+, which is not in i.
The theorem will be proved if we can show that

i = [(is f)9 (is ir+1)]'

Clearly, we have i< [(i,¥), (i,j,4,)]- To prove that [(i,¥), (i, ],)] <1,
we consider any element # common to (i,f) and (i, j,,;), and show
that it lies in i. Since 7€ (i, ),

7 =7+pat+na,
where yei, pe R, and » is an integer. Since 7€ (i,],44),
7 =8+0pm,
where dei and oe R. We therefore have
Po+op2 = fn = fy+paf+naf =0 (i),
since y and af belong to i. Since & is also in 1, we have

ofrtt =0 (i),
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and hence oei:j,,. But i:j,,, =1:j. Hence o belongs to i:j,.
But op! = o(f. ), and hence gf+! is contained in i. It follows
that # is in i. Theorem VII is therefore proved.

Theorems VI and VII, taken together, tell us that every ideal
i in R can be expressed as the intersection of a finite number of
primary ideals. Let i = [Gp s 0],
where g is p,-primary. If p, = p,, it follows from Theorem III that
6:; = [q;, q;] is also p;-primary, and in the above expression for i
as an intersection of primary ideals we can omit g, and q;, and put
0;; in their place. Proceeding in this way, we can combine all the
primary ideals q; which have the same radical into a single primary
ideal, and so obtain a representation of i,

i= [Dfla vees D's]’

as the intersection of primary ideals, where £, is B,-primary, and
By, ..., B, are all different. £y, ..., O, are called primary components
of 1.

Suppose that £, is such that

Qi =2 81: = [D'l’ seey Qi_l, Qi'l-l’ coey Q,s].
Then £, is said to be an irrelevant primary component of i. In this
case )
1= [Q’i’ S@] = 3’5’

and we can omit the component £); in the representation of i.
Proceeding, we eventually obtain a representation, say

i= [’D’I’ sees ’D'k]’

of i as the intersection of primary ideals, the radicals of which are
all different, and none of which is irrelevant. If we combine two
of the components in this representation into one, we get a com-
ponent which is not primary [Th. IV], and if we omit one of the
components we clearly alter the intersection. For this reason the
representations [, ...,80,] of i is said to be uncontractible. For
practical purposes it is the uncontractible representations of
the ideal, rather than its representations as the intersection of
irreducible ideals, which are important.

Examples can be given to show that an ideal i may have two
distinet uncontractible representations. But there are certain
uniqueness theorems which are important, and these we now prove.

2-2
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TrrEorEM VIIL. Let[qy, ..., q;] and [q3, ..., 7] be two uncontractible
representations of an ideal t of R, where q; is p;-primary and q; is
pr-primary. Then k = 1,and, if the componenis g} are suitably arranged,
p;' = ’pj (j = 1’ "-,k)'

By a characteristic property of an uncontractible representation,
Py, ... Py are all distinet, and pj, ..., p; are all distinet. Amongst
these k + ] prime ideals we can find at least one which is not a proper
multiple of any other, and without loss of generality we may
assume that p, has this property; p, is not equal to any p; (j> 1),
and is at most equal to one p;.

Suppose that p, is not equal to any p;. For any given value
ofj (j > 1) there exists an element « which is in p, but not in p,, since

P1+0 (py).

Let p be an integer such that areq;. If « is not in p,, o is not in
p;» and hence

q:+0 (p)).
This holds for j = 2, ..., k. Again, since

P10 (p7),
a similar argument shows that

qa+0 (b)),

forj=1,...,1. Now [§1, Th. III]

(G1:05, 0200 - Qe Gu] = 1107 = [01: 01, 951 43, -+, G7 1 G, ]
Clearly g1:0: = R,
and from Theorem II, Corollary 11,

9:qm=0; (G>1),
and gGig=q; (j=1).
Hence [9 -y qz] = [q%, --sqi] = 1,

contradicting the assumption that [q, ..., q;] is an uncontractible
representation of i. It follows that p; must be equal to one pj, and
by arranging the components gj, ..., q; suitably we may suppose
that p, = p1.

By Theorem III, f = [q,, q7] is p,-primary. Just as above, we

can prove that , ,
P q;:f=q; and gq;:f=qj
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‘provided that j > 1 in both cases; and since f<= g, f=q7,
q::f=R=q:L
Hence, from the equation
(a1, .- ] = [q1, ..., qil o8,
we obtain the equation

[az, -, 4] = [, ..., 7]
We show that [qy,...,q,] is an uncontractible representation of
this ideal. Indeed, if
[qz’ ceos Q15 Oipps oo C'Ic] =0 (qz)’

then [ql’ a5 -5 Qi—15 Git1s - > Qk] =0 (qz),

contradicting the hypothesis that [q, ..., q;] is an uncontractible
representation of 1.

Theorem VIII now follows by a simple argument, using induc-
tion on the minimum number of components required to represent
an ideal i as an uncontractible intersection of primaries. Let k be
this number. If k = 1, i is primary, and q, =i. If [q7,...,q}] is
another uncontractible representation of i, the proof given above
shows that (6 - 411 = R,

and hence that =R (=2..,10.

Hence [qy, ..., q7] is only uncontractible if [ = 1, and then ¢} = g,
and therefore p; = p;. If we now assume the truth of the theorem
for ideals which can be represented as an uncontractible inter-
section of k—1 primaries, and consider an ideal i1 which requires

k components: . , ,
P £ =[Gy, O] = [0 - 7],
the reasoning above shows that:
(i) for a suitable arrangement of the components,
P =95
(11) [qz""’qk] = [QQ,,QZL

and the hypothesis of induction tells us that ¥ —1 = /—1, that is,
k =1, and the components can be arranged so that

p;=p; (=2,..k).
The proof is complete.



22 XV. IDEAL THEORY OF COMMUTATIVE RINGS

To prove our second uniqueness theorem we must first define
the isolated and embedded components of an ideal i. Let [qy, ..., qz]
be an uncontractible representation of i, and let p; be the prime
ideal belonging to q;. By Theorem VIIIL, p,, ..., p; are prime ideals
associated with i in a unique way, independent of the uncontractible
representation chosen. If p, is not a proper factor of any other
prime ideal p; of the set, g; is called an isolated component of i, and
if p; is a proper factor of some p;, q; is said to be embedded. While
the embedded components of i need not be uniquely determined
we can prove

THEOREM 1X. The isolated components of an ideal 1 are uniquely
determined.

Let [qy,..-,q%] and [qi,...,q%] be two uncontractible repre-
sentations of i, and suppose that the components are arranged so
that q; and qj are both p;-primary. Let q; be an isolated component
of i. Then p, is not a proper factor of any p, (j > 1). Hence q; is also
an isolated component. For convenience, we write

j=[02 ) 1= 1[0 q
so that [90,1] == [a5i'].
Let g; be of index p;. Then
pg...pgr = 0 (j).
If { = p,, we have poE...pok =0 (py),
and hence p; =0 (b

for some value of ¢ greater than 1, contrary to the hypothesis
that g, is isolated. Hence
o 140 (py)-

Therefore [Th. II, Cor. I1],

0 = [qujl:] = i:1 = [an.i:4,
and hence a; = 0 (q7)-
Similarly, we show that  {'+=0 (p,),
and deduce that a1 =0 (qy).

Hence g, = g1, and the theorem follows.



