Cambridge University Press & Assessment
978-0-521-45206-9 — Sperner Theory
Konrad Engel

Excerpt

More Information

1

Introduction

1.1. Sperner’s theorem

We start our investigations with the theorem that was the cornerstone for the whole
theory. In the thirties, forties, and fifties few further results of a similar kind were
published. But beginning with the sixties, the combinatorics of finite sets has
undergone spectacular growth. Not only have subsets of a finite set been studied,
but also more general objects like partially ordered sets. Many important results
in this area can be found in this book.

Theorem 1.1.1 (Sperner [436]). Let n be a positive integer and F be a family

of subsets of [n] := {1, ..., n} such that no member of F is included in another
member of F, that is, forall X, Y € F we have X ¢ Y. Then
(@)
M ) if n is even,
IFl<y ”
,,_'%_, ) ifn is odd.

(b) Equaliry holds iff
{Xg[n]:le——-%} if n even,

[Xcinl:1XI=2 Y or{XSn: 1XI =2} ifnodd

Proof. The following presents Sperner’s original approach. Clearly the families
given in (b) satisfy the conditions of the theorem and have the corresponding size.
Hence we must show that there do not exist “better” (resp. “other”) families. Let
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2 Introduction

F be any family of maximum size satisfying the conditions of the theorem. Let
I{(F) := min{i : there is some X € F with | X| = i},
u(F) := max{i : there is some X € F with | X| = i}.
For brevity we write / instead of /(F') if F is clear from the context. Let
G ={XeF: |X|=1},
H :={Y C[n]:|Y|=1[++1and thereis some X € G with X C Y},
F = (F-G)UH.

Claim 1. The family F” satisfies the conditions of the theorem.

Proof of Claim 1. The only obstacle could be the existence of some ¥ € H
and some Z € F — G such that Y C Z. But by definition of H we would find
also some X € G € F with X C Y. Thus X C Z, contradicting the fact that 7
satisfies the conditions of the theorem. O

Claim 2. Let/ < %51, Then |F'| > |F|, and || = |F| implies / = Z5!.

Proof of Claim 2. Let us count the number N of pairs (X, Y) with X € G,
Y € H, X C Y in two different ways. For a fixed member X of G, we can find
exactly n — I corresponding sets Y since Y can be obtained in a unique way from
X by adding one element of [n] — X. Thus

N =1{G|(n - D). (LD

For a fixed member Y of H, we can find analogously / + 1 sets X with X C ¥,
|X| = . But it is not necessary that all these sets X belong to G. Thus

N < H|( +1). (1.2)
By (1.1) and (1.2) and because of / < ”—5—1—
IGl(n =1 < HI + D), (1.3)
n—1 n-—11
% I ES %Jz:l’

where the last inequality is only an equality if / = % Since F satisfies the
conditions of the theorem, 7 N'H = @. Thus

-1
|F'| = 1F) = |G| + |H| = |F]| (equality implies [ = nT)
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1.1 Sperner’s theorem 3

Recall that we have already chosen F as a family of maximum size that satisfies
the conditions of the theorem. We obtain from Claims 1 and 2

-1 1
" and (analogously) u(F) < f—%——

I(F) =

because otherwise we could construct a family F” of larger size. If  is even, we
are already done. So let r be odd. If [(F) = u(F ), both values are either % or

n+1
7] < (,,'fl) = (,,’L). (1.4)
2 2

“5— and, consequently,
Thus assume that /(F ) = ”—%‘, u(F) = % In this case we will obtain a contra-
diction. By Claim 2,

|Fl < |F| < (&) (1.5)

2
Since F is of maximum size, we must have equality in (1.5), thus also in (1.2),
and this is possible only if for every ¥ € ‘H each /-element subset of ¥ belongs
to G. But consider under all pairs (¥, Z) with Y € ‘H, Z € F — G such a pair for
which |Y N Z] is maximum. Since |Y| = |Z| =1+ 1, Y # Z, there exist some
y€Y —Zandsome z € Z—Y.In view of the preceding remarks, ¥ — {y} must
belong to G; thus Y’ := (¥ — {y})) U{z} belongsto H. Now |Y'NZ| = |[Y NZ|+1
is a contradiction to the maximality of |Y N Z]|. [ ]

