All aspects of space plasmas in the solar system are introduced and explored in this text for senior undergraduate and graduate students. *Introduction to Space Physics* provides a broad, yet selective, treatment of the complex interactions of the ionized gases of the solar-terrestrial environment. The book includes extensive discussions of the sun and solar wind, the magnetized and unmagnetized planets, and the fundamental processes of space plasmas, including shocks, plasma waves, ULF waves, wave–particle interactions, and auroral processes. The text devotes particular attention to space-plasma observations and integrates these with phenomenological and theoretical interpretations.

Highly coordinated chapters, written by experts in their fields, combine to provide a comprehensive introduction to space physics. Based on an advanced undergraduate and graduate course presented in the Department of Earth and Space Sciences at UCLA, the text will be valuable to both students and professionals in the field.
INTRODUCTION TO SPACE PHYSICS
INTRODUCTION TO SPACE PHYSICS

EDITED BY

Margaret G. Kivelson Christopher T. Russell

University of California, Los Angeles
CONTENTS

List of Contributors

Preface

1 A BRIEF HISTORY OF SOLAR-TERRESTRIAL PHYSICS
C. T. Russell
1.1 Ancient Auroral Sightings 1
1.2 Early Measurements of the Geomagnetic Field 3
1.3 The Emergence of a Scientific Discipline 5
1.4 The Ionosphere and Magnetosphere 9
1.5 The Solar Wind 13
1.6 Magnetospheric Exploration 15
1.7 Planetary and Interplanetary Exploration 21
1.8 Concluding Remarks 26

Additional Reading

Problems

2 PHYSICS OF SPACE PLASMAS
M. G. Kivelson
2.1 Introduction 27
2.2 Single-Particle Motion 27
2.3 Collections of Particles 34
2.4 The Plasma State 38
2.5 The Fluid Description of a Plasma 41
2.6 Two Applications of the MHD Equations 50
2.7 Conclusion 53

Appendix 2A: Some Properties of Nonrelativistic Charged Particles in Magnetic Fields 53

Additional Reading

Problems

3 THE SUN AND ITS MAGNETOHYDRODYNAMICS
E. R. Priest
3.1 Introduction 58
3.2 The New Sun 62
3.3 The Role of the Magnetic Field 65
3.4 MHD Equilibria, Waves, and Instabilities 69
vi CONTENTS

3.5 Solar Activity 70
3.6 Prominences 74
3.7 Coronal Heating 79
3.8 Solar Flares 82
3.9 Conclusion 88

Additional Reading 88
Problems 89

4 THE SOLAR WIND 91
A. J. Hundhausen 91
4.1 Introduction 91
4.2 A Quick Survey of Solar-Wind Properties 92
4.3 The Basic Concept of Solar-Wind Formation in the Solar Corona 96
4.4 The Magnetic Structure of the Corona and Solar Wind 110
4.5 The Major Time-Dependent Disturbances of the Solar Wind 124

Additional Reading 128
Problems 128

5 COLLISIONLESS SHOCKS 129
D. Burgess 129
5.1 Introduction 129
5.2 Shocks without Collisions 134
5.3 Shock Structure: How Shoking? 145
5.4 Things That Haven’t Been Mentioned 155
Appendix 5A: The de Hoffman–Teller Frame 156
Appendix 5B: Energetic Particles and Foreshocks 158
Appendix 5C: Determining the Shock-Normal Direction 161

Additional Reading 163
Problems 163

6 SOLAR-WIND INTERACTIONS WITH MAGNETIZED PLANETS 164
R. J. Walker and C. T. Russell 164
6.1 Introduction 164
6.2 Planetary Magnetic Fields 164
6.3 Size of the Magnetospheric Cavity 168
6.4 Shape of the Magnetospheric Cavity 172
6.5 Self-Consistent Models 174
6.6 Flow around the Magnetosphere 177
6.7 Concluding Remarks 180

Additional Reading 181
Problems 181
7 IONOSPHERES
J. G. Luhmann

7.1 Introduction 183
7.2 Ion Production 184
7.3 Ion Loss 192
7.4 Determining Ionospheric Density from Production and Loss Rates 193
7.5 An Example: The Earth’s Ionosphere 196
7.6 Other Considerations Relating to Ionospheres 199
7.7 Final Notes 202
Additional Reading 202
Problems 202

