CAMBRIDGE

Cambridge University Press

0521458684 - Hydrodynamics, Sixth Edition
Horace Lamb

Frontmatter

More information

HYDRODYNAMICS

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521458684
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521458684 - Hydrodynamics, Sixth Edition
Horace Lamb

Frontmatter

More information

HYDRODYNAMICS

BY

SIR HORACE LAMB, M.A,, LL.D., Sc¢.D., F.R.S.

HONORARY FELLOW OF TRINITY COLLEGE, CAMBRIDGE ; LATELY PROFESSOR
OF MATHEMATICS IN THE VICTORIA UNIVERSITY OF MANCHESTER

SIXTH EDITION

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521458684
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521458684 - Hydrodynamics, Sixth Edition
Horace Lamb

Frontmatter

More information

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, S&o Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521055154

First published 1879
Second edition 1895
Third edition 1906
Fourth edition 1916
Fifth edition 1924
Sixth edition 1932

First paperback edition published by Dover Publications 1945

First Cambridge University Press paperback edition 1993
Reprinted 1995, 1997

A catalogue record for this publication is available from the British Library

ISBN-13 978-0-521-45868-9 paperback
ISBN-10 0-521-45868-4 paperback

Transferred to digital printing 2006

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521458684
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521458684 - Hydrodynamics, Sixth Edition
Horace Lamb

Frontmatter

More information

PREFACE

HIS may be regarded as the sixth edition of a Treatise on the Mathematical
Theory of the Motion of Fluids, published in 1879. Subsequent editions,
largely remodelled and extended, have appeared under the present title,

In this issue no change has been made in the general plan and arrangement,
but the work has again been revised throughout, some important omissions
have been made good, and much new matter has been introduced.

The subject has in recent years received considerable developments, in the
theory of the tides for instance, and in various directions bearing on the
problems of aeronautics, and it is interesting to note that the “classical”
Hydrodynamics, often referred to with a shade of depreciation, is here found
to have a widening field of practical applications. Owing to the elaborate
nature of some of these researches it has not always been possible to
fit an adequate account of them into the frame of this book, but attempts
have occasionally been made to give some indication of the more important
results, and of the methods employed.

As in previous editions, pains have been taken to make due acknowledg-
ment of authorities in the footnotes, but it appears necessary to add that the
original proofs have often been considerably modified in the text.

I have again to thank the staff of the University Press for much valued
assistance during the printing.

HORACE LAMB
Apri 1932
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FOREWORD

The publication of a paperback edition of Lamb’s Hydrodynamics by Cam-
bridge University Press is a remarkable scientific event, attesting to the endur-
ing vitality of a classic text. First published in 1879 in a much smaller version
entitled A Treatise on the Motion of Fluids, this book was revised in 1895 un-
der its present title. Successive revisions in 1906, 1916 and 1924 led to the
final sixth edition in 1932, which is now being reprinted. Even after 60 years,
Lamb’s book is owned and used by most fluid dynamicists and is occasionally
employed as a text in fluid dynamics courses.

A discussion of the historical context of Hydrodynamics, in particular the
state of Aluid mechanics during Lamb’s life, will partly explain the reasons for
this longevity. An understanding of the development of the subject may also
ease some of the difficulties that the modern reader might have with Lamb’s
notation and scientific viewpoint. Finally this introduction will hopefully help
to document the unique contemporary value of Hydrodynamics.

The subject of hydrostatics was founded in the third century B.C. by
Archimedes in his book On Floating Bodies. Although there were some in-
teresting and well-known observations of fluid motion by Leonardo da Vinci
in the fifteenth century, the initial scientific investigation of fluid motion was
performed by Sir Isaac Newton in Principia (1687) in which he considered the
resistance to an object moving through air or liquid and the motion of water
waves. The first coherent account of the subject however was that of Daniel
Bernoulli whose book Hydrodynamics (1738) contained “Bernoulli’s law” relat-
ing pressure and velocity in an incompressible fluid, as well as a number of its
consequences. Leonhard Euler then derived the equations of continuity and
momentum for a frictionless fluid in 1755. He derived the equations for both
a compressible and an incompressible fluid, and he expressed the equations in
a fixed “Eulerian” coordinate system, as well as in a “Lagrangian” coordinate
system that moves with the fluid. J.L. Lagrange later took up the subject,
without crediting Euler. In particular, along with Laplace and Cauchy, he
developed the theory of velocity fields generated by a potential.

