Index

abomasum of ruminants, 227
abrasion, 55
N-acetylglucosamine, bacteria-metal interactions and, 154
acid mine drainage, 148–70
bioremediation, 161–3
development and release of, 153–4
indigenous bacteria, responses, 159–61
mineralized biofilms with, 148–70
acidity, see pH
Actinomyces spp. in dental plaque, 286, 288–9, 291
adenylate distribution, determination, 110–12
adhesins of dental plaque-forming bacteria, 288–9
adhesion/adherence, 2–3, 49, 50, 126
antimicrobial susceptibility relating to, 126
bacterial surface affecting, 50
to catheters, 267
to crystalline phosphates, 184–7
dental plaque-forming bacteria, 267, 288–9
to eukaryotic cell surface, 86
growth cycle and, 50–1
to inert surfaces (in general), 8, 137–8
to living surfaces (in general), 8–9
to lung by P. aeruginosa in cystic fibrosis, 240
in mixed cell suspensions to solid surfaces, 52
parvula vs active, 49
phenotypic responses to, 2–3
to plastic medical devices, 257
positioning behaviour and, 31
in purified water systems, prevention, 137–8
see also attachment
aerobes and anaerobes, oxygen and substrate penetration in
mixed cultures, 106–7
anaerobic conditions
anaerobic and, corrosion and interface between, 177–80
biofilm physiology in, 106
corrosion, 177
surface water, acid mine drainage and its effects on, 159–61
Anaeromyces hydrophilus growing in drinking water system model, 200
agar, growth on, 84–5
antimicrobial susceptibility studies observing, 119–21
liquid media growth compared with, 82
agar bead model of P. aeruginosa lung infection, 235–6
aggregates, cell, channels and, 27–8
aggregation, 27–8, 67
see also aggregation
Agrobacterium tumefaciens, attachment of plant cell surface, 86
Alcaligenes faecalis Type 2, 189, 191
Alcaligenes spp. (in wastewater treatment), 189
alpha-l, low-lignin, 230
alginate, *P. aeruginosa* production of cystic fibrosis and, 87, 240–1
on solid surface, 87
alginate bead model of *P. aeruginosa* lung infection, 236–7
alimentary tract of ruminants, see ruminant
alpha-1-antitrypsin therapy in cystic fibrosis, 243
Alvizzula spp. on ruminant tongue, 222–3
anaerobes
oxygen and substrate penetration in mixed cultures of aerobes and, 106–7
in wastewater treatment, 191–2
anaerobic conditions (anaerobic conditions)
anoxic and, corrosion and interface between, 177–80
aqueous systems, acid mine drainage affecting, 161
biofilm physiology in, 106
corrosion, 173, 177, 178
anaerobic wastewater treatment systems, 192–4
start-up phase, 192
anionic cell surface, bacteria-metal interactions and, 155
anaerobic conditions, see anaerobic conditions
antagonism
in dental plaque, 292
in rhizosphere, 214
antibody responses to *P. aeruginosa*
in cystic fibrosis, 240, 241, 242
immunization-related, 237, 238
antigen, *P. aeruginosa*, cystic fibrosis patient antibody responses to, 242
anti-inflammatory drug therapy in cystic fibrosis, 243
antimicrobial agents (including antibiotics), 118–30
effects on biofilms, 34
prostatitis and, 265
protection from/resistance to, 83, 118–30
in biliary tract, 254–5
mechanisms, 118–30, 254–5
INDEX

antimicrobial agents (cont.)
in rhizosphere, production/utilization, 214
in toothpastes/mouthwashes, 296
urogenital infection, 265, 277
recovery of flora after, 277
α-1-antitrypsin therapy in cystic fibrosis, 243
aquatic systems, acid mine drainage affecting, 159–61, 161
archaeal surface, theophilic bacteria, economic impact, 176
aromatic hydrocarbons, polycyclic (PAH), degradation/removal, 384–8
asphaltine surfaces, adherence to, 184–7
attachment (to surfaces), 22–3, 48–9, 49–51, 52–3, 60–1
biological processes in, 49–51
chemical processes in, 52–3
to eukaryotic host cell, 85–6
motile, 22–3, 24, 99
in P. aeruginosa chronic lung infection in cystic fibrosis, 239
physical processes in, 54–5, 58–9
to plant cell surface, 86
reversible/reversible, 23
wastewater treatment and, 192
see also adhesion
axonomography, community level, 75–7
‘baby factory’, 102
Bacillus subtilis, metal binding, 156, 158
bacteriocins, 292
Bacteroides succinogenes in reticulo-umen, 224
BALt, P. aeruginosa infection and, 256
batch enrichment cultures vs steady-state community cultures, 71–3
batch reactors, sequence, wastewater treatment with, 188–90
behaviour of bacteria at surfaces, 21–9
quorum sensing, 21–2
β-lactam antibiotic susceptibility, factors affecting, 123
bile salt effects on biofilms, 257–8
biliary system, 251–60
biofilms in, 251–60
microbial ecology, 251–2
stents, blockage, 255–6, 257–8
biochemical reactions, 99–107
biocides in purified water systems, 141–2
see also specific types of biocides
biological processes in, 49–51
in detachment, 51–2
biomonomeralization, see mineralization
biooxidation
acid mine drainage, 161–3
wastewater, 187–91
bioosensory in purified water systems, 139
biotic interactions in rhizospheres, 213–16
bitumen-painted mild steel, growth in water systems on, 199–200, 201
bladder infection, 9, 261, 262–5, 266–9, 276–7
catheter-related, 266–9
Bod salt test, predation resistance, 31
bonding, surface, 52–3
‘bottle’ effect, 121, 126
boundary layers, 58, 105
diffusive, 105
flow and, 58
laminar, 58

