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Preface to the second edition

The following are the main features of the second edition.

More than 150 new problems and examples have been added.
The new problems include several that relate abstract concepts
to concrete situations. Among others, we present applications
of G-sets, the division algorithm and greatest common divisors
in a given euclidean domain. In particular, we should mention
the combinatorial applications of the Burnside theorem to real-
life problems. A proof for the constructibility of a regular n-gon
has been included in Chapter 18.

We have included a recent elegant and elementary proof, due to
Osofsky, of the celebrated Noether—Lasker theorem.

Chapter 22 on tensor products with an introduction to categories
and functors is a new addition to Part IV. This chapter provides
basic results on tensor products that are useful and important
in present-day mathematics.

We are pleased to thank all of the professors and students in the many
universities who used this textbook during the past seven years and contri-
buted their useful feedback. In particular, we would like to thank Sergio
R. Lopez-Permouth for his help during the time when the revised edition
was being prepared. Finally, we would like to acknowledge the staff of
Cambridge University Press for their help in bringing out this second
edition so efficiently.

P. B. Bhattacharya
S. K. Jain
S. R. Nagpaul

xiii
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Preface to the first edition

This book is intended for seniors and beginning graduate students. It is
self-contained and covers the topics usually taught at this level.

The book is divided into five parts (see diagram). Part I (Chapters 1-3)
is a prerequisite for the rest of the book. It contains an informal introduc-
tion to sets, number systems, matrices, and determinants. Results proved
in Chapter 1 include the Schroder—Bernstein theorem and the cardinality
of the set of real numbers. In Chapter 2, starting from the well-ordering
principle of natural numbers, some important algebraic properties of
integers have been proved. Chapter 3 deals with matrices and determinants.
It is expected that students would already be familiar with most of the
material in Part I before reaching their senior year. Therefore, it can be
completed rapidly, skipped altogether, or simply referred to as necessary.

Part II (Chapters 4-8) deals with groups. Chapters 4 and S provide a
foundation in the basic concepts in groups, including G-sets and their
applications. Normal series, solvable groups, and the Jordan—-Holder
theorem are given in Chapter 6. The simplicity of the alternating group
A, and the nonsolvability of S,, n > 4, are proved in Chapter 7. Chapter 8
contains the theorem on the decomposition of a finitely generated abelian
group as a direct sum of cyclic groups, and the Sylow theorems. The
invariants of a finite abelian group and the structure of groups of orders
p?, pq, where p, q are primes, are given as applications.

Part III (Chapters 9-14) deals with rings and modules. Chapters 911
cover the basic concepts of rings, illustrated by numerous examples,
including prime ideals, maximal ideals, UFD, PID, and so forth. Chapter
12 deals with the ring of fractions of a commutative ring with respect to
a multiplicative set. Chapter 13 contains a systematic development of

Xiv
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xvi Preface to the first edition

integers, starting from Peano’s axioms. Chapter 14 is an introduction to
modules and vector spaces. Topics discussed include completely reducible
modules, free modules, and rank.

Part IV (Chapters 15-18) is concerned with field theory. Chapters 15
and 16 contain the usual material on algebraic extensions, including
existence and uniqueness of algebraic closure, and normal and separable
extensions. Chapter 17 gives the fundamental theorem of Galois theory
and its application to the fundamental theorem of algebra. Chapter 18
gives applications of Galois theory to some classical problems in algebra
and geometry.

Part V {Chapters 19-21) covers some additional topics not usually
taught at the undergraduate level. Chapter 19 deals with modules with
chain conditions leading to the Wedderburn—Artin theorem for semi-
simple artinian rings. Chapter 20 deals with the rank of a matrix over a
PID through Smith normal form. Chapter 21 gives the structure of a
finitely generated module over a PID and its applications to linear algebra.

Parts 1I and IIl are almost independent and may be studied in any
order. Part IV requires a knowledge of portions to Parts II and IIL It
can be studied after acquiring a basic knowledge of groups, rings, and
vector spaces. The precise dependence of Part IV on the rest of the book
can be found from the table of interdependence of chapters.

The book can be used for a one-year course on abstract algerba. The
material presented here is in fact somewhat more than most instructors
would normally teach. Therefore, it provides flexibility in selection of the
topics to be taught. A two-quarter course in abstract algebra may cover
the following: groups — Chapters 4, 5, and 7 (Section 1) and 8; rings —
Chapters 9, 10, 11, and 14 (Sections 1-3); field theory — Chapters 15, 16, and
18 {Section 5). A two-semester course in abstract algebra can cover all of
the material in Parts II, III, and IV.