The stress tensor for a viscous fluid and the resulting Navier—Stokes equa-
tions were first derived by Claude L.M.H. Navier in 1821 and by S.D. Poisson
in 1829. This ended a first period in the development of hydrodynamics during
which the basic flow equations and their properties were derived, stimulating
much of the development of the theory of partial differential equations, but
with little progress on solution of fluid flow problems.

The subsequent period from approximately 1840 to 1920 produced many
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outstanding analytical successes, which are beautifully captured in Lamb’s
book. In 1845 George Gabriel Stokes rederived Navier’s results from basic me-
chanical principles and formulated the no-slip boundary condition, which was
controversial for many years. The form of the stress tensor received additional
confirmation through Maxwell’s derivation of the coefficients of viscosity and
heat conductivity from kinetic theory in 1866. Stokes later solved the problem
of a spherical particle moving through a viscous liquid in which inertia is neg-
ligible (§337; this and the numbers below refer to section in Hydrodynamics).
He obtained the force law P = 6mual for the force P on particle of radius a
moving at speed U in a fluid of viscosity p. This theory was modified by Oseen
in 1910 to include he effects of inertia (§342). Osborne Reynolds also applied
Stokes’s theory to derive a theory of lubrication (§330, 330a).

At the same time great progress was made at the other extreme for an
incompressible, inviscid fluid. Stokes again led the way. He solved the problem
of a sphere moving through an ideal fluid (§92) and found the added mass
to be equal to half the mass of the displaced fluid. This solution does not
include a wake, however, since it is symmetric from front to back. A theory of
two-dimensional flows bounded by solid walls and free stream lines of constant
pressure (§73) was initiated by Helmholtz and developed by Kirchhoff. One
result of this type is flow past a flat plate with free streamlines emanating from
the ends of the plate (§76-77), which was first derived by Kirchoff in 1869 and
more fully discussed by Lord Rayleigh in 1876. The region of no flow between
the two free streamlines can be interpreted as a wake, but it does not provide
agreement with experimental results.

Equally successful in this period was the development of the theory of water
waves and tidal waves. Although waves in deep water were first examined by
Cauchy and Poisson early in the nineteenth century, the real treasures of the
subject were discovered later. In an 1876 examination question, Stokes gave the
first analytic explanation of the observed dispersion of water waves (§236, 237).
He introduced the concept of group velocity, which was generalized by Rayleigh
in his research papers and in his book Theory of Sound (1877) and then further
developed by Osborne Reynolds. Lord Kelvin (William Thomson) introduced
the method of stationary phase to describe the interference patterns of water
waves. He applied these results to waves produced by ships and derived the
fascinating result that the wake of a ship has an angle of 19.3°, independent of
its speed (§256). The theory of nonlinear waves was initiated by Stokes in 1847,
who showed that wave speed depends on the amplitude (§250). The particular
case of solitary waves, first observed by Scott Russell in 1844, was analyzed
by Boussinesq and Rayleigh (§252, 253). Further investigation of this problem
by Korteweg and de Vries in 1895 is referred to in a footnote to §253; their
“KdV equation” was shown to be completely integrable in the 1960’s and was
the starting point for a new mathematical subject.