8 PLASMA INTERACTIONS WITH UNMAGNETIZED BODIES
J. G. Luhmann

8.1 Introduction 203
8.2 Plasma Interactions with Moonlike Bodies 203
8.3 Plasma Interactions with Bodies with Atmospheres 207
8.4 Concluding Remarks 224
Additional Reading 225
Problems 225

9 THE MAGNETOPAUSE, MAGNETOTAIL, AND MAGNETIC RECONNECTION
W. J. Hughes

9.1 Introduction 227
9.2 The Magnetopause 228
9.3 The Geomagnetic Tail 232
9.4 Magnetic Reconnection 236
9.5 Reconnection at the Magnetopause 239
9.6 Reconnection and the Plasma-Sheet Boundary Layer 276
9.7 Is Steady-State Convection Possible in the Tail? 283
9.8 Conclusion 284
Additional Reading 284
Problems 285

10 MAGNETOSPHERIC CONFIGURATION
R. A. Wolf

10.1 Introduction 288
10.2 Magnetic-Field Configuration of the Earth’s Magnetosphere 288
10.3 Plasma in the Earth’s Middle and Inner Magnetosphere 290
10.4 Electric Fields and Magnetospheric Convection 300
10.5 Adiabatic Invariants and Particle Drifts 304
10.6 Ionosphere–Magnetosphere Coupling 320
10.7 Ionospheric Currents 323
10.8 Magnetic-Field-Aligned Potential Drops 324
10.9 Loss of Magnetospheric Particles into the Earth’s Atmosphere 325
10.10 Concluding Comment 327
Additional Reading 327
Problems 328

11 PULSATIONS AND MAGNETOHYDRODYNAMIC WAVES
M. G. Kivelson 330
11.1 Introduction 330
11.2 Basic Equations 332
11.3 Equations for Linear Waves 334
11.4 Waves in Cold Plasmas 335
11.5 Waves in Warm Plasmas 340
11.6 Ionospheric Boundary Conditions 343
11.7 MHD Waves in a Dipolar Magnetic Field 345
11.8 Sources of Wave Energy 349
11.9 Instabilities 350
11.10 Waves in Planetary Magnetospheres and Elsewhere 352
Additional Reading 353
Problems 353

12 PLASMA WAVES
C. K. Goertz and R. J. Strangeway 356
12.1 Introduction 356
12.2 Waves in a Two-Fluid Plasma 356
12.3 Waves in an Unmagnetized Plasma 360
12.4 Waves in a Magnetized Plasma 375
12.5 Kinetic Theory and Wave Instabilities 392
Additional Reading 398
Problems 398

13 MAGNETOSPHERIC DYNAMICS
R. L. McPherron 400
13.1 Introduction 400
13.2 Types of Magnetic Activity 402
13.3 Measures of Magnetic Activity: Geomagnetic Indices 408
13.4 Solar-Wind Control of Geomagnetic Activity 410
13.5 Magnetospheric Control of Geomagnetic Activity 420
13.6 Phenomenological Models of Substorms 430
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.7 Conclusions</td>
<td>441</td>
</tr>
<tr>
<td>Appendix 13A: Instruments for Measuring Magnetic Fields</td>
<td>443</td>
</tr>
<tr>
<td>Appendix 13B: Standard Indices of Geomagnetic Activity</td>
<td>451</td>
</tr>
<tr>
<td>Additional Reading</td>
<td>457</td>
</tr>
<tr>
<td>14 THE AURORA AND THE AURORAL IONOSPHERE</td>
<td></td>
</tr>
<tr>
<td>H. C. Carlson, Jr., and A. Egeland</td>
<td>459</td>
</tr>
<tr>
<td>14.1 Introduction</td>
<td>459</td>
</tr>
<tr>
<td>14.2 Auroral-Particle Precipitation: The Auroral Spectrum</td>
<td>463</td>
</tr>
<tr>
<td>14.3 Auroral Distribution in Space and Time</td>
<td>476</td>
</tr>
<tr>
<td>14.4 The Auroral Substorm</td>
<td>486</td>
</tr>
<tr>
<td>14.5 The Auroral Ionosphere</td>
<td>489</td>
</tr>
<tr>
<td>14.6 Auroral Effects on Radio Waves</td>
<td>493</td>
</tr>
<tr>
<td>14.7 Energy Transfer to the Ionosphere</td>
<td>494</td>
</tr>
<tr>
<td>14.8 Relation to Boundaries and Physical Processes in the Ionosphere</td>
<td>497</td>
</tr>
<tr>
<td>14.9 Stable Sun-Aligned Arc: Energetics and Thermal Balance</td>
<td>498</td>
</tr>
<tr>
<td>Additional Reading</td>
<td>500</td>
</tr>
<tr>
<td>Problems</td>
<td>500</td>
</tr>
<tr>
<td>15 THE MAGNETOSPHERES OF THE OUTER PLANETS</td>
<td></td>
</tr>
<tr>
<td>C. T. Russell and R. J. Walker</td>
<td>503</td>
</tr>
<tr>
<td>15.1 Introduction</td>
<td>503</td>
</tr>
<tr>
<td>15.2 The Variation in the Solar-Wind Properties</td>
<td>504</td>
</tr>
<tr>
<td>15.3 Magnetospheric Size</td>
<td>507</td>
</tr>
<tr>
<td>15.4 The Role of Reconnection</td>
<td>511</td>
</tr>
<tr>
<td>15.5 Interaction of Moons with their Magnetospheres</td>
<td>512</td>
</tr>
<tr>
<td>15.6 Radiation Belts</td>
<td>514</td>
</tr>
<tr>
<td>15.7 Waves and Instabilities</td>
<td>515</td>
</tr>
<tr>
<td>15.8 Radio Emissions</td>
<td>517</td>
</tr>
<tr>
<td>15.9 Concluding Remarks</td>
<td>519</td>
</tr>
<tr>
<td>Additional Reading</td>
<td>519</td>
</tr>
<tr>
<td>Problems</td>
<td>519</td>
</tr>
</tbody>
</table>

