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1

From Boolean Algebras
to Semimodular Lattices

1.1 Sources of Semimodularity

Summary.We briefly indicate some milestones in the general development of lattice theory.
In particular, we outline the way leading from Boolean algebras to semimodular lattices.
Most of the concepts mentioned in this section will be explained in more detail later. We
also give a number of general references and monographs on lattice theory and its history.

Boolean Algebras and Distributive Lattices

Lattice theory evolved in the nineteenth century through the works of George
Boole, Charles Saunders Peirce, and Ernst &tdr"and later in the works of
Richard Dedekind, Garrett Birkho21 , Oystein Ore, John von Neumann, and others
during the first half of the twentieth century. Boole [1847] laid the foundation for

the algebras named after him. Since then the more general distributive lattices
have been investigated whose natural models are systems of sets. There are many
monographs on Boolean algebras and their applications, such as Halmos [1963]
and Sikorski [1964]. For the theory of distributive lattices we refer to the books

by Gratzer [1971] and Balbes & Dwinger [1974].

Modular Lattices

Dedekind [1900] observed that the additive subgroups of a ring and the normal
subgroups of a group form lattices in a natural way (which he célleggruppen
and that these lattices have a special property, which was later referred to as
the modular law Modularity is a consequence of distributivity, and Dedekind’s
observation gave rise to examples of nondistributive modular lattices.

Lattice theory became established in the 1930s due to the contributions of Garrett
Birkhoff, Ore, Menger, von Neumann, Wilcox, and others.

In a series of papers Ore generalized the classical results of Dedekind and in-
vestigated decomposition theorems known from algebra in the context of modular
lattices (cf. in particular Ore [1935], [1936]). Kurosch [1935] published a note in
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which he proved a result, independently of Ore and at the same time, that became
later known as the Kurosh—Ore theorem. The motivation behind this work was the
conjecture that the corresponding result for commutative rings (which was proved
by Noether [1921]) could also be proved in the noncommutative case. Kurosh
and Ore reduced Noether's theorem to its basic ingredients. However, their work
amounted to more than a mere repetition of the former proof in the more general
framework of modular lattices. Modularity is the best-known generalization of
distributivity. Distributive and modular lattices are dealt with in all books on lat-
tice theory and universal algebra. There are several monographs treating modular
lattices within the framework of continuous geometries (von Neumann [1960],
Maeda [1958], and Skornjakov [1961]).

Semimodular Lattices

An important source of examples leading to lattices is based on the idea of consid-
ering various collections of points, lines, planes, etc., as geometrical “configura-
tions.” For example, projective incidence geometries lead to complemented mod-
ular lattices: the lattices of flats or closed subspaces of the geometry. However, if
one considers affine incidence geometries, the corresponding lattices of flats are no
longer modular, although they retain certain important features of complemented
modular lattices. These lattices are special instances of so-called geometric lat-
tices. Properties of lattices of this kind were studied by Birkhoff [1933], [1935a].
During the years 1928-35 Menger and his collaborators independently developed
ideas that are closely related (see Menger [1936]). Birkhoff's work [1935b] was
inspired by the matroid concept introduced by Whitney [1935] in a paper entitled
“Onthe abstract properties of linear dependence.” A matroid is a finite set endowed
with a closure operator possessing what is now usually called the Steinitz—Mac
Lane exchange property. Matroid theory has developed into a rich and flourishing
subject. Crapo & Rota [1970a] present in the introduction to their book a survey
of the development of matroid theory and geometric lattices. For more details see
also Crapo & Rota [1970b] and Kung [1986b]. For a comprehensive account of
older and more recent developments in matroid theory, including numerous contri-
butions and historical notes on the relationship with lattice theory and other fields,
we refer to the three volumes White [1986], [1987], [1992].

As Garrett Birkhoff stated, the theory of geometric lattices was not foreshad-
owed in Dedekind’s work. Geometric lattices are atomistic lattices of finite length
satisfying thesemimodular implication

(Sm) Ifa A bis alower cover of, thenb is a lower cover of v b.

We shall call a lattice (of finite length or natpper semimodulaor simply semi-
modularif it satisfies the implication (Sm). Birkhoff originally introduced another
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condition, namely
(Bi) If a A bis alower cover o andb, thena andb are lower covers od v b.

