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1

Calculus of Variations and
Control Theory

1.1. Calculus of Variations: Surface of Revolution
of Minimum Area

Consider the surfaces6 of revolution about thex-axis whose boundary consists
of the circles

0a = {(x, y, z); x = a, y2 + z2 = ra}
0b = {(x, y, z); x = b, y2 + z2 = rb}

r r= ( )x

x

ba

y

z ra

rb

Figure 1.1.

(a < b, ra, rb ≥ 0). Among these surfaces, we look for one having minimum area.
If r = r (x) ≥ 0 (a ≤ x ≤ b) is the equation of the surface, the area is(1)

A(r ) = 2π

∫ b

a
r (x)

√
1 + r ′(x)2dx.

(1) If r (x) is negative for somex the expression for the area is incorrect unless one replacesr (x) by
|r (x)| in the integrand. This is ignored in some textbook treatments.

3



           

4 Calculus of Variations and Control Theory

Since0a and0b are the boundary of6,

r (a) = ra, r (b) = rb. (1.1.1)

More generally, we may minimize

J(y) =
∫ b

a
F(x, y(x), y′(x))dx. (1.1.2)

The “variable” inJ is itself a functiony(x) defined in the intervala ≤ x ≤ b. An
expression like this is called afunctional; the admissible functionsy(x) in the
integrand belong to the spaceC(1)[a, b] of continuously differentiable functions
in a ≤ x ≤ b and satisfy boundary conditions, in this case (1.1.1). Admissible
functions are anaffinesubspace ofC(1)[a, b]: if y(x) satisfies (1.1.1) andv(x)

belongs to the subspaceC(1)
0 [a, b] of C(1)[a, b] defined byv(a) = v(b) = 0 then

y(x) + hv(x) (1.1.3)

is admissible for anyh. This makes viable the argument below, where we assume
thatF(x, y, y′) is everywhere defined and continuously differentiable with respect
to y andy′, with F, ∂F/∂y, ∂F/∂y′ continuous in all variables.

Assume that̄y(·) ∈ C(1)[a, b] is aminimizing elementor aminimum of J(y)

(that is,J(ȳ) ≤ J(y) for all admissibley(·)). Let v(·) ∈ C(1)
0 [a, b]. Then

J(ȳ + hv) ≥ J(ȳ)

for all real h, henceφ(h) = J(ȳ + hv) has a minimum ath = 0. This implies
φ′(0) = 0. This condition can be written

φ′(0) = d

dh

∣∣∣∣
h=0

φ(h) = d

dh

∣∣∣∣
h=0

J(ȳ + hv)

= d

dh

∣∣∣∣
h=0

∫ b

a
F(x, ȳ(x) + hv(x), ȳ′(x) + hv′(x))dx

=
∫ b

a

{
∂F

∂y
(x, ȳ(x), ȳ′(x))v(x)dx + ∂F

∂y′ (x, ȳ(x), ȳ′(x))v′(x)

}
dx = 0

(1.1.4)

for anyv(·) ∈ C(1)
0 [a, b].

Lemma 1.1.1. Let f(x), g(x) be continuous in a≤ x ≤ b. Assume that for every
v ∈ C(1)

0 [a, b] we have∫ b

a
{ f (x)v(x) + g(x)v′(x)}dx = 0. (1.1.5)

Then (after possible modification in a null set) g(·) ∈ C(1)[a, b] and g′(x) ≡ f (x).
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Proof. Assume first thatf (x) ≡ 0; (1.1.5) and the boundary conditions imply∫ b

a
(g(x) − c)v′(x)dx = 0 (1.1.6)

for anyc. Define

v(x) =
∫ x

a
(g(ξ) − c0)dξ

wherec0 is such thatv(b) = 0; thenv(·) ∈ C(1)
0 [a, b]. Replacing this particular

v(·) andc0 in (1.1.6) we obtaing(x) ≡ c0. In the general case, define

F(x) =
∫ x

0
f (ξ) dξ

and integrate (1.1.5) by parts, obtaining∫ b

a
{g(x) − F(x)}v′(x)dx = 0,

for all v(·) ∈ C(1)
0 [a, b] so thatg(x) andF(x) differ by a constant.