Appendix 1: Notation, Vector Identities, and Differential Operators | 521 |
Appendix 2: Fundamental Constants and Plasma Parameters of Space Physics | 529 |
Appendix 3: Geophysical Coordinate Transformations | 531 |
References | 545 |
Index | 563 |
CONTRIBUTORS

D. Burgess
Astronomy Unit
Queen Mary and Westfield College
London, U.K.

M. G. Kivelson
Department of Earth and Space Sciences and
Institute of Geophysics and Planetary Physics
University of California
Los Angeles, CA

H. C. Carlson, Jr.
Phillips Laboratory
Geophysics Directorate
Hanscom AFB
Bedford, MA

J. G. Luhmann
Institute of Geophysics and Planetary Physics
University of California
Los Angeles, CA

A. Egeland
Department of Physics
University of Oslo
Blindern, Oslo, Norway

R. L. McPherron
Department of Earth and Space Sciences and
Institute of Geophysics and Planetary Physics
University of California
Los Angeles, CA

C. K. Goertz (deceased)
Department of Physics and Astronomy
University of Iowa
Iowa City, IA

E. R. Priest
Mathematical and Computational Sciences Department
The University
St. Andrews, Scotland

W. J. Hughes
Center for Space Physics
Boston University
Boston, MA

C. T. Russell
Department of Earth and Space Sciences and
Institute of Geophysics and Planetary Physics
University of California
Los Angeles, CA

A. J. Hundhausen
High Altitude Observatory
National Center for Atmospheric Research
Boulder, CO
CONTRIBUTORS

R. J. Strangeway
Institute of Geophysics and
Planetary Physics
University of California
Los Angeles, CA

R. A. Wolf
Department of Space Physics and
Astronomy
Rice University
Houston, TX

R. J. Walker
Institute of Geophysics and
Planetary Physics
University of California
Los Angeles, CA
THE IONIZED GASES of the solar-terrestrial environment interact in very complex and sometimes counterintuitive ways. Our intuition about gases is trained in situations in which collisions are important, but in most of the ionized gases in the solar system the magnetic and electric fields control the motion of the particles, with collisions and gravitational fields being less important. In an introductory text such as this it is difficult to decide where to begin to discuss these interactions. One could start with the simplest systems and then add complexity; one could order the material by spatial location, discussing the sun first and then proceeding to follow the energy flow outward past all the planets; or one could follow a chronological approach, according to the order of discovery. There is much to justify a spatial approach, because the sun is the energy source for most of the plasma we encounter, either through coupling with the solar wind or through photoionization. On the other hand, the chronological approach follows the way scientists originally learned about how the solar terrestrial environment behaves. This approach has the advantage that the earliest concepts were simple and grew gradually in complexity, but it has the disadvantage that some of the early ideas were wrong and that sometimes science progresses in convoluted ways. Thus, this approach can be quite inefficient.