In lattices of finite length both conditions are equivalent, butin gefrihoff’s
condition(Bi) is weaker than (Sm). This is why lattices satisfying (Bi) are some-
times calledweakly semimodulain our use of the wordemimodulame have
adopted the terminology used by Crawley & Dilworth [1973]. We remark, however,
that the notiorsemimodulahas also been used to denote other related conditions,
some of which will be considered later. The nasmimodulawas coined by
Wilcox [1939].

From Dedekind’s isomorphism theorem for modular lattices it is immediate
that any modular lattice is semimodular. On the other hand, matroids lead to
semimodular lattices that are not modular in general. The implication reversed
to (Sm) will be denoted by (Sm*). Lattices satisfying (Sm*) are caleder
semimodularor dually semimodularFor lattices of finite length, (Sm) together
with (Sm*) yields modularity. In this sense semimodularity is indeed just “one
half” of modularity. However, an upper and lower semimodular lattice of infinite
length need not be modular. An example is provided by the orthomodular lattice
of closed subspaces of an infinite-dimensional Hilbert space.

Conditions Related to Semimodularity

The semimodular implication (Sm) and Birkhoff’s condition (Bi) are stated in
terms of the covering relation. Hence they only trivially apply to infinite lattices
with continuous chains. For example, the lattice of projection operators of a von
Neumann algebra has no atoms; it therefore trivially satisfies (Sm) and could
formally be cited as an example of a semimodular lattice. However, not much
insight is gained from this observation.

Wilcox and Mac Lane were the first to introduce conditions that do not in-
volve coverings and that may be considered as substitutes for the semimodular
implication (Sm) in arbitrary lattices.

Wilcox [1938], [1939] showed that affine geometry as developed algebraically
by Menger can be axiomatized without the use of points (now usually called atoms).
Wilcox’s central concept is the symmetry of modular pairs, cdilesymmetrnand
briefly denoted by (Ms). This notion came to play a decisive role in nonmodular
lattices. Looking back Wilcox (1988, personal communication) wrote:

The affine geometries seemed a natural place to start. Karl Menger had done
some work here, but not in a way that would lend itself to generalization.
As | recall my approach which led naturally to the idea of modular pairs, |
noted the obvious fact that the failure of an affine geometry (as a lattice) to
be modular stems from the presence of parallel pairs, i.e. pairs whose meets
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are “too small”... . Parallel pairs may be thus viewed as non-modular pairs.
As to the symmetry of modularity, | noted that in the affine case parallelism
is symmetric, i.e. non-modularity of pairs is symmetric, so that modularity

of pairs is also symmetric. Hence | began to look for generalizations of affine
geometries in which modularity was symmetric.

We have already stated that the lattice of projection operators of a von Neumann
algebrais trivially upper semimodular. Topping [1967] proved the highly nontrivial
result that this lattice i81-symmetric. We shall return tbl-symmetry on several
occasions, especially in Chapter 2.

The condition introduced by Mac Lane [1938] and briefly denoted by (Mac) is
somewhat more complicated (for details see Section 3.1). In his investigations on
“exchange lattices” Mac Lane was led to this condition when looking for “point-
free” substitutes for an axiom due to Menger. For more details on the background
of these investigations see Mac Lane [1976].

Wilcox’s condition of M-symmetry (Ms) and Mac Lane’s condition (Mac) are
both consequences of modularity. On the other hand, neither (Ms) nor (Mac)
implies modularity. Also, both (Ms) and (Mac) imply upper semimodularity, but
not conversely. Moreover, (Ms) and (Mac) are independent of each other, that is,
neither of these conditions implies the other. However, for lattices of finite length,
the conditions (Sm), (Bi), (Ms), and (Mac) are all equivalent.

By acondition related to semimodularitynean a condition that is equivalent to
upper semimodularity for lattices of finite length. In this sense Birkhoff’s condition
(Bi), Wilcox’s condition (Ms) of M-symmetry, and Mac Lane’s condition (Mac)
are conditions related to semimodularity.

Figure 1.1 visualizes the interrelationships between the classes of lattices men-
tioned before. An arrow indicates proper inclusion, that iX #&ndY are classes
of lattices, therX — Y meansX C .

