

Commutative algebra is at the crossroads of algebra, number theory and algebraic geometry. This textbook, intended for advanced undergraduate or beginning graduate students with some previous experience of rings and fields, covers roughly the same material as Chapters 1–8 of Atiyah and Macdonald [A & M], but is cheaper, has more pictures, and is considerably more opinionated.

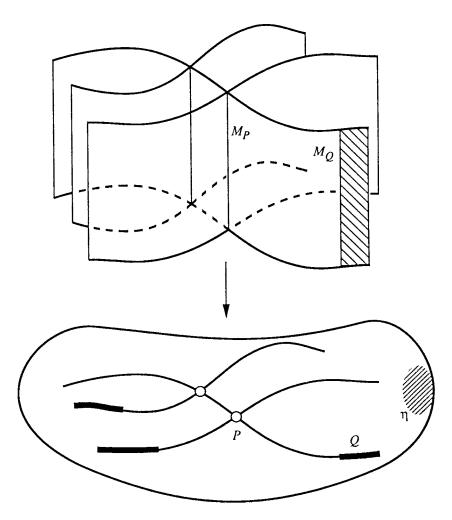
Alongside standard algebraic notions such as generators of modules and the ascending chain condition, the book develops in detail the geometric view of a commutative ring as the ring of functions on a space. The starting point is the Nullstellensatz, which provides a close link between the geometry of a variety V and the algebra of its coordinate ring A = k[V]; however, many of the geometric ideas arising from varieties apply also to fairly general rings.

The final chapter relates the material of the book to more advanced topics in commutative algebra and algebraic geometry. It includes an account of some famous "pathological" examples of Akizuki and Nagata, and a brief but thought-provoking essay on the changing position of abstract algebra in today's world.

LONDON MATHEMATICAL SOCIETY STUDENT TEXTS

Managing editor: Dr C.M. Series, Mathematics Institute University of Warwick, Coventry CV4 7AL, United Kingdom

- 1 Introduction to combinators and λ-calculus, J.R. HINDLEY & J.P. SELDIN
- 2 Building models by games, WILFRID HODGES
- 3 Local fields, J.W.S. CASSELS
- 4 An introduction to twistor theory: Second edition, S.A. HUGGETT & K.P. TOD
- 5 Introduction to general relativity, L.P. HUGHSTON & K.P. TOD
- 6 Lectures on stochastic analysis: diffusion theory, DANIEL W. STROOCK
- 7 The theory of evolution and dynamical systems, J. HOFBAUER & K. SIGMUND
- 8 Summing and nuclear norms in Banach space theory, G.J.O. JAMESON
- 9 Automorphisms of surfaces after Nielsen and Thurston, A. CASSON & S. BLEILER
- 10 Nonstandard analysis and its applications, N. CUTLAND (ed)
- 11 Spacetime and singularities, G. NABER
- 12 Undergraduate algebraic geometry, MILES REID
- 13 An introduction to Hankel operators, J.R. PARTINGTON
- 14 Combinatorial group theory: a topological approach, DANIEL E. COHEN
- 15 Presentations of groups, D.L. JOHNSON
- 16 An introduction to noncommutative Noetherian rings, K.R. GOODEARL & R.B. WARFIELD, JR.
- 17 Aspects of quantum field theory in curved spacetime, S.A. FULLING
- 18 Braids and coverings: selected topics, VAGN LUNDSGAARD HANSEN
- 19 Steps in commutative algebra, R.Y. SHARP
- 20 Communication theory, C.M. GOLDIE & R.G.E. PINCH
- 21 Representations of finite groups of Lie type, FRANÇOIS DIGNE & JEAN MICHEL
- 22 Designs, graphs, codes, and their links, P.J. CAMERON & J.H. VAN LINT
- 23 Complex algebraic curves, FRANCES KIRWAN
- 24 Lectures on elliptic curves, J.W.S. CASSELS
- 25 Hyperbolic geometry, BIRGER IVERSEN
- 26 An introduction to the theory of L-functions and Eisenstein series, H. HIDA
- 27 Hilbert Space: compact operators and the trace theorem, J.R. RETHERFORD
- 28 Potential theory in the complex plane, T. RANSFORD
- 29 Undergraduate commutative algebra, M. REID
- 32 Lectures on Lie Groups and Lie Algebras, R. CARTER, G. SEGAL & I. MACDONALD
- 33 A primer of algebraic D-modules, S.C. COUTINHO



Frontispiece: let A be a ring and M an A-module . . .