In this book we shall attempt to combine the three approaches. We shall try always to reduce topics to their basics before introducing the complications. The overall ordering of the book will follow the energy flow, starting with the sun, but first, Chapter 1 will provide some historical perspective. The historical approach is interesting, and it allows us a quick overview of the entire field before becoming too involved with the details. We shall begin with ancient observations of the “northern lights,” which we now refer to as the aurora borealis, or simply the aurora, and work our way up to the era of space exploration.

Chapter 2 covers the physics of the plasmas we encounter in space. In this chapter we describe some of the most basic physical processes that occur in space plasmas and the equations that govern them. In particular we introduce the magnetohydrodynamic (MHD) approximations that are so useful in describing the solar-terrestrial environment. In Chapter 3, E. R. Priest discusses both the “old” sun and the “new”
sun. The new sun has emerged from the old sun of observational solar physics through the application of MHD treatments of solar phenomena.

In Chapter 4, A. J. Hundhausen takes us from the corona to the farthest reaches of the solar system, the heliopause, where the solar wind stops. D. Burgess follows this with a discussion of that ubiquitous process in space plasmas – the collisionless shock. Collisionless shocks are caused by processes on the sun, by the interaction of fast streams and slow streams in the solar wind, and by the diversion of the solar wind about the intrinsic and induced magnetospheres of all the planets.

In Chapter 6, R. J. Walker and C. T. Russell describe the interaction of the solar wind with a magnetized planet, both what happens to the planetary magnetic field and how the interaction affects the solar wind. In Chapters 7 and 8, J. G. Luhmann describes how an ionosphere is formed from a planetary atmosphere by the ionizing radiation from the sun and then how such an ionosphere creates a magnetic barrier to the solar-wind flow and an induced magnetosphere that deflects the solar wind, much as does an intrinsic planetary magnetic field.

In Chapter 9, W. J. Hughes examines the processes whereby energy is transferred to the earth’s magnetosphere by the solar wind, the storage of that energy in the tail, and the eventual release of that energy into the inner magnetosphere and ionosphere in a magnetospheric substorm. In Chapter 10, R. A. Wolf describes the processes occurring in the inner magnetosphere.

Chapters 11 and 12 cover the wave processes in the magnetosphere. In Chapter 11, M. G. Kivelson discusses the phenomena known collectively as magnetic pulsations, which often involve the oscillation of an entire magnetic-field line. Chapter 12 reviews the waves that occur at higher frequencies, principally interacting with the energetic electrons in the magnetosphere. The majority of the material in this chapter was prepared by C. K. Goertz, who was killed in a most unfortunate incident before completion of this work. We are most grateful to R. J. Strange-way who took over the writing of the chapter.

Chapter 13, by R. L. McPherron, deals with magnetospheric dynamics and geomagnetic activity and the current systems responsible for this behavior.

In Chapter 14, H. C. Carlson, Jr., and A. Egeland cover the auroral ionosphere, where much of the energy transferred to the magnetosphere from the solar wind is ultimately deposited. Chapter 15 covers the magnetospheres of the outer planets. The book closes with a set of useful appendices covering various topics of practical importance, such as vector operations and coordinate transformations.

It is our intention in this book to provide an introduction to space physics for the beginning graduate student. Nevertheless, much of the material is suitable for upper-division undergraduates and has been tested on both undergraduates and graduate students in our Department
of Earth and Space Sciences at the University of California, Los Angeles (UCLA).

The assembling of this book began with the convening of a “Rubey Colloquium” in March 1990. The Department of Earth and Space Sciences at UCLA holds such a colloquium annually in honor of the late W. W. Rubey (1898–1974), a career geologist with the U.S. Geological Survey and a professor of geology and geophysics at UCLA. That colloquium brought together the authors of this book, who presented lectures associated with each of the chapters over the course of a week between the winter and spring quarters. Initial drafts of the chapters were distributed at that time. Since then they have been refined and edited in an attempt to produce a more uniform style, to eliminate unnecessary duplication of material, and to fill in some of the gaps in coverage. We are particularly grateful to the Department of Earth and Space Sciences for providing the funding to initiate this project and to the National Aeronautics and Space Administration for sustaining it through their Space Grant University program administered by the California Space Institute. We are also most grateful to A. McKnight, Linda Kim, and Rose Silva, who provided clerical assistance for this project, and to UCLA students M. Ginskey, T. Meseroll, T. Mulligan, and J. Newbury, who helped to proofread the volume.

C. T. Russell
M. G. Kivelson