turbulent, 59–60
bovine digestive tract, 221–32
passive bridge structures across channels, 34
bronchus-associated lymphoid tissue, P. aeruginosa infection and, 236
brown pigment stones in biliary tract, 252–5, 257–8
budding bacteria, surface colonization strategies, 24
calcium ions
biliary, 252, 254–5
gene expression influenced by, 90
calcium salts, biliary sludge and, 252–3
calculi, see stones
Campylobacter recr., nutritional interactions with other bacteria, 292
capsule, bacterial, bacteria–metal interactions and, 155
carbohydrate sink, philosophe biofilms as, 209
carbon granular activated, sterilization of columns of, 143
limitations, detachment and, 54
carbon dioxide concentrations
expression and, 88
in rhizosphere, 213–14
caries, dental, 293
prevention, 295–6
cast iron, corrosion, 176–7
cat model of P. aeruginosa lung infection, 236–7
catheter-related urinary tract infection, 266–9
cavities, bacteria–metal interactions and, 155–8
CheABC, 189
CDS group IVC-2, 189, 191
cell (bacterial/microbial)
density, gene expression and, 88–9
morphology,attaching, 21–4
structure, attachment and, 50
wall, attachment and, 49–50
cell (cubovirotic), microbial growth on surface of, 85–6
cell (plant), bacteria in rumen associated with wall of, 223
cellular immune response to P. aeruginosa, 233–5
cellulose membrane as an in vivo infection model, 124
ceramides susceptibility of E. coli, 123
channels
cell aggregates interspersed by, 27–8
solute transfer by flow through, 106
tough changes in rhizosphere, 211, 212
chemical characteristics of sulphide tailings, 149–50
chemical heterogeneity of biofilms, 4–7
chemical landfill site, wastewater treatment, 188–90
chemical processes/conditions
in attachment, 52–3
in detachment, 54
in gene expression, 87–92
in rhizosphere, 208–10
chemical treatment of purified water systems, 141–2
chemostat, 67
antimicrobial susceptibility studies, 124
fluoride, 101–2
solid state (microwave), 68–70
children, periodontitis, 295
chlorinated drinking water, coliforms in, 197
chlorobenzene degradation, 187–8, 191
cholantitis, 251
bacteriology, 252
© Cambridge University Press
www.cambridge.org
DVLOD theory, 17–18
dynamics of biofilm formation, 46–65
ecology
microbial, 13–17
biliary tract, 251–2
digestive tract of ruminants, 221–32
fluid dynamics and, 60
living surfaces (in general), 9
urinary tract, 274–6
soil, rhizosphere biofilms affecting, 215
ecosystems, micro–, 66
E, electrode, 109
elastase, cystic fibrosis and, 243
electrochemical double-layer theory, 17–18
electrical fields in rhizosphere, 212
electrochemistry in purified water systems
monitoring via, 140
sterilization technique employing, 143
electrodes in purified water systems, 180
see also microelectrodes
electron microscopy studies, 113–14
biliary brown pigment stones, 253, 254
dental plaque, 113–14, 284–7
growth on semi-solid media, 85
compared with liquid media, 82
electronic devices, contaminated, 135–6
electrostatic forces, dental plaque formation and, 289
endoprostheses (stents), biliary, blockage, 255–6, 257–8
endotoxin, detection, 140–1
see also lipopolysaccharide
energy, 110–12
ruminant digestive tract biofilms and intak of, 226
sources for sulphate-reducing bacteria, 175
status in biofilms, 110–12
surface free, 18
enrichment cultures, batch, steady-state community cultures vs, 71–3
Escherichia coli: see exopolysaccharides, rhizosphere and, 209
environment(s)
climax communities in well-defined, 66–7
genetically manipulated microbes released into, 215
see also microenvironment
environmental factors/conditions, 81
attachment, 55
dental plaque bacterial growth and, 284
detachment, 55–6
growth of community cultures in gradients of various, 75–7
EnvZ, 90
epithelial tissue
biofilms on
formation of, 8–9
of ruminant digestive tract, 223–9
Passion
submucosal adhesion to/invasion of, 86
egy gene regulation, 92
erosion (shear forces), 55, 137
Escherichia coli
growth
on agar, 85
antimicrobial susceptibility relating to rate of, 123
in drinking water system model, 200
TCA cycle in, oxygen gradients and, 100
ureapathogenic, 263, 277
esterase activity, fluorescein substrates in studies of, 74
nubacterial thermophilic bacteria, economic impact, 176
exopolysaccharides (EPS; extracellular polysaccharides), microbially produced, 32
dental plaque and, 291
gene, regulation, 92
nutrient scavenging and, 30
rhizosphere and, 209
exudates (plants)
infection requiring prior stimulation by, 214
rhizodeposition, 208
eye, biofilm formation, 9
face, bacterial, attachment and thr, 50
FDA recalls related to water, 143–4
feed for ruminants, processing, 229–30
female urgenital tract, 9, 274–81
biofilms and, 274–81
fermentors, 101, 102
antimicrobial susceptibility studies, 124
see also culture
ferrous iron, T. ferrooxidans growth with, 152, 153
ferrous iron, T. ferrooxidans growth with, 152
Fibrobacter succinogenes in reticulo-rumen, 224
filters, microsporous membrane, 156–7
fisture
plaque, 287
sealants, 286
fixed-dose growth systems in wastewater treatment, 193–4
flagellated bacteria, flow and, 58
feromycin effects, 34
Flavobacter spp. on agar surfaces, 85
flora, urgenital, soci urgenital tract, urinary tract flow (fluid), 56–61, 70
absence of hydrodynamics with, 19
spolage biofilms with, 70–1
in channels, solute transfer by, 106
diffusion and, 21, 22
laminer, see laminar flow turbulente, ou turbulent flow
flow cells, culture in, 67–8
fluid, dynamiclows, see flow
fluorescein-labelled probes, 74
fluoridation, water, 296
flavonory, 140
food, see diet; feed; nutrients
Food and Drug Administration recalls related to water, 143–4
foreign object implants in bladder infection model, 263, 265
formation (of biofilms), 46–63
dynamics, 46–63
inert surfaces (in general), 7–8, 154–5
initial development, 47
living surfaces (in general), 8–9
P. aeruginosa, 234
Fourier-transforming infrared spectroscopy, 139
free energy, surface, 18
frozen sections, 110, 115
fungi in rhizosphere
as plant pathogens, 212
symbiotic, 213
β-galactosidase activity, fluorogenic substrates in studies of, 74–5

