Cambridge University Press
978-0-521-45650-0 - C by Example
Noel Kalicharan

Frontmatter

More information

C is one of the most popular programming languages today. It is flexible,
efficient and highly portable, and is used for writing many different kinds
of programs, from compilers and assemblers to spreadsheets and games.

This book is based on ANSI C - the recently adopted standard for the
C language. It assumes familiarity with basic programming concepts such
as variables, constants, iteration and looping, but covers all aspects of C.
In general it is as much about learning programming skills as it is about
mastering the art of coding programs in C. To this end the text contains
a wealth of examples and exercises that foster and test the understanding
of the concepts developed in each chapter.

An outstanding feature of this book is the treatment of ‘pointers’. The
topic is presented in a clear logical and reasoned manner that is easy to
follow. Binary files and random access files are also treated in such a
manner that the reader can easily become adept at using them.

Anybody who wishes to get to grips with the art of programming in C
will find this a most valuable book.

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521456509
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-0-521-45650-0 - C by Example
Noel Kalicharan

Frontmatter

More information

Cambridge Computer Science Texts
Edited by D. J. Cooke, Loughborough University

C by Example

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521456509
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-0-521-45650-0 - C by Example
Noel Kalicharan

Frontmatter

More information

Also in this series

5 An Introduction to the Uses of Computers
Murray Laver 1976
8 ALGOL 68 - A first and second course

A. D. McGettrick 1978

12 Programming via Pascal
J. S. Rohl and H. J. Barrett 1980

14 Simulation Techniques for Discrete Event Systems
1. Mitrani 1982

15 Information Representations and Manipulation using Pascal
E. S. Page and L. B. Wilson 1983

16 Writing Pascal Programs
J. S. Rohl 1983

18 Computer Mathematics
D. J. Cooke and H. E. Bez 1984

19 Recursion via Pascal
J. S. Rohl 1984

22 Program Construction
R. G. Stone and D. J. Cooke 1987

23 A Practical Introduction to Denotational Semantics
Lloyd Allison 1987

24 Modelling of Computer and Communication Systems
1. Mitrani 1987

25 The Principles of Computer Networking
D. Russel 1989

26 Concurrent Programming
C. R. Snow 1991

27 An Introduction to Functional Programming Systems Using Haskell
A. J. T. Davie 1992

28 Categories and Computer Science
R. F. C. Walters 1991

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521456509
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-0-521-45650-0 - C by Example
Noel Kalicharan

Frontmatter

More information

29 Cambridge Computer Science Texts

C by Example

Noel Kalicharan
University of the West Indies

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521456509
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-0-521-45650-0 - C by Example
Noel Kalicharan

Frontmatter

More information

Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 IRP
40 West 20th Street, New York, NY 10011-4211, USA
10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1994

First published 1994
Reprinted 1996

A catalogue record for this book is available from the British Library

Library of Congress cataloguing in publication data
Kalicharan, Noel.
C by example / Noel Kalicharan.
p cm. - (Cambridge computer science texts: 29)
Includes index.

ISBN 0 521 45023 3 (hc). - ISBN 0 521 45650 9 (pb)
1. C (Computer program language) 1. Title. 1L Series.
QA76.73.C15835 1994
005.13'3-dc20 93-27877 CIP

ISBN 0 521 45023 3 hardback
ISBN 0 521 45650 9 paperback

Transferred to digital printing 2000

PR

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521456509
http://www.cambridge.org
http://www.cambridge.org

CAMBRIDGE

Cambridge University Press
978-0-521-45650-0 - C by Example
Noel Kalicharan

Frontmatter

More information

To my daughters

Anushka Nikita
and
Anyara Saskia

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521456509
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-0-521-45650-0 - C by Example
Noel Kalicharan