Other conditions related to semimodularity were discovered by Dilworth and
Croisot; these conditions will be considered in Section 3.2.

We shall insertinclusion charts in many places. In particular, we shall give inclu-
sion chartsrefining Figure 1.1. In these inclusion charts arrowheads will sometimes
be omitted with the understanding that, where two concepts are connected by an
ascending line, the “lower” concept implies the “upper” one.

Local Distributivity and Local Modularity

The early papers by Dilworth [1940], [1941a] were further milestones and impor-
tant sources of semimodularity. Many of the decomposition theorems in algebra
had already been extended to the more general domains of distributive lattices and
modular lattices in the 1930s, for example in the above-mentioned works of Ore
and Kurosh. Dilworth observed that there are lattices with very simple arithmetical
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properties that come under neither of these classifications. For example, the lattices
with unique irreducible meet decompositions that were considered by Dilworth
[1940] are upper semimodular. This paper led to the concdptaf distributivity

and marked the origin of a combinatorial structure that is nowadays also referred to
as anantimatroid More generally, Dilworth [1941a] investigatéatal modular-

ity; this was the first paper dealing with an extension of the Kurosh—Ore theorem
from modular lattices to semimodular lattices.

Notes

Let us first mention some further sources of lattice theory and its history. Mehrtens
[1979] gives a detailed account of the development of lattice theory from the very
beginnings until about 1940 (for a comprehensive review of Mehrtens’s book see
Dauben [1986]). Much information on logics as a source of lattice theory can be
found in Chapter 2 of Mangione & Bozzi [1993]. An excellent source for tracing
the historical development of lattice theory in general and of semimodular lattices
in particular is the three editions of Birkhoff’s treatikattice Theory(Birkhoff
[19404a], [1948], [1967]). Details on the early history of lattice theory can be found
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in Birkhoff's General Remark to Chapter | of Hgelected Papers on Algebra and
Topology(see Rota & Oliveira [1987]). Similarly, th8elected Papers of Robert

P. Dilworth (see Bogart et al. [1990]) provide an invaluable insight into Dilworth’s
way of thinking and his strategy for solving problems. Dilworth himself wrote
background information for the chapters of this book, and his papers are supple-
mented by comments that trace the influence of his ideas.

For general reference we also list some monographs on lattice theory and related
topics in chronological order without claiming completeness: Dubreil-Jacotin et al.
[1953], SZsz [1963], Barbut & Monjardet [1970], Maeda & Maeda [1970], Blyth
& Janowitz [1972], Crawley & Dilworth [1973], Gatzer [1978], [1998], Davey
& Priestley [1990], Cedli [1999]. For the role of finite partially ordered sets and
lattices in combinatorics see Aigner [1979], Stanley [1986], and Hibi [1992]. For
the interplay between lattices and universal algebra we referatz@1979] and
McKenzie et al. [1987].

Let us also say a few more words about names for concepts. When we use the
termBoolean algebrave really mean something other thBoolean lattice(see
Section 1.2). Modular lattices have also been called Dedekind lattices. When we say
semimodularwe always meanpper semimodulaiWe have already mentioned
the dual concepiower semimodularSimilarly we shall speak ofipper locally
distributiveand its dualower locally distributiveas well as ofipper locally modu-
lar and its dualower locally modular Upper locally distributive lattices are also
called join-distributive lattices or locally free lattices (there are also other names for
them). Lower locally distributive lattices are also called meet-distributive lattices.
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1.2 Boolean Lattices, Ortholattices, and Orthomodular Lattices

Summary. We recall the definitions of Boolean lattices, distributive lattices, modular lat-
tices, and orthocomplemented and orthomodular lattices. The notion of modular pair is
introduced. Some important results and examples are given.

A lattice is calleddistributiveif
(D) cv(@aAab)y=(cva An(cvb)

holds for all triples &, b, c) of lattice elements. A lattice is distributive if and only
if cA (@avb)=(caa)Vv(cAb)holds for all triples &, b, ) of lattice elements.

For the visual representation of posets and lattices we frequently use Hasse
diagrams. The lattices in Figure 1.2(a), (d) are distributive, whereas the lattices in
Figure 1.2(b), (c) are not. The lattices in Figure 1.2(b) and (c) will be denoted by
M3 and Ns, respectively.