London Mathematical Society Student Texts 29

Undergraduate Commutative Algebra

Miles Reid University of Warwick

> Published by the Press Syndicate of the University of Cambridge The Pitt Building, Trumpington Street, Cambridge CB2 1RP 40 West 20th Street, New York, NY 10011-4211, USA 10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1995

First published 1995

A catalogue record for this book is available from the British Library

Library of Congress cataloging in publication data

Reid, Miles (Miles A.)
Undergraduate commutative algebra / Miles Reid.
p. cm. - (London Mathematical Society student texts; 29)
Includes bibliographical references
ISBN 0 521 45255 4. - ISBN 0 521 45889 7 (pbk.)
1. Commutative algebra. I. Title. II. Series.
QA251.3.R45 1995
512'.24--dc20 94-27644 CIP

ISBN 0 521 45255 4 hardback ISBN 0 521 45889 7 paperback

Transferred to digital printing 2002

Contents

Fron	tispiece: let A be a ring and M an A -module	page iv
Illust	trations	xi
Preface		xiii
0	Hello!	1
0.1	Where we're going	1
0.2	Some definitions	2
0.3	The elementary theory of factorisation	2
0.4	A first view of the bridge	3
0.5	The geometric side – the case of a hypersurface	3
0.6	\mathbb{Z} versus $k[X]$	5
0.7	Examples	7
8.0	Reasons for studying commutative algebra	10
0.9	Discussion of contents	12
0.10	Who the book is for	13
0.11	What you're supposed to know	13
Exercises to Chapter 0		14
1	Basics	19
1.1	Convention	19
1.2	Ideals	19
1.3	Prime and maximal ideals, the definition of Spec A	20
1.4	Easy examples	21
1.5	Worked examples: Spec $k[X, Y]$ and Spec $\mathbb{Z}[X]$	22
1.6	The geometric interpretation	23
1.7	Zorn's lemma	25
1.8	Existence of maximal ideals	26

vii

viii	Contents	
1.9	Plenty of prime ideals	27
1.10		27
1.11	Discussion of zerodivisors	28
1.12	Radical of an ideal	29
1.13	Local ring	31
1.14	First examples of local rings	31
1.15	Power series rings and local rings	32
Exerc	cises to Chapter 1	33
2	Modules	37
2.1	Definition of a module	37
2.2	Harmless formalism	37
2.3	The homomorphism and isomorphism theorems	38
2.4	Generators of a module	40
2.5	Examples	41
2.6	The Cayley–Hamilton theorem	41
2.7	The determinant trick	43
2.8	Corollaries – Nakayama's lemma	43
2.9	Exact sequences	44
2.10	Split exact sequences	45
Exerc	cises to Chapter 2	46
3	Noetherian rings	49
3.1	The ascending chain condition	49
3.2	Noetherian rings	50
3.3	Examples	51
3.4	Noetherian modules	52
3.5	Properties of Noetherian modules	53
3.6	The Hilbert basis theorem	54
Exer	cises to Chapter 3	55
4	Finite extensions and Noether normalisation	58
4.1	Finite and integral A-algebras	59
4.2	Finite versus integral	60
4.3	Tower laws	61
4.4	Integral closure	61
4.5	Preview: nonsingularity and normal rings	62
4.6	Noether normalisation	63
4.7	Proof of Claim	64
4.8	Another proof of Noether normalisation	65
4.9	Field extensions	66