This result (or at least part (a)) was obtained independently by several other
mathematicians. As examples we mention here Gilbert [223] and the succeeding
paper of Mikheev [369]. Using

n 5 ifniseven,
LZJ ' [ 2=1 if n is odd,
part (a) of Theorem 1.1.1 reads: |F| < (L%J)‘

Sperner’s theorem can be always applied if one works with families of subsets
that are pairwise incomparable with respect to inclusion. Here we consider only
one example. It was found by Demetrovics [130] in a study of the relational model
of data structures proposed by Codd [118] and Armstrong [33]. Suppose we are
given m persons Py, ..., P, and n attributes 41, . . ., 4, like last name, first name,
date of birth, place of birth, weight, and so forth. For each person, each attribute
takes on a unique value. Using a right coding, we may suppose that each such
value is a natural number. Thus all data on the persons can be represented by an
m x n-matrix D = (d;;), where d;; is the value of 4; for person F;. We say that

a set of attributes {4; : j € X}, and, briefly, the set X' C [n], is a key if for fixed
values of 4;, j € X, there exists at most one person F; that has these values — that
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4 Introduction
is, if
dij = dyjforall j € Ximpliesi =i’

(one already “knows” the person if one knows his values of the attributes of a key).
Akey X C [n] is called a minimal key if there is no key X’ with X’ C X.

Corollary 1.1.1. For n attributes the number of minimal keys is not greater than
(Lg J), and this bound is the best possible.

Proof. Itis trivial to see that the family F of minimal keys satisfies the conditions
of Theorem 1.1.1, which proves the upper bound. To see that this bound can be
attained, we must construct a corresponding matrix D. We do this here in a simple
way with a large m, namely m := (L%?—l) + 1. Set all entries of the first row of D
equal to 1. Then order all n-dimensional rows with | 5| — 1 onesand n + 1 — | 5]
zeros in any way, but count them from 2 up to (Lnjl_l) + 1. Define the ith row
of D to be the ith row from above, but with all zeros replaced by the number
Li=2,..., (L%T—l) + 1. Then every |4 ]-element subset of [n] is a key since
either we find in the corresponding places only ones — and this can be the case
only in the first row, or we find some number i # 1 - and this can be the case only
in the ith row. Moreover, it is easy to see that there is no key of size smaller than
L4 ]; thus we have indeed (Lg J) minimal keys. [}

The preceding construction is due to Demetrovics and Katona [131]. For more
information on similar combinatorial problems of data structures, see, for example,
Demetrovics and Katona [131] and Demetrovics and Son [132].

1.2. Notation and terminology

The main objects considered in this book are partially ordered sets (abbreviated
as posets), which are sets equipped with a reflexive, antisymmetric, and transitive
relation (order relation). Throughout we suppose that the posets are finite. For
the sake of brevity we will not distinguish between the poset and the underlying
set. For two comparable (i.e., related) elements p, g of a poset P, we write in
the usual way p < g or, equivalently, ¢ > p. Two posets P and Q are called
isomorphic (denoted by P = Q) if there is a bijective mapping ¢ from P onto Q
(called isomorphism) such that p < g iff (i.e., if and only if) ¢(p) < ¢(g). An
automorphism of P is an isomorphism from P onto P.

Sometimes we study more general objects, namely graphs. An (undirected,
simple) graph G = (V, E) is a set V, called the vertex set or point set, together
with a set E of two-element subsets of V', called the edge set. The degree d(v)
of a vertex v € V is defined as the number of edges containing v. The graph
is called regular of degree d if d(v) = d for all v € V. We speak of directed
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graphs (digraphs) G = (V, E) if E consists of (ordered) pairs (p, ¢) of different
elements p, g of ¥V and we call the elements of E arcs. Fore = {p,q} (p, q are
the endpoints of e) (resp. e = (p, q), p is the starting point, q is the endpoint), we
write briefly pg, and in the directed case we use the notation e~ := p, et :=g¢.
Moreover in the directed case we allow more than one arc between points p and
q; thus E is a multiset of arcs.