Gardnerella vaginal infections, 277

gas(ε) diffusion, 87–8
rhizodeposition, 209
gastrointestinal tract, dormant, see dormant
geen- iota, 80–1

gel-free microsat, 69–70
gene expression/regulation, 80–98
lazf fusion in studies of, 74, 86–7
physicochemical conditions affecting, 87–92
surface-induced, 80, 88–98
genetically manipulated microbes, environmental release of, 215

genital tract, 274–81
flora, 274–81
in disease prevention, 277–9
disruption, 276
probiotics and, 274–81
recovery (post-antimicrobial therapy), 277
infection, 276–9
management, 277–9

gingival crevice plaque growth influenced by fluid bathing, 283, 284
plaque in, 288

 gingivitis, 294, 295

acute necrotizing alternative, 295
glass surfaces, growth in drinking water system model on, 199–200

gliding bacteria, 22, 24, 50
non-gliding vs, 50
on semi-solid media, 85
comparing with liquid media, 82

glucose microselectrode, 109

fluorescence microscopy gene expression on solid surfaces, S. mutans, 87

glycocalyx, 47–8, 119–21
in antimicrobial resistance, 118, 119–21
direct role, 119–21
indirect role, 121

biliary brown pigment stone formation and, 253–4
production, 47–8
glycosaminoglycan layer in lower urinary tract, 262

gradostat, 101–2

Gram-negative bacteria complement system and, 235
metals and, 154–5

Gram-positive bacteria complement system and, 234–5
metals and, 154

granular activated carbon columns, sterilization, 143

growth (microbial), 15–45
antimicrobial susceptibility relating to rate of, 122–3
of community cultures in environmental gradients, 75–7
of dental plaque, factors affecting, 283–4
in drinking water systems model, 199–200
in planktonic mode, see planktonic mode

in purifled water systems, 134–5
on semi-solid vs liquid media, 82

in sessile/biofilm mode, 2
advantages, 20–32
laminar flow and, 59
wastewater treatment and, 192, 193–4
on solid vs liquid media, 82–4
growth (plant), rhizobacteria enhancing, 213, 215–16
growth cycle
attachment/adhesion and, 50–1
detachment and, 51
growth promoting factors in purified water systems, 134
expression on solid surfaces, S. mutans, 87

