Contents

Preface

1. What are the problems?

1.1 Introduction
1.2 Adiabatic invariants in the history of quantum mechanics
1.3 Semiclassical quantization: Einstein, Brillouin and Keller versus Gutzwiller
1.4 Avoided level crossing and quantum adiabatic phase
1.5 Quantum dynamics: ergodicity, recurrence and cross-over time
1.6 Chaos versus extrinsic disorder: application to solid-state physics

2. Quantum billiards: from closed to open systems

2.1 Diamagnetism of a Fermi gas: revival of Van Leeuwen’s thought
2.2 Classical dynamics in magnetic billiards
2.3 Avoided level crossings and diamagnetism
2.4 Open stadium billiards and quantum transport

3. Quantum chaos in spin systems

3.1 Quantum chaos in an antiferromagnetic spin cluster: introduction
3.2 Classical treatment
3.3 Quantum treatment: construction of matrix elements
3.4 Irregular energy spectra

Preface xi
1. What are the problems? 1
2. Quantum billiards: from closed to open systems 26
3. Quantum chaos in spin systems 56
Contents

3.5 New speculations
3.6 Quantum dynamics of a pulsed spin system: discrete map and classical result
3.7 Quantum-mechanical treatment
3.8 Quasi-eigenstates and fractals
3.9 Anomalous diffusion and multifractals

4 Nonlinear dynamics in spin-wave instabilities: chaos of macroscopic quanta
4.1 Historical problems
4.2 Experimental evidence of chaos in yttrium iron garnet (YIG)
4.3 Quantum theory of nonlinear spin-wave dynamics
4.3.1 Equation of motion for magnons in the post-threshold regime
4.3.2 Stability analysis of fixed points
4.3.3 Numerical treatment
4.4 Strange attractors and multifractals

5 Universal dynamical system behind quantum chaos: a single-parameter case
5.1 A remarkable bridging between quantum chaos and non-linear dynamics
5.2 Generalized Calogero–Moser system
5.3 Generalized Sutherland system
5.4 Solitons and moving avoided crossings
5.5 Statistical mechanics of generalized Calogero–Moser system
5.5.1 Thermodynamic formalism of random matrix theory
5.5.2 Level spacing distribution
5.5.3 Fate of Brownian motion model
5.5.4 Curvature distribution: beyond random matrix theory
5.6 Soliton-gas picture for quantum irregular spectra

6 Nonadiabatic generalization, field-theoretical model and future prospects
6.1 Nonadiabatic transitions at avoided level crossings
6.2 Reduction to a field-theoretical model
Table of Contents

6.3 Future prospects
 6.3.1 Continuing investigations of the trace formula
 6.3.2 Summary and future prospects

References

Index