The element g of a poset P is said to cover the element p (denoted by p < ¢
andg » p)ifq > pandif g > ¢’ > p implies ¢ = ¢’. Obviously, the order
relation is the reflexive and transitive closure of the cover relation. A poset P can
be illustrated by its Hasse diagram, which is a digraph H(P) = (P, E(P)) whose
vertex set is P and whose arc set E(P) consists of all pairs (p, g), where p < ¢.
In figures we always have g > p if p and ¢ are joined by a straight line and ¢ lies
higher than p. The Hasse graph is the underlying undirected graph of the Hasse
diagram. An element p of P is called minimal (maximal) if g < p (g > p)implies
g = p. For two elements p, g of P, we define the interval [p, q] to be the set of
all elements of P lying between p and g; thatis, [p,ql={ve P: p<v <g}.

A subset of pairwise comparable elements of a poset P is said to be a chain. We
denote chains by C = (cp < - - - < ¢p), which gives us not only the elements but
also the relation between them. The number 4 is called the length of C. The height
Junction assigns with each element of P the length of a longest chain with p at the
top. A chain is called saturated if it has the form C = (cgp < -+ < ¢p), and it is
called maximal if, in addition, ¢y and ¢;, are minimal and maximal elements of P,
respectively.

An antichain is a subset of pairwise incomparable elements of P. Subsets of a
poset will often be called families too (motivated by families of subsets of a set).
Antichains are also called Sperner families. A k-family is a family in P containing
no chain of ¥ + 1 elements in P, thus a 1-family is an antichain. Usually we denote
families by roman letters F, G, and so on. If P is the Boolean lattice (to be defined
in the next section) or if P is very similar to the Boolean lattice we also use script
letters F, G, and so forth.

We speak of maximal families and maximum families satisfying various condi-
tions. “Maximal” means not contained in any other; “maximum” means maximum-
sized.

For graphs G = (V, E), we define a subset C of V' to be a cligue if any two
elements of C are joined by an edge (i.e., are adjacent), and a subset I of V is
called independent if no two elements of / are adjacent. A matching in a graph
G = (V, E) is a subset M of E of pairwise nonadjacent edges; that is, no two
edges of M have a common endpoint.

We often consider extremal problems not in a poset but in a weighted poset
(P, w), which is a poset P together with a function (called a weight function) w
from P into the set R of nonnegative real numbers. If w(p) > Q forall p € P,
then (P, w) is called a positively weighted poset. The weight w(F) of a family F of
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(P, w) is defined by w(F) := ZPGF w(p). Every poset P can be considered as a
weighted poset (P, w) where w = 1; thatis, w(p) = 1 for all p € P. We identify
P and (P, 1). The maximum weights of an antichain and a k-family in (P, w) are
denoted by d(P, w) and dj (P, w), respectively. The parameter d (P, w) is called
the width of (P, w).

Given a weighted poset (P, w) and a subset F of P, the poset whose underlying
set is F and whose elements are ordered and weighted as in (P, w) is called the
poset induced by F. The dual (P*, w) of (P, w) has the same underlying set and
the same weight function as (P, w), but it is ordered by p <p+ g iff p >p q.

The (direct) product P x Q of the posets P and Q is defined to be the set of
all pairs (p, q), p € P,q € Q, with the order given by (p, q) <pxg (¢, q") iff
p <p p' and g <g q’. Moreover, the product (P, v) x (Q, w) of the weighted
posets (P,v) and (Q, w) is the product of P and Q together with the weight
function v x w defined by (v x w)(p, g) := v{p)w(q), p € P,q € Q. We denote
a product of n copies of (P, w) by (P, w)", and for (P}, w1) x - -- X (P,, w,) we
write briefly [T7_, (P, w).