Let us explain some more concepts. We say it alower coverof y and
we writex < yif Xx < yandx <t < yimpliest = x. Equivalently we say in
this case thay is anupper coverof x and writey > x. If a lattice has deast
elementdenoted by 0, we also say that the latticddainded belowif a lattice
has agreatest elementienoted by 1, we also say that the lattickasinded above
A bounded lattices a lattice having both a least element and a greatest element.
In a lattice bounded below, an upper cover of the least element is callein
In Figure 1.2(c) the elemengsandc are atoms, bub is not. A lattice bounded
below is said to batomisticif every of its elementss£ 0) is a join of atoms.

The lattice in Figure 1.2(b) is atomistic, but the lattices in Figure 1.2(a), (c), and
(d) are not. In a lattice bounded below an elenefit 0) is called acycleif the
interval [0,Z] is a chain. Every atom is a cycle; in Figure 1.2(c) the elenbdsata
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&<

© (d)
Figure 1.2

cycle that is not an atom. A lattice bounded below is catlgdically generated
if every element# 0) is a join of cycles. The lattices in Figure 1.2(a), (b), (c) are
cyclically generated, but the lattice in Figure 1.2(d) is not. Any atomistic lattice is
cyclically generated. The nanggclehas its origin in the theory of abelian groups.
Figure 1.2(a) is isomorphic to the lattice of all subgroups of the cyclic gidp
Figure 1.2(b) is isomorphic to the the subgroup lattice of the Klein 4-group.

A sublatticeK of a latticeL is called adiamondor a pentagorif K is isomor-
phic to M3 or Ns, respectively. Distributivity is characterized by the absence of
diamonds and pentagons:

Theorem 1.2.1 Alattice is distributive if and only if it does not contain a diamond
or a pentagon.

This is Birkhoff’s distributivity criterion (Birkhoff [1934]). For more on dis-
tributive lattices see Section 1.3.

In a bounded lattice, an elemeatis a complement o& if a Aa = 0 and
ava = 1. Acomplemented lattids a bounded lattice in which every element has
a complement. The lattices of Figure 1.2(b) and (c) are complemented, whereas
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O

@ 2" (b) 2 (©2°

Figure 1.3

the lattices in Figure 1.2(a) and (d) are not. A complemented distributive lattice
will be called aBoolean latticeln a Boolean latticd3, every element has a unique
complement and is alsorelatively complementedhat is, every interval oB is
a complemented sublattice.

We shall distinguish Boolean lattices from Boolean algebrd&&oélean algebra
is a Boolean lattice in which the least element 0, the greatest element 1 and the
complementatiorTare also considered to be operations. In other words, a Boolean
algebraisasyste® = (B, A, Vv, 0, 1) with the two binary operations, v, the
unary operation_, and the nullary operations 0 and 1. We use the standard notation
2"(n=1, 2,3, ...) forthe Boolean lattice consisting of 2lements. The Boolean
lattices2?, 22, and2® are shown in Figure 1.3(a), (b), and (c), respectively.

Any distributive lattice obviously satisfies the implication

(M) c<b=cv@Aaby=(cvaAb

for all elements, b, c. A lattice is calledmodularif it satisfies (M) for alla, b, c.
Modularity is the most important generalization of distributivity. The diamibhd
[Fig. 1.2(b)] is modular but not distributive. The pentageg[Fig. 1.2(c)] is not
modular. Modularity can be characterized by the absence of pentagons:

Theorem 1.2.2 A lattice is modular if and only if it does not contain a pentagon.

This characterization is due to Dedekind [1900]. Some more properties of mod-
ular lattices will be given in Section 1.6. However, let us note here that for some
special classes of lattices, the forbidden-sublattice characterizations for modular
and distributive lattices can be sharpened by showing the existence of very large
or very small pentagons or diamonds.

For instance, a bounded relatively complemented nonmodular lattice always
contains a pentagon 3, 1}-sublattice. The same is true of the diamond in certain
complemented modular lattices (von Neumann [1936-7]). If a lattice is finite
and nonmodular, then the pentagon it contains can be required to $atisfy
[the notation referring to Fig. 1.2(c)]. The modularity criterion (Theorem 1.2.2)
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simplifies as follows in the case of complemented atomic lattices (a lattizith
0 is calledatomicif for every x € L, x # 0, there exists an ato € L such that

X > p).