Vortex motion was another topic that was developed during the nineteenth
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century, and it provided much of the original motivation for Lamb’s Treatise.
The study of vortex motion was started by Hermann von Helmholtz in his
paper of 1858 and was further developed and simplified by Kelvin in a paper
of 1869. The persistence of vorticity, now called Kelvin’s theorem (§33), and
Helmholtz’s simple equations for the evolution of the vorticity (§146) provide
a general method with which to analyze unsteady flows. Special solutions,
such as vortex sheets, rectilinear vortices (i.e. two dimensional point vortices),
elliptical vortex patches, vortex streets and vortex rings, provide a wealth of
examples for understanding real fluid flows. Kelvin even proposed a theory of
“vortex atoms” based on vortex rings in the ether, which has long since been
discarded.

This was the scientific environment in which Lamb began his career. Born
in 1849 to a father who was a foreman in a cotton mill, Horace Lamb received
his B.A. degree in 1872 from Trinity College, where Stokes and Maxwell were
among his teachers. He stayed on at Trinity as a Fellow and Lecturer for
three years, during which time he first gave the lectures that were the basis
for his monograph A Treatise on the Motion of Fluids. His was one of the
first courses to include the new theories of water waves, free surfaces using
complex variables, and vortex motion. Students who attended these lectures
and reviewers of Lamb’s text were enthusiastic about the striking depth and
originality of his exposition.

In 1875 Lamb left his position at Trinity, where Fellows were still under
a rule of celibacy, and after marrying he accepted a position as Professor at
the recently established University of Adelaide. He remained in Australia until
1885 when he returned to Manchester as Professor of Pure Mathematics in
Owens College. Except for a change of his title to Professor of Mathematics
(Pure and Applied), this was his position until his retirement in 1920. At
that time he returned to Cambridge as an Honorary Fellow at Trinity and
was appointed to an honorary lectureship, the Rayleigh Lectureship, in the
Mathematics Institute at the University. Lamb was elected a Fellow of the
Royal Society in 1884 and received its Royal and Copley Medals. In addition
to many other honors, he was knighted in 1931. He was scientifically active
throughout his retirement until his death in 1934.

Lamb’s research contributions were primarily on wave motion and vibra-
tions, particularly on spherical bodies. His papers on oscillatory modes of an
elastic sphere and on the propagation of surface waves on a sphere were seminal
works in theoretical seismology and earthquake wave transmission. One of the
wave types predicted by Lamb’s theory of 1882 was only first observed in a
Chilean earthquake of 1960. Lamb made equally fundamental contributions to
the theory of tides and terrestrial magnetism. The first satisfactory explanation
of the marked difference between tides observed in different parts of the oceans
was due to Lamb, and he calculated the deflection of the earth’s surface caused
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by tidal loading. He also gave an analysis of the diurnal variation of the earth’s
magnetism.

Hydrodynamics contains numerous original contributions of Lamb, which are
not always easy to detect because of the author’s modesty. Examples include
the oscillations of a viscous sphere (§355), the phase of the tides (§184), and a
simplified derivation of Oseen’s theory for motion of a sphere in a viscous liquid
(§342), as well as its application to the motion of a cylinder (§343). Moreover
much of the exposition of Chapter VIII on tidal waves and that on motion
of a solid through a liquid in Chapter VI, in particular for a perforated solid
(§132-134), was due to Lamb.

In addition to Hydrodynamics, Lamb wrote a number of other textbooks
which were widely used at the time, including Infinitesimal Calculus (1897),
The Dynamical Theory of Sound (1910), Statics (1912), Dynamics (1914) and
Higher Mechanics (1920). Hydrodynamics itself was extremely well received
and influential. For example, Rayleigh wrote an enthusiastic review of the
fourth edition in 1916, describing Lamb’s text as a vast improvement over earlier
texts, which he described as “arid in the extreme.” He further stated that “to
almost all parts of his subject he has made entirely original contributions,” and
“on all of these subjects the reader will find expositions which could scarcely
be improved.”