Given a group G of automorphisms of a poset P, a nonempty subset 4 of P is
called an orbit if for all p,q € A there is some ¢ € G such that ¢(p) = ¢ and
if A4 is maximal with respect to this property. It is easy to see that the union of all
orbits is a partition of P. Now the quotient of P under G (denoted by P/G) is
the poset of all orbits ordered in the following way: 4 <p,; B iff there are some
a € A,b € Bsuchthata <p b (it is easy to see that P/G is really a poset). The
weighted quotient is the quotient together with the weight function w/G defined
by w/G(4) :=1]4|,4 € P/G.

Given two posets P and Q, amapping ¢ : P — Q is called order preserving
if p < g implies p(p) < @(g). If Q is the set R with the natural ordering, we
speak of increasing functions. Decreasing functions are defined in an analogous
way. The characteristic function of a subset S of P is defined and denoted by

1 ifpes,
¢s(p) = _
0 otherwise.
The support of a function f : P — Risthe setsupp(f) :={p € P: f(p) # 0O}
A subset F of a poset P is called a filter (ideal)if p € Fandg > p(q < p)
imply ¢ € F.Sometimes filters (ideals) are also called upper ideals (lower ideals).
A filter (ideal) F is said to be generated by a subset Sof P F={pe P: p >
q (p < gq)forsome g € S}. If S contains only one element we speak of principal
filters and ideals.
Given two elements p, g of P, the element v is called supremum (infimum) of p
andg —denotedby v = pvqg (v= pAg)-ifv = p,v>qgandifw > p,w > g
imply w > v(ifv < pv <gandifw < p,w < g imply w < v). In an

analogous way we define the supremum (infimum) of any subset 4 of P, which
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we denote by sup 4 (inf 4). Most of the examples considered in this book are
lattices, that is, posets P in which p v g and p A q exist for all p,q € P.

Further, almost all posets that we will study are ranked posets, that is, posets
together with a rank function. Here a rank function of a poset P is a function
r from P into the set N of all natural numbers such that 7(p) = 0 for some
minimal element p of P and p < ¢ implies r(g) = r(p) + 1. Note that we do
not suppose — as traditionally — that »(p) = O for all minimal elements p of P. If
in a ranked poset every minimal element has rank 0 and every maximal element
has the same rank, we speak of a graded poset (note that in any poset there is at
most one rank function with this property). Given a ranked poset P, rp denotes
throughout its rank function, but generally we omit the index P and merely write
r. The number »(P) := max{r(p) : p € P} is called the rank of P (note the
difference from the weight w(P) of a weighted poset (P, w), which we defined
by w(P) := ZpEP w(p)). Very often we set for the sake of brevity n := r(P).

A subset F' of a graded lattice is called ¢-intersecting (¢-cointersecting) if r(p A
q) >t (r(pvyg) <r(P)—t)forall p,q € F. Intersecting (cointersecting) is an
abbreviation for 1-intersecting (1-cointersecting).

The dual of a ranked poset P is the dual P* of P together with the rank function
rp+ :=rp(P)—rp(p)forall p € P. Moreover, the product of two ranked posets
P, Q is defined to be the poset P x Q together with the rank function rp, o
given by rpx o(p, q) := rp(p) + ro(q). For a ranked poset P, we define the ith
level by N;(P) := {p € P : r(p) = i}; its size W;(P) := |N;(P)] is called
the ith Whitney number,i = 0, ..., r(P) (when there is no danger of ambiguity,
we write briefly N; and W;). It is useful to define N; := @ and W; = 0 if
i ¢1{0,...,r(P)}. Obviously, each level of a ranked poset is an antichain, and the
union of & levels is a k-family. The rank-generating function F(P; x) of a ranked
poset is defined by F(P; x) := Y . p x" (= Z:(:g) Wix'). Itis easy to see that
F(Px Q;x) = F(P; x)F(Q; x)if P and Q are ranked. For S C {0, ..., r(P)},
we define the S-rank-selected subposet ( Ps, wg) as the subposet induced by Pg :=
{p € P :r(p) € S} together with the induced weights wg.

Forranked posets P, Q of the same rank, we define the rankwise (direct) product
P x, O tobe the set Uf(zl(? N;(P) x N;(Q) together with the relation (p, ) <px, 0
(p',q")if p <p p' and g <@ ¢'. If we have, in addition, weights v and w on P
and Q, resp., then, as for usual products, (v X, w)(p, q) := v(p)w(g).