Frontmatter
More information
Contents

Preface Xv

1 Getting Started With C 1
1.1 The first example 3
1.1.1 Running the program 4

1.1.2 A word on program layout 6

1.2 Comments 8

1.3 Data types 9

1.4 Identifiers 11

1.5 Expressions 13
1.5.1 Arithmetic operators 13

1.5.2 Assignment operators 14

1.5.3 Relational operators 15

1.5.4 Logical operators 16

1.5.5 Increment and decrement operators 17

1.5.6 Mixing operands in an expression 17

1.6 Statements 18

1.7 Standard input and output 19

1.8 The while statement 23

1.9 The if...else statement 26
Exercises 1 30

2 More Control Structures and Arrays 32
2.1 The for statement 32
2.2 The do...while statement 36
2.3 The switch statement 40
24 The continue statement 42

ix

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521456509
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-0-521-45650-0 - C by Example

Noel Kalicharan

Frontmatter
More information

X Contents
2.5 Arrays 43
2.5.1 Strings 48
2.5.2 Sequential and binary search 50
Exercises 2 52
3 Functions — the Basics 55
3.1 An example - factorial 55
3.2 Function definition 60
3.3 Sequential search 61
3.4 Binary search 63
3.5 The One-Zero game 64
Exercises 3 72
4 Character Handling 76
4.1 Character sets 77
42 getchar and putchar 79
43 Example - letter frequency count 83
44 Strings (arrays of characters) 86
4.5 Example - word frequency count 93
4.5.1 Hashing 94
4.5.2 Back to the problem 98
4.5.3 Insertion sort 106
4.5.4 Sorting the words 110
4.5.5 Printing the table 111
Exercises 4 118
5 Functions and Pointers 120
5.1 Parameter passing 120
5.2 Pointer variables 125
5.3 More on parameter passing 129
5.3.1 A voting problem 131
5.4 Character pointers 139
5.5 Pointer arithmetic 141
5.6 Pointers to functions 145
5.7 Near, far and huge pointers 149
5.8 Recursion 150
5.8.1 An example — Towers of Hanoi 151
5.8.2 An example — decimal to binary 153
5.8.3 An example — quicksort 153
Exercises 5 157

© Cambridge University Press

www.cambridge.org



http://www.cambridge.org/0521456509
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-0-521-45650-0 - C by Example
Noel Kalicharan

Frontmatter

More information

Contents

6 Data Types, Operators and Storage Classes

6.1
6.2
6.3
6.4
6.5

6.6

Data types

Operators

Bit operators
Conditional expressions
Storage classes in C
6.5.1 automatic

6.5.2 external

6.5.3 static

6.5.4 register

6.5.5 Other scope rules
Initialization

6.6.1 Simple variables
6.6.2 Array variables
6.6.3 Two-dimensional arrays
Exercises 6

Basic Structures and Linked Lists

7.1

7.2
7.3

The voting problem revisited

7.1.1 typedef

7.1.2 Passing structures to functions
Pointers to structures

Linked lists

7.3.1 Dynamic storage allocation — malloc, calloc, sizeof
7.3.2 Building a linked list — version 1
7.3.3 Some characteristics of linked lists
7.3.4 Building a linked list ~ version 2
7.3.5 Deletion from a linked list

7.3.6 Building a linked list - version 3
Exercises 7

Binary Trees and Other Structures

8.1

8.2
83
84
85

Binary trees

8.1.1 Representing a binary tree
8.1.2 Binary search trees

A cross-reference program
Initialization of an array of structures
Nested structures

Unions

xi

160
160
164
167
170
171
172
173
177
179
179
180
180
181
184
185

187
187
189
192
201
202
204
208
210
211
213
214
217

221
221
228
228
233
243
244
245

© Cambridge University Press

www.cambridge.org



http://www.cambridge.org/0521456509
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-0-521-45650-0 - C by Example
Noel Kalicharan

Frontmatter
More information

Xit Contents
8.6 Bit-fields 250
Exercises 8 253
9 Standard Input/Qutput 256
9.1 stdin, stdout, stderr 256
9.2 [I/O routines 257
9.3 Text and binary files 258
9.4 Functions for standard input/output 259
9.4.1 getchar and putchar 259
942 gets and puts 259
943 printf 260
944 scanf 268
Exercises 9 277
10 File Input/Output 279
10.1 Internal vs external file name 279
10.2 fopen and fclose 280
10.3 getc and putc 284
10.4 File processing example — telephone charges 285
10.5 feof and ferror 290
10.6 fgets and fputs 291
10.7 sprintf and sscanf 295
10.8 Input/output for binary files 296
10.8.1 fread and fwrite 296
10.9 Random access files 300
109.1 rewind and fseek 300
10.9.2 Indexed files 303
10.9.3 Updating a random access file 312
Exercises 10 318
11 Miscellaneous Topics 320
11.1 The C preprocessor 320
11.1.1 The #define directive 321
11.1.2 The #undef directive 333
11.1.3 The #include directive 333
11.1.4 Conditional compilation — #if, #elif, 333