Using this result in (1.1.4) we deduce that∂F(x, ȳ(x), ȳ′(x))/∂y′ is a con-
tinuously differentiable function ofx and thaty(x) = ȳ(x) satisfies theEuler
equation

∂F

∂y
(x, y(x), y′(x)) − d

dx

∂F

∂y′ (x, y(x), y′(x)) = 0. (1.1.7)

Hence (assumingJ has a minimum inC(1)[a, b]), the minimization problem
reduces to solving (1.1.7) with boundary conditions (1.1.1). However, the theory
of boundary value problems for differential equations is not as simple as that of
initial value problems (where the value of a solution and its derivative are given
at a single point). For a glimpse on boundary value problems see Elsgolts [1970,
p. 165] or Gelfand–Fomin [1963, p. 16]; for a more complete treatment, see Keller
[1968].

If y(·) is twice continuously differentiable we may apply the chain rule in the
right side of (1.1.7) and obtain abona fidesecond order differential equation for
ȳ(·) (however,y(x) may not be so smooth; see Example 1.1.3). Ify(·) ∈ C(2)[a, b]
and, in addition,F(x, y, y′) = F(y, y′) is independent ofx, we multiply (1.1.7)
by y′(x) and integrate, obtaining

F(y(x), y′(x)) − y′(x)
∂F

∂y′ (y(x), y′(x)) = β, (1.1.8)

whereβ is a constant. Conversely, any solution of (1.1.8) withy′(x) 6= 0 neces-
sarily satisfies the Euler equation.
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The Euler equation for the minimal area problem is√
1 + r ′2 − d

dx

rr ′
√

1 + r ′ 2
= 0.(2) (1.1.9)

Equation (1.1.8) is
r (x) = β

√
1 + r ′(x)2 (1.1.10)

with solutionr (x) ≡ 0 for β = 0, and

r (x) = β cosh

(
x − α

β

)
(1.1.11)

for β 6= 0, whereα is arbitrary. (Gelfand–Fomin [1963, p. 20]).

Example 1.1.2.There exist either two, one, or nor (x) of the form (1.1.11) satis-
fying the boundary conditions (1.1.1). For a proof, see Bliss [1925, p. 90] or Cesari
[1983, p. 143]. We just take a look at the casea = 0, b = 1, ra = rb = r . To sat-
isfy the boundary conditions we must makeα = 1/2 and solve the transcendental
equation

φ(β) = β cosh

(
1

2β

)
= r. (1.1.12)

If m is the minimum of the function ofβ > 0 on the left-hand side, then the
equation has no solution ifr < m, one solution ifr = m, and two solutions if
r > m. We havem = 0.7544. . . , attained atβ = 0.4167. . . .

Forra = rb = 1 (1.1.12) has two solutions,β = 0.2350. . .andβ = 0.8483. . . .

1

1

φ(β)

β

Figure 1.2.

Using formula (1.1.11) the area integral reduces to

2πβ

∫ 1

0
cosh2((2x − 1)/2β)dx = πβ + πβ2 sinh(1/β).

The surface corresponding toβ = 0.2350. . . (resp. toβ = 0.8483. . .) has area
6.8456. . . (resp. 5.9918. . .).

(2) A minimizing elementr̄ (x) of A(r ) satisfies the Euler equation (1.1.9) ifr̄ (x) > 0; otherwise,
r̄ (x) + hv(x) may be zero forh arbitrarily small invalidating (1.1.4). Note also that no solution of
(1.1.9) may be zero anywhere.
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1

1 β = 0.8483...

β = 0.2350...

r(x)

r

x

Figure 1.3.

Obviously, the first surface cannot be a minimum. The second is, although this
is far from obvious; in fact, it is not even clear whether a minimal surface ex-
ists. On the other hand, ifra = rb = m, the only solution of the form (1.1.11)
satisfying the boundary conditions (1.1.1), whose area is 4.2903. . . is not a
minimum of the functional. In fact, the “surface” consisting of the two disks
spanned by00 and 01 connected by the segment of thex-axis between them
has area 2πβ2 cosh2(1/2β) = 3.5762. . . < 4.2903. . . . Obviously, this is not
one of the surfaces allowed to compete for the minimum, but it can be approxi-
mated by smooth surfaces of revolution having almost the same area, for instance,
rn(x) = (xn + (1 − x)n)β cosh(1/2β) for largen (see Figure 1.4).

0.75

r

nr (x) 1

Figure 1.4.