Given a family F in a ranked poset P, the set of rank i elements of F is denoted
by F;, and the numbers f; := | F;| are called parameters of F,i = 0, ..., r(P).
The vector f = (fo, ..., fr(p))" is called the profile of F. If F = F; for some i
then we call F i-uniform.

For an element p of P, we define and denote the upper (resp. lower) shadow
of pby V(p) :=1{q € P :q > p} (tesp. A(p) :={q € P : g < p}). More
generally, if P is ranked, let the upper (resp. lower) k-shadow of p be defined and
denoted by V.1 (p) :={g € Ni : ¢ = p} (resp. Ax(p) :={g € Ny : g < p}).
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The (k—) shadows of a subset of P are the unions of the (k—) shadows of its
elements.

More generally, given a weighted and ranked poset (P, w), the weight w(N;) of
the ith level N; of P is called the weighted ith Whitney number. We mostly use the
following definitions in the w = 1 case (where W; = w(N;)). The weighted and
ranked poset (P, w) is said to have the k-Sperner property if the maximum weight
of a k-family in (P, w) equals the largest sum of £ weighted Whitney numbers in
(P, w), that is, if

dr(P, w) = max{w(N;) + -+ w(Ny) :0<i) <.+ <ip r(P)}.

In the k¥ = 1 case we also say briefly that (P, w) has the Sperner property or
(P, w) is Sperner. Further, (P, w) has the strong Sperner property ((P, w) is
strongly Sperner) if (P, w) has the k-Sperner property forallk =1, 2,....

A sequence of nonnegative real numbers {a,} is called unimodal if there is a
number % such thata; < a;41 fori < A and a; > a4 if i > h. It is called
logarithmically concave (or log concave) if al.2 > a;_ya;41 for all i. For a fi-
nite sequence (ao, ..., a), we say that it is symmerric if a; = a,_; for all i.
If the (weighted) Whitney numbers of (P, w) are unimodal (resp. symmetric),
then (P, w) is said to be rank unimodal (resp. rank symmetric). If {a,} and {b,}
are two infinite sequences of real numbers, the following notations for n — oo
are well known: a, ~ b, if lim,—ca,/b, = 1, a, = O(by) if there exists
some ¢ € R such that |a,| < c|b,] for all n; a, = o(by,) if limy,_ o0 ay /by, =0
and a, < b, if a, < by(1 + o(1)). All logarithms in this book are to the basis
e=2718....

As usual, we denote the largest integer that is not greater than a given real
number x by |x]. For the simallest integer that is not smaller than x, we write [x].
The set {1, ..., n} we abbreviate by [n]. For the family of k-element subsets and
for the power set of [n], we use the notation ([Z]) (resp. 2[”]), which is motivated
by the corresponding sizes. 4 € B means that A is a subset of B, whereas strict
inclusion is denoted by 4 C B. For the set difference of sets 4 and B, we write
A— B.Moreover, we denote the complement of 4 in [n]by A; thatis, 4 := [n]— A.
For F C 21"l let F := {A : 4 € F) be the complementary family.

Before considering some concrete examples of posets and lattices in the next
section, let us look at some larger classes of ranked posets. For a general study of
these lattices, see, for example, Aigner [21] and Stanley [441]. In a lattice P, the
elements covering the minimal element are called atoms. The rank function of P
is called modular (resp. semimodular) if

ripng)+r(pvg)= (resp. <)r(p)+r(g)forall p,q € P.

A (finite) lattice is called modular if it has a modular rank function. Moreover,
a lattice is said to be geomerric if it has a semimodular rank function and every
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1.3 The main examples 9

element is a supremum of atoms. Finally a lattice is called distributive if the
following identities hold for all p, g, v € P:

pA@VY) =(pArgq)V(pAv),
pVgAv)=(pVvg) A(pVvo).

We note that each of these identities implies the other. All (finite) distributive lat-
tices are ranked, for the proof see, for example, {21, p. 38]. Obviously, distributivity
implies modularity.