Gunnflint Chert formation, microbes involved, 163, 164

gut, dormant, see rumen

habitat range, extension through communal associations, 65
hardwater formation, 153
heterogeneity, 33–4, 109–12, 173
chemical, 4–7
physical/structural/spatial, 4–7, 33–4, 109–12, 173
corrosion and, 173
determination, 109–12

in water supplies/systems, 200–2

heterotrophic bacteria in drinking water, 197

HEV-related periodontal disease, 295

hormone (plant) production rhizosphere, 213

hospital infections, L. pneumophila, 198

urinary catheter-related, 266–9

hot water sterilization with very, 142–3

systems, pathogens in, 108

human immune response to P. aeruginosa, 233–5

humus degradation, 212

Hyde Park chemical landfill site, wastewater treatment, 188–90

hydraulic effects in purified water systems, 137–8

hydrodynamics, 58

system, 19

hydrogen, oxidation by sulphate-reducing bacteria, 175, 177
hydrogen peroxide as biocide, 141

Hydrogenase Test, 175

hydrophilic bile salt effects on biofilms, 257
hydrophilic bile salt effects on biofilms, 257
hydrophobicity, surface, 18, 50

Hyphomicrobiun spp., competitive behaviour, 37

ileum of ruminants, 228

immune complexes in cystic fibrosis, 242

immune system lower urinary tract, 262–3
response to biofilms, 233–50
immunization against P. aeruginosa animal studies, 237–9

in cystic fibrosis, 243–4
immunoglobulin production in P. aeruginosa lung infection in cystic fibrosis, 242, 243
immunization-related, 237, 238
immunosuppression, cystic fibrosis, 243–4

immunotherapy, cystic fibrosis, 244

implants (stents), biliary, blockage, 255–6, 257–8

inert surfaces (biofilms on), 131–204
formation, 7–8, 154–5

see also specific surfaces

INDEX 305
306 INDEX

infection
human, 118–19, 196–204, 235–44, 261–73, 276–9
biliary tract, 291, 292
lung, see lung
models of, 124, 235–6, 236–7, 262–9
urinary tract, see urinary tract
water-borne, 196–204
plant root, 214

inflammation in cystic fibrosis, chronic pulmonary, 242–3
infrared spectroscopy, Fourier transforming, 139
interactive behaviour, 57–8
intestine of nematodes, 227–9
int(s)
bacteria–metal interactions and, 155–8
distribution at surfaces, 80–1
gene expression influenced by, 90
in rhizosphere, currents, 212
see also specific ions
ion exchange systems, sterilization, 142
iron (ferrous and ferric)
bacterial–metal interactions in presence of, 158
cast, corrosion, 176–7
T. ferrooxidans growth, 152
iron sulphide corrosion products, formation, 178–9
irrigated discs, 102
IVC–2, CDC group, 189, 191
juvenile periodontitis, 295

N. (β-haemorrhagic)
C. horserae lacteae, V. fischeri, 89
kinetics of surface colonization, quantifying, 21–2
Klebsiella pneumoniae, corrosion and, 179
Koch’s postulates, bacterial communities and, 65–6
Krebs (TCA) cycle, oxygen gradients and, 100

β-lactam antibiotic susceptibility, factors affecting, 123
Lactobacillus casei GC–1, 279
correlation involving, 274–6
in disease prevention
artificial implantation, 279
indigenous, 277–9

Lactobacillus spp. in urogenital tract, 274–81
lasZ fusion in gene expression, regulation studies, 74, 86–7
lab, 94, 126
laminar flow, 56–7, 57, 58–9
biofilm dynamics in, 58–9
landfill site, chemical, wastewater treatment, 188–90
laser microscopy, scanning confocal, see confocal scanning
laser microscopy
Legionella pneumophila in water systems, 198, 201–2
leucocytes, polymorphonuclear, see polymorphonuclear neutrophils
life cycles at surfaces, 22
lignin synthesis in alfalfa, manipulation, 230
Limulus amoebocytes (crustacean) test, 140–1
lipo polysaccharides (LPS) detection, 140–1
P. aeruginosa, 234
cystic fibrosis and, 241–2, 244–5
immunization employing, 237, 244–5
T. ferrooxidans in subsurface tailings and, 151–2, 155
colonization of, 151–2
liquid, flow, see flow
liquid ion exchange microelectrodes, 109
liquid media
cells on surfaces vs those in, physiological differences, 81–4
surrounding
attachment and, 53
detachment and, 54
living surfaces (biofilms on), 205–300
formation, 8–9
see also specific surfaces
lung infection by P. aeruginosa, 235–44
in cystic fibrosis, chronic, 239–44
in laboratory animals, 235–9
lysozyme, rhododendron, 209
magnesium ions, gene expression influenced by, 90
mains water model, growth in, 199–200
manganese oxidation, bacterial, surface enhancement, 84
marine conditions, corrosion, 178
maturation, biofilms, 48–9
mechanical stress in plant root, 210
media, liquid, see liquid media; semi-solid media
medical devices (growth on), 119, 255–6, 257, 266–9
contaminated, 135
membranes
cellulose, as in vivo infection model, 124
as microporous filters, 136–7
reverse osmosis, fouling problems with, 142
metabolite accumulation, gene expression and, 88–9
metals
corrosion, see corrosion
soluble, bacterial interactions with, 154–63
microcolonies, formation, development, 3–4, 22–3, 25, 28–9
on biliary stents, 255
bladder, 263
control, 28–9
in P. aeruginosa chronic lung infection, 240–1
strategies, 22–3
microcosms, 66
microelectrodes, 107–9, 115
microelectronic devices, contaminated, 135–6
microenvironment, surface, 16–21, 32–8
pH of, 81
microflora, urogenital, see genital tract; urinary tract
microorganisms, membrane filters, 136–7
microscopy, 112–14, 115
contaminants in purified water systems, 138–9
see also specific types of microscopy
microtubae, 68–70