Taking ra = rb = m′ > m with m′ sufficiently close tom we obtain two func-
tions of the form (1.1.11) satisfying the boundary conditions, none of which is a
minimum.

For a complete solution of the minimal surface problem in the spirit of control
theory, see10.5; classical treatments are given in Bliss [1925, Ch. IV] or Cesari
[1983, p.143].

The results on the functional (1.1.2) extend easily to functionals depending on
n functionsy1(x), . . . , yn(x) and their derivatives,

J(y1, . . . , yn) =
∫ b

a
F(x, y1(x), . . . , yn(x), y′

1(x), . . . , y′
n(x))dx. (1.1.13)
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Dealing with eachyj (x) separately, we deduce that ifF is everywhere defined
and continuously differentiable with respect to eachyj and y′

j with F and par-
tial derivatives continuous in all arguments, then a minimumȳ1(x), . . . , ȳn(x) of
(1.1.11) where each̄yj (x) belongs toC(1)[a, b] must satisfy theEuler equations

∂F

∂yj
− d

dx

(
∂F

∂y′
j

)
= 0 ( j = 1, 2, . . . , n). (1.1.14)

Example 1.1.3.(Gelfand–Fomin [1963, p. 16]) The functional

J(y) =
∫ 1

−1
y2(x)

(
2x − y′(x)

)2
dx

with boundary conditionsy(−1) = 0, y(1) = 1 attains its minimum (zero) for
ȳ(x) = 0 (x ≤ 0), ȳ(x) = x2 (x ≥ 0). The minimumȳ(·) does not belong to
C(2)[a, b].

Example 1.1.4.(Gelfand–Fomin [1963, p. 17]) AssumeF(x, y, y′) has continu-
ous partials up to order two in all variables. Letȳ(·) ∈ C(1)[a, b] be a solution of
Euler’s equation (1.7) with

∂2F

∂y′2 (x, ȳ(x), ȳ′(x)) 6= 0 (a ≤ x ≤ b). (1.1.15)

Then ȳ(·) ∈ C(2)[a, b]. This applies to the minimal area problem (where
∂2F(r, r ′)/∂r ′2 = r (1 + r ′2)−3/2) as follows: ifr = r (x) is the equation of a min-
imal surface inC(1)[a, b] with r (x) > 0, thenr (·) ∈ C(2)[a, b].

1.2. Interpretation of the Results
All we have shown on the problem of minimizing (1.1.2) is that ifȳ(·) ∈ C(1)[a, b]
is a minimum, then̄y(·) satisfies the Euler equation (1.1.7). Thus, we only have
necessaryconditions for a minimum. They may not be sufficient: a solution of
(1.1.7) satisfying the boundary conditions may not be a minimum ofJ(y), as we
have seen in Example 1.1.2. We meet the same problem in calculus trying to find
the minima of a functionf (x) = f (x1, x2, . . . , xm) in m-dimensional Euclidean
spaceRm: at a minimumx̄ = (x̄1, x̄2, . . . , x̄m) of f we have

∂ f

∂x1
= ∂ f

∂x2
= · · · = ∂ f

∂xm
= 0 (1.2.1)

but these conditions are not sufficient. Pointsx̄ ∈ Rm where (1.2.1) holds are called
extremalsof the function f, and we use the same terminology for the functional
(1.1.2): a functiony ∈ C(1)[a, b] satisfying (1.1.7) and the boundary conditions is
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anextremal of J. For instance, the inner surface in Figure 1.3 forra = rb = 1 is
an extremal but not a minimum.

In some cases, necessary conditions in combination with existence theorems
give the actual minima of a functional. For instance, if a minimizing element
ȳ(·) ∈ C1[a, b] exists and solutions of the boundary value problem are unique,
then the solution of the boundary value problem must be the minimum. However,
this may fail as seen in Example 1.1.2 for the minimal area problem; solutions
in C(1)[a, b] may not exist or the boundary value problem may have multiple
solutions. Another problem without smooth solutions is

Example 1.2.1.(Gelfand–Fomin [1963, p. 61]) The functional

J(y) =
∫ 1

−1
y2(x)(1 − y′(x))2dx

with boundary conditionsy(−1) = 0, y(1) = 1 attains its minimum (zero) for
ȳ(x) = 0 (x ≤ 0), ȳ(x) = x (x ≥ 0). The minimumȳ(·) does not belong to
C(1)[a, b].