#else, #endif directives

11.2 Command-line arguments — argc and argv 335

© Cambridge University Press

www.cambridge.org



http://www.cambridge.org/0521456509
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-0-521-45650-0 - C by Example
Noel Kalicharan

Frontmatter
More information
Contents xiii
11.3 Two-dimensional arrays 337
11.3.1 Matrix multiplication 339
11.3.2 Magic squares 340
11.4 Enumerated types — enum 344
11.5 The goto statement 349
11.6 const and volatile 349
Exercises 11 350
Appendices
A List of C keywords 353
B Differences between ANSI C and traditional C 354
C ASCII character set 357
Index 359

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521456509
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-0-521-45650-0 - C by Example
Noel Kalicharan

Frontmatter

More information

Preface

In the beginning, there was a language called BCPL. This was developed
in the 1960s by Martin Richards at Cambridge University. In 1970, Ken
Thompson, of Bell Laboratories, developed and implemented the language
B on a DEC (Digital Equipment Corporation) PDP-7 computer running
the first UNIX operating system. B was strongly influenced by BCPL.
When DEC introduced their PDP-11, Dennis Ritchie (also of Bell Labs)
modified B to create the language C in order to implement UNIX on the
new machine.

Since those early days, C has undergone several changes. Existing
features have been modified, new features have been added and some
obsolete ones deleted. With the advent and proliferation of microcomputers,
several implementations of C emerged. Though compatible to a great
degree, there were discrepancies and anomalies in these implementations.
In 1983, the American National Standards Institute (ANSI) established a
committee to define a ‘standard’ version of the C language. This standard
has been adopted by the major producers of C compilers. This book is
based on ANSI C.

C has fast become one of the most popular programming languages
today. Perhaps one of the reasons for its widespread popularity is its
flexibility - it allows one to program in a ‘structured’ way yet it permits
great ‘freedom of expression’. It combines the control structures normaily
found in high-level languages such as Pascal or Ada with the ability to
manipulate bits, bytes and addresses, something usually associated with
assembly language. In its early days, C was thought of mainly as a language
for writing systems programs — things like operating systems, editors,
compilers, assemblers and input/output utility programs. But that view
has changed considerably in recent times. Today, C is used for writing all
kinds of applications programs as well — things like wordprocessing

XV

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521456509
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-0-521-45650-0 - C by Example
Noel Kalicharan

Frontmatter

More information

xvi Preface

programs, spreadsheet programs, database management programs,
accounting programs, games, educational software, etc. But flexibility is
not the only reason.

C lends itself to ‘modular programming’. It is easy to create ‘modules’
which can be treated like the proverbial ‘black-box’ — we need only know
what the module does, not how it does it. This concept is critical to the
writing of a large program, or a program which is being written by several
people. A related idea is that, in C, one can create and maintain one’s
own ‘library’ of frequently used functions. In this way, duplication of effort
can be kept to a minimum.

Cis an ‘efficient’ language. The machine code produced for a C program
is comparable to what would be produced if the program were written
in assembly language. This is possible because many of C’s features (mainly
the ‘operators’ provided) closely resemble features of today’s computers,
so that translation from C to machine code is straightforward. Another
reason is that C is ‘small’; for example, there are only 32 keywords (reserved
words) and the basic data types are simply character, integer and
floating-point. In order to keep down the size of the language, C does not
include features considered ‘built-in’ or ‘standard’ in other languages. For
instance, there are no statements like read or write for performing
input/output and no direct way of comparing two strings. These operations
are provided by means of functions provided in a standard library.