Theorem 1.2.3 If a complemented atomic lattice contains no pentagon including
both the least and greatest elements, then the lattice is modular.

This theorem is due to McLaughlin [1956]. For a proof we also refer to Salii
[1988], pp. 27-30, and to Dilworth [1982], pp. 333—-353.

In nonmodular lattices we shall be interested in modular pairs and dual modular
pairs, which were introduced by Wilcox [1938], [1939]. We say that an ordered
pair (@, b) of elements of a latticé is amodular pairand we writea M b if, for
allcel,

c<b implies cv(aanb)y=(cva)Aabh.
We say thatd, b) is adual modular pairand we writea M* b if, for all ce L,
c>b implies cAa(avb)y=(cara)vh.

If (a, b) is not a modular pair, then we wriéeM b. Itis clear that a lattice is modular
if and only if every ordered pair of elements is modular. In the nonmodular lattice
of Figure 1.2(c) we havb M abuta M b, which shows that the relation of being
a modular pair is not symmetric in this lattice. Similarly, this example also shows
that the relation of being a dual modular pair is not symmetric in general.

Let L be a lattice with 0 and 1. Almrthocomplementationn L is a unary
operationa — a’ on L satisfying the following three conditions:

() arat =0,avat=1,thatisa' is a complement of;
(i) a<bimpliesbt < at;
(i) a*+ = aforeveryaclL.

Note thata'+ stands for &*)*. We calla’ the orthocomplemenaf a. An ortho-
complemented latticéoriefly: ortholattice OC latticd is a lattice with O and 1
carrying an orthocomplementation.

Any Boolean lattice is an ortholattice (the Boolean complement of an element
being its orthocomplement). Two other examples of ortholattices are shown in
Figure 1.4. The “benzene ring” of Figure 1.4(a) is also be callechtheagon
The lattice in Figure 1.4(b) is theorizontal sunof the blocks2? and23, that is,
22N 2% = {0, 1).

For elements, b of an ortholattice th®e Morgan laws

@vbt=atAbt and (@aabyt=atvbt

hold, since the orthocomplementatian- a* is a dual isomorphism of the lat-
tice onto itself. Conversely, either of the two De Morgan laws implies (i) in the
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1=0"

b a”
a b”
0=1"

@

Figure 1.4

preceding definition of ortholattices. Hence we may replace (ijeby b): =
a’t A bt or by its dual. For elements, b of an ortholattice we define a binary
relation L (“orthogonality”) by

alb ifandonlyif a<b®.

If a L b holds, we also say thatis orthogonalto b.

Using the above-introduced orthogonality relation and the notion of modular
pairs, we now define orthomodular lattices. An orthocomplemented ldttise
calledorthomodulaif, forall a, b € L, a L bimpliesa M b. In other words, every
orthogonal pair is a modular pair. This explains the expressittromodular

Orthomodularity can be characterized in several ways within the class of ortho-
complemented lattices. Some of these characterizations are gathered in

Theorem 1.2.4 In an orthocomplemented lattice L the following five statements
are equivalent:

(i) L is orthomodular;
(i) a M a’ holds for allac L;
(i) a M*at holds forallae L;
(iv) a < bimpliesav (a- Ab) =b;
(v) a < b implies the existence ofcL such thatal c and avc=Db.

For a proof see Maeda & Maeda [1970], Theorem 29.13, p. 132. Any Boolean
lattice is orthomodular. The lattice in Figure 1.4(a) is the simplest example of an
orthocomplemented lattice that is not orthomodular. The lattice of all subspaces of
the three-dimensional real Euclidean space is modular and orthocomplemented and
hence orthomodular. The lattice in Figure 1.4(b) is orthomodular, but not modular.