mine wastes, sulphide-bearing, see acid mine drainage
mineral(s)
in rhizosphere, release and activation, 211–13
sedimentary deposits, microbes involved in formation of, 163–4
see also ions and specific minerals
mineralization by thiobacilli, 158–9
in urinary catheter-related infections, 267
mineralized bacterial biofilms, 148–70
mixed species biofilms of aerobic microorganisms, oxygen and substrate penetration in, 106–7
colonization, 37

© Cambridge University Press www.cambridge.org
<table>
<thead>
<tr>
<th>INDEX</th>
<th>307</th>
</tr>
</thead>
<tbody>
<tr>
<td>hygiene, 295</td>
<td></td>
</tr>
<tr>
<td>ore, cells grown on, 152</td>
<td></td>
</tr>
<tr>
<td>osmolarity, gene expression and, 89</td>
<td></td>
</tr>
<tr>
<td>osmotic, reverse, fouling problems with, 142</td>
<td></td>
</tr>
<tr>
<td>osmZ, 92</td>
<td></td>
</tr>
<tr>
<td>oxidant and reductant, balance of, 106–7</td>
<td></td>
</tr>
<tr>
<td>oxidation by sulphate-reducing bacteria, 174–5</td>
<td></td>
</tr>
<tr>
<td>complete, 174</td>
<td></td>
</tr>
<tr>
<td>incomplete, 174</td>
<td></td>
</tr>
<tr>
<td>oxygen, 107–8</td>
<td></td>
</tr>
<tr>
<td>competition in rhizosphere for, 213</td>
<td></td>
</tr>
<tr>
<td>consumption rates, determination, 107</td>
<td></td>
</tr>
<tr>
<td>gene expression in response to, 87–8</td>
<td></td>
</tr>
<tr>
<td>generation, photosynthetic, determination, 107–8</td>
<td></td>
</tr>
<tr>
<td>gradients, 100</td>
<td></td>
</tr>
<tr>
<td>limitations, detachment and, 54</td>
<td></td>
</tr>
<tr>
<td>profiles, determination, 107–8</td>
<td></td>
</tr>
<tr>
<td>ozone as biocide, 141</td>
<td></td>
</tr>
<tr>
<td>‘packing’ colony formation behaviour, 25</td>
<td></td>
</tr>
<tr>
<td>parasitic sinus infection by P. aeruginosa, 240</td>
<td></td>
</tr>
<tr>
<td>pathogens, see infection</td>
<td></td>
</tr>
<tr>
<td>Pedococcus spp., surface colonization strategies, 24</td>
<td></td>
</tr>
<tr>
<td>pellicle of salivary proteins, adhesion to, 267, 289</td>
<td></td>
</tr>
<tr>
<td>penicillin-binding proteins, 123</td>
<td></td>
</tr>
<tr>
<td>physiological, bacteria-metal interactions and, 154, 155</td>
<td></td>
</tr>
<tr>
<td>periodontal disease, 293–4</td>
<td></td>
</tr>
<tr>
<td>periodontitis, 294</td>
<td></td>
</tr>
<tr>
<td>chronic, 294, 295</td>
<td></td>
</tr>
<tr>
<td>juvenile, 295</td>
<td></td>
</tr>
<tr>
<td>pH, 109</td>
<td></td>
</tr>
<tr>
<td>attachment and, 55</td>
<td></td>
</tr>
<tr>
<td>biliary tract, 252–3</td>
<td></td>
</tr>
<tr>
<td>dental plaque/caries and, 284, 293</td>
<td></td>
</tr>
<tr>
<td>detachment and, 56</td>
<td></td>
</tr>
<tr>
<td>determination, 109</td>
<td></td>
</tr>
<tr>
<td>gene expression and, 81, 88</td>
<td></td>
</tr>
<tr>
<td>rhizosphere biofilm-related modifications, 209</td>
<td></td>
</tr>
<tr>
<td>whose transporter and, 104</td>
<td></td>
</tr>
<tr>
<td>pharmaceutical industry, contamination, 135</td>
<td></td>
</tr>
<tr>
<td>phenotypic responses to adhesion, 2–3</td>
<td></td>
</tr>
<tr>
<td>photosynthetic oxygen generation, determination, 107–8</td>
<td></td>
</tr>
<tr>
<td>physical characteristics of sulphide tailings, 149–50</td>
<td></td>
</tr>
<tr>
<td>physical heterogeneity, see heterogeneity</td>
<td></td>
</tr>
<tr>
<td>physical processes/conditions</td>
<td></td>
</tr>
<tr>
<td>in attachment, 54–5, 58–9</td>
<td></td>
</tr>
<tr>
<td>in detachment, 55–6, 58–9</td>
<td></td>
</tr>
<tr>
<td>in gene expression, 87–92</td>
<td></td>
</tr>
<tr>
<td>in rhizosphere, 210–11</td>
<td></td>
</tr>
<tr>
<td>physical treatment of purified water systems, 142–3</td>
<td></td>
</tr>
<tr>
<td>physiology</td>
<td></td>
</tr>
<tr>
<td>biofilm, 13–117</td>
<td></td>
</tr>
<tr>
<td>rhizosphere, 226</td>
<td></td>
</tr>
<tr>
<td>pigment stones in biliary tract, 252–5, 257, 257–8</td>
<td></td>
</tr>
<tr>
<td>pipe(s) (man-made and biological)</td>
<td></td>
</tr>
<tr>
<td>corrosion, 176–7</td>
<td></td>
</tr>
<tr>
<td>flow in, 56–61</td>
<td></td>
</tr>
<tr>
<td>pipelines</td>
<td></td>
</tr>
<tr>
<td>purified water, contamination, 136</td>
<td></td>
</tr>
<tr>
<td>turbulent flow in, 59</td>
<td></td>
</tr>
<tr>
<td>planktonic mode of growth, 2, 4</td>
<td></td>
</tr>
<tr>
<td>acid mine drainage and its effects on, 159</td>
<td></td>
</tr>
<tr>
<td>antimicrobial susceptibility in, 119, 121</td>
<td></td>
</tr>
</tbody>
</table>
Index