Proper treatment of variational problems (and of control problems) needs a less
demanding definition of solution; see10.5for more on this.

1.3. Mechanics and Calculus of Variations
Consider a mechanical system with a finite number of degrees of freedom. We
denote byq1, q2, . . . , qn thegeneralized coordinatesof the system, in terms of
which the Cartesian coordinates can be determined in 3-space. Then-dimensional
pointq = (q1, q2, . . . , qn) moves arbitrarily in a region of Euclidean spaceRn or,
more generally, in ann-dimensional differential manifold. Assume for simplicity
that the system consists of a finite number of particles with Cartesian coordinates
r1, r2, . . . , r p ∈ R3:

r j = r j (q1, . . . , qn) (1 ≤ j ≤ p), (1.3.1)

and that the forces acting on the system are due to a potential,

Fj = −∇r j U (r1, . . . , r j , . . . , r p) ( j = 1, 2, . . . , p).

The Lagrangian of the system is

L =
p∑

j =1

mj

2
‖r ′

j ‖2 − U (r1, . . . , r p) = T − U (1.3.2)

where thekinetic energyT and thepotential energyU are expressed in terms of
the generalized coordinates. The motion of the system is described byHamilton’s
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principle (Kompaneyets [1978, p. 17]): the possible motionsq1(t), q2(t), . . . , qn(t)
of the system in a time intervalt0 ≤ t ≤ t1 are extremals of theaction integral

S =
∫ t1

t0

L(q1, q2, . . . , qn, q′
1, q′

2, . . . , q′
n)dt, (1.3.3)

that is, they solve the Euler equations

d

dt

(
∂L

∂q′
j

)
− ∂L

∂qj
= 0, (1.3.4)

((see (1.1.14)). These are theEuler-Lagrange equationsof mechanics and are
combined with initial or boundary conditions: usually, the initial position and
velocity of the system (that is, the position and velocity att = t0) are given. It
also makes sense to specify the position of the system at different timest0 andt1,
which produces a boundary value problem in the sense of1.1.

Example 1.3.1.A simple pendulum is a particle of massm connected to the
origin by a rigid rod of lengthl and allowed to move on the(x, y)-plane.

y

x

θ

Figure 1.5.

Only one generalized coordinate, the angleθ, is necessary. It moves in the cir-
cle obtained identifying points modulo 2π on the line. The force of gravity
comes from the potential energyU = mgy(g the acceleration of gravity). Since
r = l (sinθ, − cosθ), r ′ = lθ ′(cosθ, sinθ) and

L = T − U = m

2
l 2θ ′2 − mgl(1 − cosθ), (1.3.5)

(where we have taken arbitrarily the stable equilibrium position as having potential
energy zero). The Euler-Lagrange equation is the nonlinear pendulum equation

θ ′′ + g

l
sinθ = 0. (1.3.6)
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1.4. Optimal Control: Fuel Optimal Landing
of a Space Vehicle

A space vehicle on a vertical trajectory tries to land smoothly (that is, with velocity
zero) on the surface of a planet (see Figure 1.6). Denote byh(t) the height at
time t (so thatv(t) = h′(t) is the instantaneous velocity). Since combustible is
being consumed, the massm(t) of the vehicle is a nonincreasing function oft. If
we call u(t) the instantaneous upwards thrust, Newton’s law givesm(t)h′′(t) =
−gm(t) + u(t), whereg is the acceleration of gravity. Assuming that the thrust
is proportional to the rate of decrease of mass (that is, proportional to the rate at
which combustible is used up) we introducev(t) = h′(t) as a variable and obtain
the following first-order system of differential equations:

h′(t) = v(t), v′(t) = −g + u(t)

m(t)
, m′(t) = −Ku(t),

whereK > 0. At the initial timet0 = 0 we have initial conditions

h(0) = h0, v(0) = v0, m(0) = m0.

The vehicle will land softly at timēt ≥ 0 if

h(t̄) = 0, v(t̄) = 0.

trajectory of rocket 
in  (h,v)  plane

trajectory of rocket 
in  (h, v, m)-space

m

m (t )

h

 

h v0, 0( )

h v0, 0( , m0)

v

-

Figure 1.6.