C is highly portable. This means that a C program can run with little
or no modification on different kinds of computers (computers with
different processors). This is of crucial importance if, for instance, one
wants to change one’s computer system. If programs are not portable,
then much programming effort on the old system would have been wasted,
and changing to a new system would be very costly. A software developer
could sell many more programs if they could run on several machines
with little or no modification. With the adoption of the new ANSI C
standard, C programs have become even more portable.

Finally, and perhaps, most importantly, C is popular because, quite
simply, it is a joy to use. And as one’s mastery of the language increases,
so does the joy.

This text assumes familiarity with basic programming concepts such as
variables, constants, looping and iteration, but it covers all features of the
C language. It is about the learning of programming in general as much
as it is about mastering the art of coding programs in C. It is a truism
that learning the syntax of a language is trivial compared with learning
programming ideas and being aware of situations in which the syntactic

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521456509
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-0-521-45650-0 - C by Example
Noel Kalicharan

Frontmatter

More information

Preface xvii

constructs can be used. To this end, there is a wealth of examples and
exercises that foster and test the understanding of the concepts developed
in each chapter.

One of the main features is the illustration of the use of C constructs
in meaningful examples as opposed to their use in contrived examples
which serve no purpose other than to illustrate C syntax. In order to
develop meaningful examples, certain side topics, such as sorting, hashing
and binary trees, are developed. Developing these topics in the text makes
the book more self-contained. The student learns a topic that is broadly
applicable and so gets to see the C construct used in a wider context. In
the conventional approach to teaching a language, features of the language
are presented followed by examples illustrating these features. However,
in this book, many features are introduced by discussing an example,
showing the need for a feature and then presenting the feature. Hopefully,
this approach gives one a broader picture of the application of a particular
feature.

An important highlight of this book is the treatment of pointers -
perhaps the hardest facet of the language but treated cursorily in most
books on C. According to one reader of an early draft, ‘This book gives
a clear, logical and reasoned description of the subject which is quite
refreshing to read’. Another topic which is usually glossed over in most
books but explored in detail here is file handling. In particular, binary
files and random access files are fully treated.

The exercises at the end of each chapter range from those which directly
test the understanding of concepts, statements or constructs presented in
the chapter to those which require the application of the material to
non-trivial problems.

* Chapter 1 presents an overview of the basic features in C - data types,
operators, expressions, statements and the basic control structures
while and if...else. The treatment is not meant to be complete
and many of the ideas introduced are expanded in later chapters.

o Chapter 2 introduces other commonly used control structures — for,
do...while,switchand continue as well as a discussion of arrays.
The latter includes the use of arrays for storing strings and simple
methods for searching arrays.

e Chapter 3 discusses the elementary ideas involved in writing and using
functions — the building blocks of C programs.

e Chapter 4 deals with the manipulation of character and string data.

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521456509
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-0-521-45650-0 - C by Example
Noel Kalicharan

Frontmatter

More information

xviii Preface

The powerful ‘search and insert’ technique of hashing and insertion sort
are introduced in order to discuss more useful examples.

e Chapter 5 is a more detailed treatment of functions. The flexible and
powerful concept of pointers is also introduced here. The chapter ends
with a discussion of that very useful (but one that students often find
difficult) programming concept — recursion.

e Chapter 6 ties up the loose ends from the previous chapters. In particular,
data types, operators, expressions, storage classes and initialization are
discussed more fully.

e Chapter 7 starts with an introductory discussion of structures This is
followed by some detailed examples illustrating the manipulation of
linked lists.

e Chapter 8 continues the discussion of structures, using the versatile
binary tree as the main theme. The latter part of the chapter deals with
nested structures, unions and bit-fields.

e Chapter 9 covers standard input/output in C in a fair amount of detail.
This is deliberate since this is perhaps the area of C that programmers
use most often. A number of subtle issues are discussed which are hardly
ever treated in most books or even the compiler manual.

e Chapter 10 is devoted to functions which operate on general files. The
treatment of binary and random access files rounds off the chapter.

e Chapter 11 discusses the main facilities provided by the C preprocessor
and ends with a brief treatment of some of the lesser used features in C.

Welcome to C programming. Though it can be frustrating and difficult
at times, it can also be interesting, exciting, fascinating and highly
rewarding.

Noel Kalicharan

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521456509
http://www.cambridge.org
http://www.cambridge.org