Numerous examples have been worked out throughout the book to
illustrate the concepts and to show the techniques of solving problems.
There are also many challenging problems for the talented student. We
have also provided solutions to the odd-numbered problems at the end
of the book. We hope these will be used by students mostly for comparison
with their own solutions.

Numbering of theorems, lemmas, and examples is done afresh in each
chapter by section. If reference is made to a result occurring in a previous
chapter, then only the chapter number is mentioned alongside. In all cases
the additional information needed to identify a reference is provided.

The book has evolved from our experience in teaching algebra for many
years at the undergraduate and graduate levels. The material has been
class tested through mimeographed notes distributed to the students.
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Preface to the first edition xvii

We acknowledge our indebtedness to numerous authors whose books
have influenced our writing. In particular, we mention P. M. Cohn’s Algebra,
Vols. 1, 2, John Wiley, New York, 1974, 1977, and S. Lang’s Algebra,
Addison-Wesley, Reading, MA, 1965.

During the preparation of this book we received valuable help from
several colleagues and graduate students. We express our gratitude to all
of them. We also express our gratefulness to Ohio University for providing
us the facilities to work together in the congenial environment of its
beautiful campus.

It is our pleasant duty to express our gratitude to Professor Donald
O. Norris, Chairman, Department of Mathematics, Ohio University,
whose encouragement and unstinted support enabled us to complete our
project. We also thank Mrs. Stephanie Goldsberry for the splendid job

of typing.
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v for all
3 there exists
e is an element of
¢ is not an element of
{x € A|P(x)} set of all x € A satisfying condition P(x)
P(x) power set of x
XDiea family indexed by set A
U X union of (X);ex
iEA
N X intersection of (X});ea
IEA
AXY Cartesian product of X and Y
%) empty set
CorcC is a subset of
G is a proper subset of
oorD contains
? properly contains
= implies
= if and only if
iff if and only if
ffX—>Y fisamapof Xinto Y
f(x) image of x€ Xunderf: X— Y
fix—y y=f(x)whereff X—> Y, x€EX,yEY
° composition
o) Euler’s function
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(a,b) in number theory, the greatest common divisor of a
and b; in rings and modules, the ideal or submodule
generated by @ and b
alb a divides b
ay a does not divide b
6 Kronecker delta
determinant

+1, according as the permutation ¢ is even or odd
square matrix with 1 in (i, j) position, O elsewhere
the set of positive integers {1,2,3,...,n}

set of all natural numbers

set of all integers

set of all rational numbers

set of all real numbers

set of all complex numbers

the cardinal of the continuum (cardinality of the reals)
integers modulo »

cardinality of X

order of group G

subgroup generated by .S

cyclic group of order n

as a group, the symmetric group of degree #; as a ring,
the ring of » X n matrices over S

alternating group of degree n

dihedral group of degree n

group of invertible m X m matrices over F

center of G

is a normal subgroup of

quotient group (ring, module) of 4 modulo B

in groups, the index of a subgroup K in a group L; in
vector spaces, the dimension of a vector space L over K;
in fields, the degree of extension of L over K
normalizer of S (in H)

conjugate class of S (with respect to H)

product of (X));ea
direct sum of (X});ex

image of homomorphism f
kernel of homomorphism f

is isomorphic into (embeddable)
is isomorphic onto
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Rop opposite ring of R
(S) ideal (submodule) generated by S
(S), right ideal generated by S
(S) left ideal generated by S
2 X; sum of right or left ideals (submodules) (X));c
i€EA
R[x] polynomial ring over R in one indeterminate x
R[x;,...,x,] polynomial ring over R in » indeterminates, X, ,...,X,
R[[x]] formal power series ring
R{x) ring of formal Laurent series
Z(p®) rationals between 0 and 1 of the form m/p™, mn >0

under the binary operation “addition modulo 1”
Homg(X,Y) set of all R-homomorphisms of R-module X to R-

module Y
Hom(X,Y) set of all homomorphisms of X to Y
End(X) endomorphisms of X
Aut(X) automorphisms of X
R localization of a ring R at S
F(a) subfield generated by F and «
F[S] subring generated by Fand S
F(S) subfield generated by Fand S
GFq) Galois field (finite field) with g elements
F algebraic closure of F
E, fixed field of H
G(E/F) Galois group of automorphisms of E over F
b, (x) cyclotomic polynomial of degree n
M®gN tensor product of My and N
O end of the proof
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