The lattices in Figures 1.2-1.4 are finite and hence of finite length. Let us now
give examples of orthomodular lattices of infinite length. (We refer to Section 1.9
for a formal definition of the notion of length.)
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Our first example is the lattice of closed subspaces of a Hilbert spacéi Let
denote a Hilbert space. As a metric spades complete, which means that every
Cauchy sequence i converges. A subspaé# of H is closedf for every Cauchy
sequence/, in M with y, — x € H implies x € M. A closed subspace is also
called aflat. By L.(H) we denote the set of all closed subspaceld oT he lattice
(Lc(H); ©) isacomplete latticeL.(H); A, V), the meet of two closed subspaces
being their set-theoretic intersection and the join being the closure of their sum. This
lattice will also briefly be denoted bly.(H). For a subspac® of H we define
ML ={xeH : (x,y)=0 forally e M} with (x, y) denoting the inner product
of x andy defined onH. The operatiorM — M+ is an orthocomplementation,
andL.(H) is a complete orthomodular lattice (Sasaki [1954]). We can interpret
the orthomodular identity as a basic fact about the geometry of Hilbert space:
If the closed subspack is contained in the closed subspadethenN is the
orthogonal direct sunof M andN — M (the orthocomplement dfl in N), that
is, M < N impliesN = M&®(N — M). For more details see for example Halmos
[1957]. The lattice of all closed subspaces of an infinite-dimensional Hilbert space
H is atomistic but not modular. Indeed, one can show that the lati¢el) is
modular if and only ifH is finite-dimensional.

Without going into details, we mention as a second example the projection lat-
tice of a von Neumann algebra. This lattice is orthomodular, but neither modular
nor atomistic. For some more information see Section 2.6. There are several mono-
graphs dealing with the theory and applications of orthomodular lattices, such as
Maeda & Maeda[1970], Kalmbach [1983], [1986], Beran [1984]. Other references
will be given in the Notes below and in Section 2.6.

We close this section with a brief look at varieties of lattitdset p; =g be
identitiesfori € 1. The clas¥ of all lattices satisfying all identitiep; = ¢, i € I,
is called avariety (or equational claskof lattices. A variety igrivial if and only
if it contains one-element lattices only. Ltbe a class of lattices. We use the
following notation:

H (K) denotes the class of all homomorphic images of membeis of

S (K) denotes the class of all sublattices of membens.of

P (K) denotes the class of all isomorphic images of direct products of members
of K.

We say thaK is closed under the formation of homomorphic images, under the
formation of sublatticesandunder the formation of direct producit H(K) C
K, S(K) C K, andP(K) C K, respectively. The following result is known as
Birkhoff's HSP theorem (Birkhoff [1935b]).

1For this topic see the monograparieties of Latticesy P. Jipsen and H. Rose, Springer-Verlag,
Berlin (1992).
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Theorem 1.2.5 A classK of lattices is a variety if and only iK is closed under
the formation of homomorphic images, under the formation of sublattices, and
under the formation of direct products.

Corollary 1.2.6 LetK be a class of lattices. ThetSP (K) is the smallest variety
containingK.

The corollary is due to Tarski [1946]. Themallest variety containing will
be denoted by/(K). We shall also say that(K) is the variety generated bi.
Several important classes of lattices form a variety. We have already mentioned the
class of one-element lattices (the trivial variety); the clase$all lattices is also a
variety. It is immediate from the definition that distributive lattices form a variety.
A Boolean algebr® = (B, A, v, _ 0, 1) can be defined by equations. Hence the
class of Boolean algebras is a variety. An orthomodular lattice considered as an
algebraL = (L, A, Vv, +,0,1) can be defined by equations. Hence the class of
orthomodular lattices is a variety.

There are many statements equivalent to modularity. It can be shown, for exam-
ple, that a latticd. = (L, A, Vv) is modular if and only if it satisfieé(b A ) v a)
AC = (bAac)v(anc) forall a,b,c € L. Hence the class of modular lattices
is a variety. In contrast to this, the class of semimodular lattices does not form a
variety (see Section 1.7).

Notes

The theory of orthomodular lattices has its roots in functional analysis, and its
origins go back to the theory of von Neumann algebras. For a thorough study of
this background and an analysis of the historical sequence von Neumann algebras
— continuous geometries> orthomodular lattices we refer to Holland [1970].
The theory of continuous geometries was also invented by von Neumann and
developed in the period 1935-7 (for von Neumann'’s contribution to lattice theory
see Birkhoff [1958]).