A new period in the development of hydrodynamics started around the turn
of the century. The fluid flow phenomena and solutions that were developed in
the nineteenth century formed an impressive analytic theory, which occupies
the heart of Lamb’s text. This theory demonstrated the power of mathemat-
ical technique combined with physical reasoning, but it was not yet of much
practical value. In his 1916 review of Hydrodynamics, Rayleigh concluded with
a call for more coordination between theory and experimental results, stating
that “one can scarcely deny that much of [theoretical hydrodynamics] is out
of touch with reality.” Indeed, at that time there was little agreement between
theory and experiment for many flows, notably for the motion of an obstacle
through air or liquid (except in the case of slow flow for which inertia is negli-
gible). Neither Stokes’ irrotational solutions (§93) nor the solutions with free
streamlines (§76) developed by Kirchoff give correct results, as pointed out in
§370. Moreover in the wake of an obstacle such as a solid cylinder, double
trails of vortices of alternating sign were observed as early as 1902 by Ahlborn
(§370a) and were analyzed by von Karman in 1911 (§156).

An understanding of the role of viscosity and vorticity in flow around an
obstacle was not possible until the development of boundary layer theory by
Ludwig Prandt! beginning in 1904 (§371a). Around the same time the lift
on an airfoil was explained by Lanchester’s lifting line theory (§370b) and the
general theorems of Blasius (§72b). Generation of a wake however requires
detachment of the boundary layer as a mechanism for injecting vorticity into
the outer flow, as briefly described in §371b. Lamb’s discussion of boundary
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layers and the role of vorticity is incomplete; for example, the important result
that vorticity in a fluid flow is generated only at boundaries receives only a
brief mentioned in §328. In addition the statement in §371b that separation
of the boundary layer for an impulsively moving cylinder first occurs at 180°
has recently been disproved by van Dommelen and Shen through numerical
computation. Indeed the subject of boundary layers and separation is still
an area of intense research, mainly through experiment, triple-deck theory and
direct numerical simulation. For example, there is still considerable debate over
the form of the steady solution for flow past a sphere at high Reynolds number,
although this flow is unstable and almost certainly not physically observable.

An even more problematic flow phenomena was first observed by O. Rey-
nolds in 1883 (§365, 366). His experiments with pipe flow showed agreement
with Poiseuille’s theory below a critical value of the Reynolds number (Reynolds
number is defined in a footnote in §366), but above that value the flow becomes
turbulent. Lamb credits Kelvin with coining the name “turbulence” for these
troublesome flows. Similar results for rotating flows were first observed by G.I
Taylor in 1922. Reynolds also developed the idea of an eddy viscosity (§366b)
to describe the macroscopic behavior of a turbulent flow.

Following these early investigations, outstanding progress has been made
in experimental technique, with results such as the recent discovery of spatial
coherence in developing turbulent flows. There have been some equally signifi-
cant theoretical advances, particularly A. Kolmogorov’s 1941 theory of energy
cascade and the inertial range, although corrections are believed necessary to
accurately account for intermittency. The mathematical theory of chaos is ap-
parently inadequate for describing the many degrees of freedom present in a
turbulent flow. Nevertheless it provides an effective description for many flows
that are complicated, but less than turbulent, such as those seen during the
development of oscillating patterns in rotating flow. Finally numerical simu-
lations of turbulent flows are proving to be quite valuable, although they are
severely limited by both computational speed and memory size.

The theory of shock waves in gases was another topic under development
during the latter part of Lamb’s life, and a treatment of the subject is initiated
in §284 of Chapter X on Waves of Expansion. Rankine’s derivation (1870)
of the jump conditions for mass and momentum conservation across a shock
is presented; then Lamb repeats Rayleigh’s objection that the energy cannot
be conserved across such a jump. The mistake in Rayleigh’s argument was in
his implicit assumption that the entropy is constant across a shock. Indeed,
Hugoniot’s correct proposal (1889) that a jump in entropy across the interface
changes the equation of state is mentioned by Lamb in a footnote but regarded
as physically suspect. This section of Hydrodynamics also contains a brief
account of the effect of dissipation on the shock profile. The theory of inviscid,
as well as viscous, shock waves has since been more completely developed.