	Contents	ix
4.10	The weak Nullstellensatz	67
Exer	cises to Chapter 4	67
5	The Nullstellensatz and $\operatorname{Spec} A$	70
5.1	Weak Nullstellensatz	70
5.2	Maximal ideals of $k[X_1, \ldots, X_n]$ and points of k^n	70
5.3	Definition of a variety	71
5.4	Remark on algebraically nonclosed k	72
5.5	The correspondences V and I	72
5.6	The Nullstellensatz	73
5.7	Irreducible varieties	74
5.8	The Nullstellensatz and $\operatorname{Spec} A$	75
5.9	The Zariski topology on a variety	75
5.10	The Zariski topology on a variety is Noetherian	76
5.11	Decomposition into irreducibles	76
5.12	The Zariski topology on a general $\operatorname{Spec} A$	77
5.13	$\operatorname{Spec} A$ for a Noetherian ring	78
5.14	Varieties versus $\operatorname{Spec} A$	80
Exer	cises to Chapter 5	82
6	Rings of fractions $S^{-1}A$ and localisation	84
6.1	The construction of $S^{-1}A$	84
6.2	Easy properties	86
6.3	Ideals in A and $S^{-1}A$	87
6.4	Localisation	88
6.5	Modules of fractions	89
6.6	Exactness of S^{-1}	90
6.7	Localisation commutes with taking quotients	91
6.8	Localise and localise again	92
Exer	cises to Chapter 6	92
7	Primary decomposition	95
7.1	The support of a module $\operatorname{Supp} M$	96
7.2	Discussion	97
7.3	Definition of Ass M	98
7.4	Properties of Ass M	99
7.5	Relation between Supp and Ass	100
7.6	Disassembling a module	103
7.7	The definition of primary ideal	103
7.8	Primary ideals and Ass	105
7.9	Primary decomposition	105

x	0 Contents	
7.10	Discussion: motivation and examples	106
7.11	Existence of primary decomposition	108
7.12	Primary decomposition and $Ass(A/I)$	109
7.13	Primary ideals and localisation	109
Exercises to Chapter 7		110
8	DVRs and normal integral domains	112
8.1	Introduction	112
8.2	Definition of DVR	113
8.3	A first criterion	113
8.4	The Main Theorem on DVRs	114
8.5	General valuation rings	116
8.6	Examples of general valuation rings	117
8.7	Normal is a local condition	118
8.8	A normal ring is a DVR in codimension 1	119
8.9	Geometric picture	121
8.10	Intersection of DVRs	121
8.11	Finiteness of normalisation	122
8.12	Proof of Theorem 8.11	123
8.13	Appendix: Trace and separability	124
Exercises to Chapter 8		126
9	Goodbye!	129
9.1	Where we've come from	129
9.2	Where to go from here	130
9.3	Tidying up some loose ends	132
9.4	Noetherian is not enough	135
9.5	Akizuki's example	139
9.6	Scheme theory	141
9.7	Abstract versus applied algebra	142
9.8	Sketch history	143
9.9	The problem of algebra in teaching	144
9.10	How the book came to be written	145
Exerc	cises to Chapter 9	146
Bibliography		149
Index		150

Illustrations

	Frontispiece: let A be a ring and M an A -module	iv
0.5	Quadric cone with a line	6
0.7	The cuspidal cubic and Spec $\mathbb{Z}[\sqrt{-3}]$	9
0.15	Smallest residue modulo $\mathbb{Z}[i]$ and $\mathbb{Z}[\omega]$	17
1.6	$\operatorname{Spec} k[X,Y]$ and $\operatorname{Spec} \mathbb{Z}[Y]$	24
1.11	The plane curves defined by $XY = 0$ and $X^2 = 0$	30
4.8	Projecting the hyperbola $XY = 1$	66
6.8	The spectrum of a local ring Spec A_m	91
7.2	An A-module M gives rise to the family $M = \{M_P\}$ for	
	$P \in \operatorname{Spec} A$, which we can view as fibred over $\operatorname{Spec} A$.	98
7.5	Maximal irreducible closed sets of $Supp M$ are in Ass M ; if	
	A is Noetherian and M is finite, these are the irreducible	
	components of Supp M .	101
7.10	The ideal $I = (X^2, XY) = (X, Y)^2 \cap (X)$ of functions	
	vanishing on the Y-axis and at $(0,0)$ with multiplicity 2.	107
94	Nagata's leaf	138

Preface

These are notes from a commutative algebra course taught at the University of Warwick several times since 1978. In addition to standard material, the book contrasts the methods and ideology of abstract algebra as practiced in the 20th century with its concrete applications in algebraic geometry and algebraic number theory.