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C is one of the most popular programming languages today. It is flexible,
efficient and highly portable, and is used for writing many different kinds
of programs, from compilers and assemblers to spreadsheets and games.

This book is based on ANSI C - the recently adopted standard for the
C language. It assumes familiarity with basic programming concepts such
as variables, constants, iteration and looping, but covers all aspects of C.
In general it is as much about learning programming skills as it is about
mastering the art of coding programs in C. To this end the text contains
a wealth of examples and exercises that foster and test the understanding
of the concepts developed in each chapter.

An outstanding feature of this book is the treatment of ‘pointers’. The
topic is presented in a clear logical and reasoned manner that is easy to
follow. Binary files and random access files are also treated in such a
manner that the reader can easily become adept at using them.

Anybody who wishes to get to grips with the art of programming in C
will find this a most valuable book.
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Preface

In the beginning, there was a language called BCPL. This was developed
in the 1960s by Martin Richards at Cambridge University. In 1970, Ken
Thompson, of Bell Laboratories, developed and implemented the language
B on a DEC (Digital Equipment Corporation) PDP-7 computer running
the first UNIX operating system. B was strongly influenced by BCPL.
When DEC introduced their PDP-11, Dennis Ritchie (also of Bell Labs)
modified B to create the language C in order to implement UNIX on the
new machine.

Since those early days, C has undergone several changes. Existing
features have been modified, new features have been added and some
obsolete ones deleted. With the advent and proliferation of microcomputers,
several implementations of C emerged. Though compatible to a great
degree, there were discrepancies and anomalies in these implementations.
In 1983, the American National Standards Institute (ANSI) established a
committee to define a ‘standard’ version of the C language. This standard
has been adopted by the major producers of C compilers. This book is
based on ANSI C.

C has fast become one of the most popular programming languages
today. Perhaps one of the reasons for its widespread popularity is its
flexibility - it allows one to program in a ‘structured’ way yet it permits
great ‘freedom of expression’. It combines the control structures normaily
found in high-level languages such as Pascal or Ada with the ability to
manipulate bits, bytes and addresses, something usually associated with
assembly language. In its early days, C was thought of mainly as a language
for writing systems programs — things like operating systems, editors,
compilers, assemblers and input/output utility programs. But that view
has changed considerably in recent times. Today, C is used for writing all
kinds of applications programs as well — things like wordprocessing

XV
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xvi Preface

programs, spreadsheet programs, database management programs,
accounting programs, games, educational software, etc. But flexibility is
not the only reason.

C lends itself to ‘modular programming’. It is easy to create ‘modules’
which can be treated like the proverbial ‘black-box’ — we need only know
what the module does, not how it does it. This concept is critical to the
writing of a large program, or a program which is being written by several
people. A related idea is that, in C, one can create and maintain one’s
own ‘library’ of frequently used functions. In this way, duplication of effort
can be kept to a minimum.

Cis an ‘efficient’ language. The machine code produced for a C program
is comparable to what would be produced if the program were written
in assembly language. This is possible because many of C’s features (mainly
the ‘operators’ provided) closely resemble features of today’s computers,
so that translation from C to machine code is straightforward. Another
reason is that C is ‘small’; for example, there are only 32 keywords (reserved
words) and the basic data types are simply character, integer and
floating-point. In order to keep down the size of the language, C does not
include features considered ‘built-in’ or ‘standard’ in other languages. For
instance, there are no statements like read or write for performing
input/output and no direct way of comparing two strings. These operations
are provided by means of functions provided in a standard library.

C is highly portable. This means that a C program can run with little
or no modification on different kinds of computers (computers with
different processors). This is of crucial importance if, for instance, one
wants to change one’s computer system. If programs are not portable,
then much programming effort on the old system would have been wasted,
and changing to a new system would be very costly. A software developer
could sell many more programs if they could run on several machines
with little or no modification. With the adoption of the new ANSI C
standard, C programs have become even more portable.

Finally, and perhaps, most importantly, C is popular because, quite
simply, it is a joy to use. And as one’s mastery of the language increases,
so does the joy.

This text assumes familiarity with basic programming concepts such as
variables, constants, looping and iteration, but it covers all features of the
C language. It is about the learning of programming in general as much
as it is about mastering the art of coding programs in C. It is a truism
that learning the syntax of a language is trivial compared with learning
programming ideas and being aware of situations in which the syntactic
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Preface xvii

constructs can be used. To this end, there is a wealth of examples and
exercises that foster and test the understanding of the concepts developed
in each chapter.

One of the main features is the illustration of the use of C constructs
in meaningful examples as opposed to their use in contrived examples
which serve no purpose other than to illustrate C syntax. In order to
develop meaningful examples, certain side topics, such as sorting, hashing
and binary trees, are developed. Developing these topics in the text makes
the book more self-contained. The student learns a topic that is broadly
applicable and so gets to see the C construct used in a wider context. In
the conventional approach to teaching a language, features of the language
are presented followed by examples illustrating these features. However,
in this book, many features are introduced by discussing an example,
showing the need for a feature and then presenting the feature. Hopefully,
this approach gives one a broader picture of the application of a particular
feature.

An important highlight of this book is the treatment of pointers -
perhaps the hardest facet of the language but treated cursorily in most
books on C. According to one reader of an early draft, ‘This book gives
a clear, logical and reasoned description of the subject which is quite
refreshing to read’. Another topic which is usually glossed over in most
books but explored in detail here is file handling. In particular, binary
files and random access files are fully treated.

The exercises at the end of each chapter range from those which directly
test the understanding of concepts, statements or constructs presented in
the chapter to those which require the application of the material to
non-trivial problems.

* Chapter 1 presents an overview of the basic features in C - data types,
operators, expressions, statements and the basic control structures
while and if...else. The treatment is not meant to be complete
and many of the ideas introduced are expanded in later chapters.

o Chapter 2 introduces other commonly used control structures — for,
do...while,switchand continue as well as a discussion of arrays.
The latter includes the use of arrays for storing strings and simple
methods for searching arrays.

e Chapter 3 discusses the elementary ideas involved in writing and using
functions — the building blocks of C programs.

e Chapter 4 deals with the manipulation of character and string data.
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xviii Preface

The powerful ‘search and insert’ technique of hashing and insertion sort
are introduced in order to discuss more useful examples.

e Chapter 5 is a more detailed treatment of functions. The flexible and
powerful concept of pointers is also introduced here. The chapter ends
with a discussion of that very useful (but one that students often find
difficult) programming concept — recursion.

e Chapter 6 ties up the loose ends from the previous chapters. In particular,
data types, operators, expressions, storage classes and initialization are
discussed more fully.

e Chapter 7 starts with an introductory discussion of structures This is
followed by some detailed examples illustrating the manipulation of
linked lists.

e Chapter 8 continues the discussion of structures, using the versatile
binary tree as the main theme. The latter part of the chapter deals with
nested structures, unions and bit-fields.

e Chapter 9 covers standard input/output in C in a fair amount of detail.
This is deliberate since this is perhaps the area of C that programmers
use most often. A number of subtle issues are discussed which are hardly
ever treated in most books or even the compiler manual.

e Chapter 10 is devoted to functions which operate on general files. The
treatment of binary and random access files rounds off the chapter.

e Chapter 11 discusses the main facilities provided by the C preprocessor
and ends with a brief treatment of some of the lesser used features in C.

Welcome to C programming. Though it can be frustrating and difficult
at times, it can also be interesting, exciting, fascinating and highly
rewarding.

Noel Kalicharan
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