The investigation of the lattice-theoretical foundations of quantum-mechanical
systems was initiated by Birkhoff & von Neumann [1936], who set up a model
of what they called théogic of quantum mechanicklowever, their lattices were
modular, and this turned out to be too restrictive a condition. The interpretation
of observables as operators in Hilbert space and, in particular, the investigation of
lattices of projection operators led to nonmodular orthomodular lattices.

The relationship between certain orthomodular lattices (or more general struc-
tures) and quantum mechanics belongs to the vast field vaguely descripezhas
tum logics A popular account of some problems arising in this field is McGrath
[1991]. For details we refer to the monographs Beltrametti & Cassinelli [1981],
Cohen [1989], and BK & Pulmannoa’[1991].
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1.3 Distributive and Semidistributive Lattices

Summary. The early work on distributive lattices included representation theorems, em-
bedding theorems, and structure theorems. Later it was discovered that the congruence
lattice of a lattice and the lattice of lattice varieties are distributive. We mention some of
these results with a view to later applications and generalizations. We also give some facts
concerning semidistributivity, which is next to modularity the mostimportant generalization

of distributivity.
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An elementj (m) of a latticeL is calledjoin-irreducible (meet-irreducibliif, for
allx,yelL,

j=xVvy implies j=xorj=y (m=xAYy implies m=xorm=y).

For a latticel of finite length letJ (L) denote the set of all nonzero join-irreducible
elements, regarded as a poset under the partial orderihg 8bometimes we
emphasize this by writing more precisely((), <) instead ofJ(L). By j’ we
denote the uniquely determined lower covelj@f J(L). For a poseP, we call a
subset € P anorder ideal(or hereditary subsgif x e | andy <x imply yel.

Let ord(P) denote the set of all order ideals of the poBetand regard ordg)

as partially ordered by set inclusion. With respect to this partial orderPyrd(
forms a lattice in which meet and join are the set-theoretic intersection and union,
respectively. Thus ordR) is a distributive lattice. For finite distributive lattices we
have the following structural result

Theorem 1.3.1 Let L be a finite distributive lattice. Then the map
pra—>{jrj<a jedL)}=@NJIL)
is an isomorphism between L andd(J(L)).
For a proof see Gtzer [1978], pp. 61-62, or Stanley [1986], p. 106.

Corollary 1.3.2 The correspondencet J(L) makes the class of all finite dis-
tributive lattices (with more than one element) correspond to the class of all finite
posets. Isomorphic lattices correspond to isomorphic posets, and vice versa.

The preceding corollary is called tfigndamental theorem on finite distributive
lattices It has several important consequences. Recall that a sBbé#te power
setof asetis calledring of setsf X, Y € SimpliesbothX NY € SandXUY € S.
Since ord( (L)) is a ring of sets, we have

Corollary 1.3.3 A finite lattice is distributive if and only if it is isomorphic to a
ring of sets.

In particular, we have

Corollary 1.3.4 A finite lattice is Boolean if and only if it is isomorphic to the
lattice of all subsets of a finite set.

If ais an element of a lattic&, then a representatica=j; v --- v j, of a
as a join of finitely many join-irreducible elemenis ..., j, € J(L) is called a
finite join decompositionf a. This join decomposition is said to lieedundant
if, foreachi = 1,...,n,onehasa # jy V---V ji_1 V jiz1 V --- V jn. Dually
one definedinite meet decompositioasdirredundant finite meet decompositions
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(see Crawley & Dilworth [1973], p. 38). Finite join decompositions or finite meet
decompositions do not always exist. However, if a lattice element has a finite join
decomposition, then it clearly has an irredundant join decomposition, which is
obtained by omitting superfluous elements from the given join decomposition. A
similar statement holds for finite meet decompositions. It is easy to see that in a
distributive lattice an element has at most one irredundant join decomposition and
at most one irredundant meet decomposition. In the finite case we have

Corollary 1.3.5 Every element of a finite distributive lattice has a unique irre-
dundant join decomposition and a unique irredundant meet decomposition.