Computational Fluid Dynamics (CFD) is almost entirely missing from Hy-
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drodynamics. Before the advent of the digital computer, hand computation
of fluid flow problems was performed only with considerable effort. Starting
with the wartime work of the 1940°s, CFD has been tremendously successful
in simulating flows such as shock waves, flow around airfoils and convective
flows. Although the most complicated flows, particularly those that are fully
three-dimensional, are currently beyond the reach of computation, numerical
simulation has emerged as a complementary approach to physical experimenta-
tion and analytic theory. Certainly computation entails some new difficulties,
including artificial boundary conditions and numerical instabilities, that are
not present in physical experiments. Computational experiments do, however,
offer decided advantages, such as more freedom in choice of parameter values,
better control over noise, and more complete data, particularly for vorticity.

Numerical computation does introduce new pathologies and instabilities
that are not well addressed by physical intuition. A result of this has been the
revitalization of mathematical theory for fluid dynamics. In his 1916 review,
Rayleigh complained that rigorous mathematical analyses of physical problems
often “tell us only what we knew before.” This is not the case for numerical
problems, however, and mathematical analysis has been instrumental in the
development of effective methods for simulating shock waves, for example. A
mathematical theory of fluid flows is currently far from complete. Among
other issues, there is now considerable debate over the possible development of
singularities in three-dimensional inviscid, turbulent flows. For turbulent flows,
the mathematical theory is still in its infancy.

In §371b Lamb states the question, originally raised by Oseen, of the inviscid
limit (v — 0) for flow around an obstacle such as a sphere, and points out that
the limit may be different from the inviscid flow. The solution to this problem is
still unknown, in spite of considerable effort both analytically and numerically,
and it constitutes one of the major outstanding questions of theoretical fluid
dynamics. For example the energy dissipation in a turbulent flow is believed
to remain nonzero in the limit of zero viscosity.

The modern reader will notice many differences in style as well as content
between Lamb’s Hydrodynamics and current textbooks. Most noticeable is that
matrix-vector notation is absent, which can be quite burdensome for unsus-
pecting students. Consider for example the elegant matrix-vector formulation
of Helmholtz’s result

&/p = (8Z/020)io/ po
for the vorticity & and density p at time ¢, in terms of the initial vorticity &y
and density pg, and the derivative of the flow map #(Zo,t). In Hydrodynamics
it is written out component by component in much less transparent form as

equation (3) in §146. In the same section Helmholtz’s evolution equation for
vorticity

D(&/p)/Dt = (@/p) - Vi
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is again written out in less transparent form as equation (4) of §146.

Since matrix-vector notation is now so prevalent, one may be surprised to
discover that it was not so in Lamb’s day. In fact the development of vector
analysis has a complicated history. The first attempt to develop an algebra
of three-dimensional points was through the use of quaternions, which were
discovered by Hamilton in 1843. He considered them to be a three-dimensional
analogue of the representation of two dimensional points by complex numbers.
In his theory Hamilton introduced the gradient operator V, which he called
“nabla.” He urged physicists to adopt quaternions, and James Clerk Maxwell
was greatly impressed by Hamilton’s theory. In A Treatise on Electricity and
Magnetism, Maxwell was the first to employ vectors and scalars, interpreting
them as the components of the quaternion representation. Maxwell also distin-
guished the divergence, curl and Laplacian operators.

The initiation of vector analysis as a distinct subject was made indepen-
dently by Josiah Willard Gibbs and Oliver Heaviside, and was popularized
through Vector Analysis by Gibbs and E.B. Wilson (1901) and Electromag-
netic Theory by Heaviside (1893). They developed the algebra and geometry of
vectors, and they defined the scalar and vector products for three-dimensional
vectors. Moreover, Heaviside was the first to write Maxwell’s equations in the
elegant vector form that is now familiar; Maxwell had always written them out
component by component, just as Lamb does for the equations of hydrodynam-
ics.