308

plant

cell surface, attachment of bacteria to, 86
cell wall, bacteria in run off associated with, 223
growth, rhizobacteria enhancing, 213, 215–16
root, zone of soil surrounding, see rhizosphere
plaque, dental, 267, 282–300
approximal surface, 287–8
bacteria/microbes in
genera, 283
interactions, 291–3
definition, 282–3
development/information, 284–7, 288–9
mechanism, 287–9
prevention/control, 295–6
disease and, 293–6
EM studies, 113–14, 284–7
fissure, 288
gingival crevices, 288
structure, 284–7
plasmids, polycyclic aromatic hydrocarbon-degrading genes, 187
plastic (in medical devices), biofilm formation, 255–6, 257
polycyclic aromatic hydrocarbons (PAH),
degradation/removal, 184–7
poly-d-hydroxybutyramide, 139
poly morphonuclear neutrophils (leucocytes), P. aeruginosa and, 234
in cystic fibrosis, 242–3
polyvinylidene fluoride pipeline contamination, 136
population architecture/structure, 34–7, 66
peptid, 90
porosity, determination, 105
positioning manoeuvres/mechanisms, 31, 66
potable water, see drinking water
precipitation, metal, 155, 158
predation, resistance to, 31–2
probiotics, urogenital flora and, 274–81
processing of ruminant feed, 229–30
prostatitis, chronic, 265–6
prosthecate bacteria, surface colonisation strategies, 24
prostheses (seams), biliary, blockage, 255–6, 257–8
protease inhibitors in cystic fibrosis, 243
Protochlorobacteria, wastewater treatment and, 190, 191
Pseudomonas aeruginosa
PRM2007 mutant, growth on agar, 85
struvite urolithiasis and, 264
Pseudomonas aeruginosa, 233–50
agglutination production, see agglutinate
ciprofloxacin susceptibility, 120, 126
corrosion and, 179
EM studies, 113
erpoly saccharides, rhizosphere and, 209
immune responses to biofilms of, 233–4
lung infection, see lung
oxygen consumption rates, determination, 107
spatial heterogeneity, 33
Pseudomonas fluorescens
sewage, nutrient-savaging, 30
spatial heterogeneity, 33, 34
surface colonization strategies, 25, 26, 28
Pseudomonas fragi, surface colonization strategies, 25, 28
Pseudomonas putida, competitive behaviour, 37
Pseudomonas spp., 233–50
Pseudomonas syringae, surface colonization strategies, 28
pulmonary infection, see lung
pulp wastewater treatment, 193
pure culture, see cultures
purified/contaminant-free water (biofilms in), 133–47
contamination of, 135, 135–6
case histories, 135–6, 143–4
detection, 135, 138–40
prevention, 136–8
treatment, 135, 138, 141–3
design consideration, 136–8
FDS recalls, 143–4
growth in, 134
pyrite, 158, 159
corrosion, 178–9, 179
T. fea, biofilm colonization with, 150, 152
pyrogens, bacterial, 140–1
pyrroli dine, 150
quaternary compounds, resistance to, 123
rabbit model of urinary catheter-related infection, 268–9
Raman spectroscopy, 139
RapidChek ll, 175
rat model of infection
lower urinary tract, 263, 265
P. aeruginosa in lung, 235–6, 236
reaction and diffusion, relationship between, 105–6
redox potential electrode, 109
reducent and oxidant balance of, 106–7
reporter gene technology, solid surface gene expression and, 86–7
resonance Raman spectroscopy, 139–40
resorufin-labelled probes, 74
respiratory tract infection by P. aeruginosa, 235–44
tower, 235–44
in cystic fibrosis, chronic, 239–44
laboratory animals, 235–9
upper, 240
renin–angiotensin, 223–6
reverse osmosis membranes, fouling problems with, 142
Reynolds number, 57–8
Rhizobium spp., plant cell attachment, 86
rhizodeposition, 208–9, 215
rhizosphere, 207–20
chemical interactions, 208–10
physical interactions, 210–11
ribosomal RNA probes
Protectobacteria and activated sludge studies, 191
sulphate-reducing bacteria and, 175–6
RNA, ribosomal, see ribosomal RNA
Robbins device, 102, 124
modified, antimicrobial susceptibility studies, 124
P. aeruginosa biofilms in, 234
rolling behaviour, 24
Rickettsia, 102
ruminant, 221–32
digestion, 226
digestive tract, biofilms in, 221–32
manipulation, 229–30
S fimbral adhesions, 84–5
INDEX 309