1.3. The main examples

The following are several examples of posets we will consider in this book. Most
of these posets can easily be shown to be lattices. Hence in all traditional examples
the word lattice will be used instead of poset. Further, it is mentioned without
proof that all following posets are ranked. The reader will learn in the book that
all posets up to the last one have the Sperner property.

Example 1.3.1. The Boolean lattice B,

The poset of all subsets of an n-element set, ordered by inclusion, is the Boolean
lattice. Obviously, B, is isomorphic to (0 < 1)" as well as to the poset of all faces
of an (n — 1)-dimensional simplex (including the empty set as a face), ordered
by inclusion. It is easy to see that Ni(B,) consists of all k-element subsets; thus
Wi(By) = (7). The Hasse diagrams of B3 and By are illustrated in Figure 1.1.

B3 By
Figure 1.1

Example 1.3.2. Chain products S(ky, ..., k).

The poset S(ki, ..., k,) consists of all n-tuples of integers a = (ajy,...,an)
suchthat 0 < a; < k;, i = 1,...,n, and we have a < b iff a; < b; for all
i. We will adopt the convention k; > -.- > k. Obviously, S(ky,...,k,) =
]—[LI(O <1< .-+ < k;), and therefore S(ky, ..., k,) is called a chain product.
Given n distinct primes py, ..., py, S(k1, ..., k) is isomorphic to the lattice

© in this web service Cambridge University Press & Assessment www.cambridge.org



www.cambridge.org/9780521452069
www.cambridge.org

Cambridge University Press & Assessment
978-0-521-45206-9 — Sperner Theory
Konrad Engel

Excerpt

More Information

10 Introduction

of all divisors of p]f‘ pﬁ”, ordered by divisibility. The Boolean lattice B, is
isomorphic to S(1,...,1). From the product representation we obtain that the
rank of an element a of S(ky, ..., k,) is given by r(a) = a; + - - - + a,, and the
rank-generating function is [T, (1 +x + - - - + x%).

Example 1.3.3. The cubical poset Q,,.

Oy, is the poset of all faces of an n-dimensional cube (not including the empty set
as a face), ordered by inclusion. Here we consider only the discrete cube {a@ =
(ay,...,ay) : a; € {0, 1}}. Its faces are all subsets of the form {a : a; € {0, 1} if
i¢lLa=uo;ifieI(i=1,...,n)},whereIisasubsetof [n]and ¢; (i € I)are
fixed elements of {0, 1}. Clearly the faces are exactly the intervals in the Boolean
lattice Bj,. If one notes that a face corresponds to an n-tuple b = (by, ..., by)
where b; = 2ifi ¢ I and b; = w; if i € I, then it is not difficult to see that O,
is isomorphic to a product of n factors given in Figure 1.2. Thus we consider Q)

2

N

0 1

Figure 1.2

mostly as the set of all n-tuples b = (by, ..., b,) with b; € {0, 1,2} for all / and
ordered by b < ¢ iff ¢; = 2 or b; = ¢; for all i. Obviously, the rank of b equals
the number of “twos” in b and Wi(Qn) = (Z)Z”‘k .

We get the cubical lattice Q, if we add to 0, a minimal element (which is
smaller than all elements of Q,).

Example 1.3.4. The function poset F}!.

F}} consists of all partially defined functions of an n-element set into a k-element
set. For a function f of F, let D(f) be its domain. Two elements of F are
ordered in the following way: f < g iff D(f) C D(g) and f(x) = g(x) for
all x € D(f). A partially defined function of {x1, ..., x,} into {y1, ..., y} can
be represented as an n-tuple @ = (ay, ..., a,), where ¢; = 0 if x; ¢ D(f) and
ai = jifx; € D(f) and f(x;) = y;. Thus F is isomorphic to a product of n
factors given in Figure 1.3. It follows that F is isomorphic to the dual of Q,. The
rank of an element a of the poset F} is given by the number of nonzero elements
in @, and we have W;(F}') = (7)k'. If we add a maximal element to F}', we get
the function lattice I:“,:’

Example 1.3.5. Star products T (ky, ..., ky).
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