Similar results have also been proved for distributive lattices that are not finite
but satisfy certain relaxations of finiteness. For example, if a distributive lattice
satisfies theascending chain conditiofACC for short), then each of its elements
has a unique irredundant meet decomposition (see Birkhoff [1948], p. 142), which
is necessarily finite. In Section 1.8 we shall have a look at the existence of possibly
infinite meet decompositions and the question ofirredundant meet decompositions.
The unigueness property for irredundant meet decompositions will be discussed
in more detail in Chapter 7.

Let M (L) denotethe set of meet irreducible elemefis 1) of a lattice of finite
lengthL . By m* we denote the uniquely determined upper covenefM (L). Ina
finite distributive lattice there is a natural one-to-one correspondence between the
meetirreducibles# 1) and the join irreducibles£ 0): For everyme M (L), there
exists a unigue minimal join irreducibles J(L) suchthaf £ m. Inturn,misthe
unique maximal meet irreducible not containipgrhis correspondence implies

Corollary 1.3.6 If L is a finite distributive lattice, thenJ(L)| = |[M(L)]|.

For a proof see Gitzer [1978], pp. 62—63. For a finite distributive latticdt is
even true thatl (L) = M(L). More precisely, we havel(L), <) = (M(L), <),
where< denotes the partial ordering inducedlbysee Pezzoli[1984] for a proof).
This property of finite distributive lattices is illustrated in Figure 1.5.

Consider now Cori(), the set of congruence relations on a latticeand let
¥ be a subset of Coh{. Define the relationr in L by a = b if a 6 b holds
for all @ € X, and define the relation by the ruleao b if there exist a sequence
a=ap,a;,...,a = bin L and congruence relatioms, ..., 6, € X such that
a_10 g for eachi=1,...,n. It is easy to see that ando are congruence
relations, thatr is the meet in Cori() of the subset, and thats is the join in
Con(L) of . Hence Conl() is a complete lattice. Funayama & Nakayama [1942]
proved that the lattice Coh{ of congruence relations on a lattitas distributive
and algebraic. For a proof see also Crawley & Dilworth [1973], p. 75. The fact
that, for an arbitrary lattické , the congruence lattice Cdn) is distributive can be
reformulated by saying that the variety of all lattices@mgruence-distributive
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Its partially ordered
set of meet-irreducibles # 1,
M(L)

Its partially ordered
set of join-irreducibles # 0,
JL)

b

A finite distributive lattice L
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Figure 1.5

We have already remarked that modularity is the most important generalization
of distributivity. There are weakenings of distributivity going in other directions
than modularity. Among these, semidistributivity turned out to be particularly
fruitful. A lattice L is calledmeet-semidistributivi

(SDA) anb=aAc impliesanb=anA(bvc) foralla,b,cel.
A lattice L is calledjoin-semidistributivef
(SDv) avb=avc impliesavb=av (bac) foralla,b,cel,

and a lattice is calledemidistributive- (SD) for short — if it satisfies both (S
and (SDv). In what follows we briefly recall some results on (SD), (§band
(SDv) with an eye to later applications (e.g. in Section 9.3).

Semidistributivity was introduced bpdsson [1961] in his investigations of free
lattices? Jonsson proved that (SK) and (SDv) hold in a free lattice. Hence any
sublattice of a free lattice is semidistributive. Let us note that sublattices of free
lattices also satisfy the following condition due to Whitman [1941]:

(W) xAy<uvuv implies XAy, uvuv]N{x,y,u,v} #@.

Nation [1982] proved dnsson’s longstanding conjecture that a finite lattice is
isomorphic to a sublattice of a free lattice if and only if it is a semidistributive
lattice satisfyingVhitman’s conditioifW). Free lattices provide the mostimportant
examples of semidistributive lattices. However, semidistributivity has also shown
up in other areas of lattice theory. In particular, meet semidistributivity appears in
the congruence lattice of meet semilattices, and it plays an important role in the
study of lattice varieties. Let us give some more examples. We begin with lattices
that arenot semidistributive.

The lattice M3 is not semidistributive; in fact, it satisfies neither (§DPnor
(SDv). Next we consider the lattice, S}, L3, L4, Ls shown in Figure 1.6. From

2For this topic see the monograpree Latticeshy R. Freese, J. dek, and J. B. Nation Amer. Math.
Soc., Providence, R.I. (1995).