S layers, bacteria–metal interactions and, 155
salivary components, dental plaque growth influenced by, 267, 283, 284, 288–9
Salmonella spp. adhesion to epithelial cell, 86
sawdust-based ecosystem, acid mine drainage bioremediation, 161
scanning confocal laser microscopy, see confocal scanning
laser microscopy
scanning electron microscopy, 113
dental plaque, 286
sea environments, corrosion, 178
sealants, fissure, 296
seroconversion, rhodopseudomonas, 208–9
settling sections, 109–12
sediment(s), acid mine drainage-receiving, sulphate-reducing
bacteria activity, 161–2
sedimentary mineral deposits, microbes involved in formation of, 163–4
semiconductors, contamination, 133, 136
semi-solid media (bacterial responses in), 82, 84–5
liquid media compared with, 82
sequence batch reactors in wastewater treatment, 188–90
septic bacteria, 29–32
acid mine drainage and its effects on, 159
growth, see growth
surface colonization traits, 16
quest, 84–5
shear forces, 55, 137
sheets (surrounding chains of cells), bacteria–metal
interactions and, 155
shredding behaviour, 23
signal transduction, gene regulation and, 90
Simonsiella spp. on prominent tongue, 222–3
sinus infection by P. aeruginosa, 240
slide cultures, continuous-flow, 67–8
slopping, 55
sludge
activated, phylogenetic studies in samples of, 191
biliary, 253–5
sludge blanket reactors, 193
soil
ecology, rhizosphere biofilms affecting, 215
structuring, 211
zone around plant root, see rhizosphere
solid state chemist (microsat), 68–70
solid surfaces, growth on, 82–4, 86–7
cmpared with liquid media, 82–4
solitary cells, surface colonization strategies, 23–4
soluble metals and bacteria, interactions, 154–65
solute transport, 104–7
spatial heterogeneity, see heterogeneity
species (bacterial)
composition, in communities, 66
detachment and, 51–2
spectroscopic detection in purified water systems, 139–40
spittle of Oddi, biliary microbial ecology and, 252
spinning behaviour, 23
spoilage biofilms, 70–1
Staphylococcus epidemia, tobramycin susceptibility, 124, 125
starvation conditions
attachment in, 51
in purified water systems, survival, 134
static systems, 19
steady-state culture, 67–71, 101–4
batch enrichment culture vs, 71–3
steam sterilization, 142–3
steel, mild
bimetal–painted, growth in water systems on, 199–200, 201
corrosion, 176–7, 178–9
stents, biliary, blockage, 253–6, 257–8
sterilization and disinfection, purified water systems, 138
stones/calculi
biliary tract, 252–5, 257–8
urinary infection-related, 264–5
Streptococcus spp. in dental plaque, 286, 288–9, 293
Streptococcus mutans, 286, 292
glucosyltransferase expression on solid surfaces, 87
nutritional interactions with other bacteria, 293
Streptococcus sanguinis, nutritional interactions with other
bacteria, 292, 293
stress in plant root, mechanical, 210
structure (bacterial), attachment and, 50
structure (biofilm), 3–7, 13–17, 81, see also architecture
dental plaque, 284–7
heterogeneity, see heterogeneity
turbulence effects on, 60
struvite urolithiasis, 264–5
substratum and bacteria, bonding between, 52–3
succession, 37–8
sugar substrates, 296
sulphate-reducing bacteria, see sulphur-reducing bacteria
sulphide (ion), gradient, determination, 108–9
sulphide tailings, 148–70
metal–microbe interactions, 158–9
mineralized biofilms in, 148–70
physical and chemical characterization, 149–50
physical zone, 150
sulphide type, relevance to colonization, 150
sulphidogens, see sulphur-reducing bacteria
sulphur-oxidizing bacteria, positionin mechanisms, 31
sulphur-reducing bacteria (sulphate-reducing bacteria; SRB;
sulphidlactunabacter), 161–3, 171–82
acid mine drainage bioremediation and, 161–3
corrosion and, 171–82
population architecture, 34–6
sedimentary mineral deposit formation and, 164
surface(s) (bacterial)
attachment and, 50
–to-volume ratio, bacteria–metal interactions and, 155
surface(s) (biofilms on), 16–22, 23–9
attachment to/attachment from, see adhesion; attachment;
detachment
bonding to, 52–3
colonization, see colonization
generic responses to, see gene expression
growth on, see growth
 inert, see inert surfaces
 living, see living surfaces
microenvironment, see microenvironment
properties of, 80–1
structure, 54–5
surface-enhanced Raman spectroscopy, 139–40
surfactants
adhesion to plastics prevented by, 257
biocid, 142
gene expression and, 89
INDEX