Engineers and physicists were quick to follow the lead of Gibbs, who was
a physical chemist, and Heaviside, who was an electrical engineer, since they
found quaternions to be cumbersome and too far removed from the geometry of
Cartesian coordinates. Mathematicians however fiercely resisted vector analysis
in favor of quaternions for some time. Finally, vector methods were adopted in
analytic and differential geometry, and quaternions faded from the mainstream
of mathematics.

The history of matrices is more subtle, since determinants were used long
before matrices themselves were studied. In the early 1700’s, Maclaurin dis-
tinguished the determinant in his study of solutions of simultaneous linear
equations. The theory of determinants was further developed in the nineteenth
century by Sylvester, who first used the term “matrix” in his studies. A separate
study of matrices was finally initiated by Arthur Cayley in his investigations
of invariants under linear transformations. He published a fully developed the-
ory, defining matrix multiplication, inversion and transposition, as well as the
characteristic equation for a matrix, in “A Memoir on the Theory of Matrices”
(1858).

The first exclusive use of matrix-vector notation in a hydrodynamics text
was in Theoretical Hydrodynamics by L.M. Milne-Thomson, first published in
1938. After describing this as a radical departure from the traditional presenta-
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tion in his preface, Milne-Thomson devoted a chapter to the elements of vectors
and tensors. In more recent texts, such as G.K. Batchelor’s book An Introduc-
tion to Fluid Dynamics, vectors and matrices are used without comment, since
they are now a standard part of an undergraduate education.

Another aspect of Hydrodynamics that may trouble modern readers is
Lamb’s emphasis on exact solutions. This is also one of the main strengths
of the text, however, and is a major reason for its lasting popularity. Since
Lamb’s time, the scarcity of simple exact solutions and the limitations of infi-
nite series expansions have become more apparent. Emphasis is now placed on
interpretation of the most important exact solutions and the physical phenom-
ena that they manifest. Techniques of asymptotic analysis have also greatly
improved, so that now many more flow problems can be solved through per-
turbation expansions. Most recently numerical computations have become an
extremely effective method for investigating fluid flows, and their role is almost
certainly going to increase in the future. Nevertheless, theoretical fluid dynam-
ics is still largely a collection of flow examples and Hydrodynamics contains a
wealth of them.

Two misprints in the text should be pointed out. In §697 the Z component
of the rotation vector should be 0 rather than —w?z. Another is in the footnote
of §17 stating that the preface gives an explanation for the minus sign in the
definition 4 = —V ¢ for the potential. Lamb’s explanation, which was included
in the fifth edition but omitted in the sixth, is that with this choice ¢ is the
impulsive pressure, or the potential of an impulsive force, that would start the
flow 4 from rest, rather than one that would stop the flow.

The value of Lamb’s Hydrodynamics today is first as a storehouse of exact
solutions for fluid dynamic problems, as stated earlier. In this aspect it is
unequaled by modern texts. There are also certain fluid dynamic topics that
are still best expressed in Lamb’s book. An example is his discussion of the
Hamiltonian formulation for fluid dynamic problems. In particular Chapter
VI develops the Hamiltonian approach for the dynamics of solid particles in a
fluid, treating the mixture as a single system. As Lamb points out at the end
of the chapter, this approach has not been validated in all circumstances, and
it seems to be fertile ground for further exploration. A related topic that is
often omitted in contemporary texts is Clebsch coordinates, described in §167
at the end of Chapter VII.

Less tangible but equally important is the contact that Hydrodynamics pro-
vides with an earlier era of fluid dynamics. Lamb gave careful attribution to
original sources, which is of great help to anyone interested in the history of
fluid mechanics. More important to most readers is the perspective conveyed
from a crucial period in the development of this subject. Since the final re-
vision of Hydrodynamics in the 1930’s, great progress has been made in fluid
dynamics. Lamb’s treatment of nonlinear water waves, shock waves, fluid dy-
namic stability, boundary layers and turbulence, for example, suggests many
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problems, of which a large number have since been solved but many others
remain open. Thus Hydrodynamics provides us with a valuable measure of the
past progress of fluid dynamics and with a compelling challenge for its future.

R.A. Caflisch
UCLA
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