surrounding medium, see medium suspended growth systems in wastewater treatment, 193–4 swimmer cells, 82, 84 sweetening agents, artificial, 296 swimmer cells, 82, 84 symbiosis in rhizosphere, 213 synergy, plant–rhizobacteria, 213 systems hydrodynamics, 19 static, 19 taps of purified water systems, 138 teeth, see caries, plaque teichoic acids, bacteria–metal interactions and, 154, 155 teichuronic acids, bacteria–metal interactions and, 154, 155 temperature attachment and, 95 dental plaque and, 284 detachment and, 56 texture, surface, 54–5 thermophilic bacteria, archaebacterial and eubacterial, economic impact, 176 Thermus aquaticus, positioning mechanisms, 31 thickness of biofilms, 20 Thiothrix ferrooxidans mineral surface colonization, 148–70 initialisation, 150–3 physiological differences in surface- vs liquid-grown, 83–4 subspecies, identification, 154 time lapse video studies of growth on semi-solid media, 85 To5271, 189, 190 tobramycin susceptibility, S. epidermis, 124, 125 tongue, ramniant, 222–3 tooth, see caries, plaque toothpastes, 296 topoisomerase I, 90 touch sensors/receptors, 126 toxins in rhizosphere, degradation, 211 transmission electron microscopy, 113, 114 biliary brown pigment stones, 254 transport of solutes, 104–7 tricarboxylic acid cycle, oxygen gradients and, 100 Trichosa, 296 turbulent flow, 56–7, 57, 58, 59–60 biofilm dynamics in, 59–60 ulcerative gingivitis, acute necrotizing, 295 ultraviolet sterilization systems, 138 urease, bacterial ramniant and, 224, 227 streptococcus ssp and, 264 urinary tract, 9, 261–81 flora, 274–81 in disease prevention, 277–9 disruption, 276 probiotics and, 274–81 recovery (post-antimicrobial therapy), 277 lower, 261–73 host defences mechanisms, 261–2 urinary tract infections, 9, 261–73, 276–9 lower, 261–73, 276–9 management, 277–9 upper, 201 urogenital tract, female, 9, 274–81 uterus, biofilm formation, 9 vaccination, see immunization vadose zone, 149, 150, 153 vaginal infection, 277 van der Waals forces, dental plaque formation and, 288 Vibrio spp., nutritional interactions with other bacteria, 292 Vibrio DW1, surface colonization strategies, 28–9 Vibrio fischeri, luminescence genes, regulation, 89 Vibrio harveyi, surface colonization strategies, 26–7 Vibrio parahemolyticus lac gene, 84, 129 surface colonization strategies, 25–6, 27–8, 29 swarming ability on agar surfaces, 84 viscosity, gene expression and, 89 viscous forces, boundary layers and, 58 viscous sublayer, 105 washout, resistance to, 31 wastewater treatment, 183–95 consortia in, 183–95 water availability in rhizosphere, 210 drinking/potable, see drinking water hot/high temperature, see hot water purified/contaminant-free, see purified water systems/supplies fluoridation, 296 pathogens in, 196–204 water activity, gene expression and, 89 Xanthomonas multiplexa colonization, 37 zoospores in rhizosphere, 212