The thrust cannot be negative or arbitrarily large:

0 ≤ u(t) ≤ R
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for someR > 0. We have an optimization problem if we try to land minimizing
the amount of combustible

m(0) − m(t̄) = K
∫ t̄

0
u(τ )dτ = J(u)

consumed fromt = 0 until the landing timet = t̄ .
A complete solution of the landing problem is given in4.7and4.8.

1.5. Optimal Control Problems Described by Ordinary
Differential Equations

The rocket landing problem is a particular case of a generaloptimal control
problem: minimize acost functionalor performance indexof the form

y0(t̄, u) =
∫ t̄

0
f0(τ, y(τ ), u(τ ))dτ + g0(t̄, y(t̄)) (1.5.1)

among all the solutions (ortrajectories) of the vector differential equation

y′(t) = f (t, y(t), u(t)), y(0) = ζ (1.5.2)

with y(t) and f (t, y, u) m-vector functions andζ a m-vector. The system (1.5.2)
is called thestate equationof the system. Thecontrol u(t) is ak-vector function
satisfying acontrol constraint

u(t) ∈ U (1.5.3)

whereU ⊆ Rk is thecontrol set (more generally, we may use control setsU (t)
depending on time). Controls satisfying (1.5.3) are calledadmissible. In general,
the problem includes atarget condition

y(t̄) ∈ Y (1.5.4)

whereY ⊆ Rm is thetarget set. Theterminal time t̄ at which the target condition
(1.5.4) is to be satisfied may be fixed or free. The problem may also includestate
constraints

y(t) ∈ M(t) (1.5.5)

to be satisfied in 0≤ t ≤ t̄ .
To fit the rocket landing problem in this scheme, we takem = 3, k = 1,

y(t) = (h(t), v(t), m(t)), f (t, y, u) = (v, −g + u/m, −Ku), ζ = (h0, v0, m0),

andU = [0, R]. The target set is the half lineY = {0}×{0}× [me, ∞), and in the
cost functional, we havef0(t, y, u) = Ku, g0 = 0. The problem actually includes
two state constraints, namely

h(t) ≥ 0, m(t) ≥ me > 0. (1.5.6)
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The second says that the mass at timet cannot be less than the massme of the
rocket with empty fuel tanks, and is automatically satisfied sinceu(t) ≥ 0; the first
warns that we must not drive the rocket into the ground. These state constraints
are of the form (1.5.5) withM(t) = [0, ∞) × (−∞, ∞) × [me, ∞) for all t.

A prerequisite to the solution of the general optimal control problem is the
controllability problem : can we find an admissible controlu(t) such that the cor-
responding trajectoryy(t) with y(0) = ζ satisfies the target condition (1.5.4)
and the state constraint (1.5.5)? This controllability problem may not have a
solution. For instance, in the landing problem,Y cannot be hit at all (that is,
soft landing is impossible) if the initial amount of combustiblem0 is insuffi-
cient.

1.6. Calculus of Variations and Optimal Control.
Spike Perturbations

Optimal control problems are similar to problems of calculus of variations; both
deal with minimizing functionals. One may try to apply to control problems the
arguments in1.1, based on affine perturbationsū(t) + hv(t) of an optimal control
ū(t). However, it is not clear how to takeh and v(t) in order that the target
condition (1.5.4) be satisfied by the trajectory corresponding tou(t)+hv(t). Even
if we ignore the target condition, we must be sure that the controlū(t) + hv(t) is
admissible, that is,

ū(t) + hv(t) ∈ U.

u(t)

hv(t)

U

Figure 1.7.

For h > 0, this requiresv(t) to “point into U ” at ū(t) (see Figure 1.7).Spike
or needleperturbations are better suited to control constraints and are defined as
follows. Let t̄ > 0, 0 < s ≤ t̄, 0 ≤ h ≤ s andv an element of the control setU.

Given an admissible controlu(t) we define a new controlus,h,v(t) by

us,h,v(t) =
{

v (s − h < t ≤ s)
u(t) elsewhere

(1.6.1)
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(see Figure 1.8).

Spike perturbation of a control  u(t )

0

v

s t-

u(t )

s −h

Figure 1.8.

Obviously, us,h,v(t) is an admissible control. If̄u(t) is optimal in an interval
0 ≤ t ≤ t̄,

y0(t̄, ūs,h,v) ≥ y0(t̄, ū) (1.6.2)

for s, h, v arbitrary, thus if

ξ0(t) = d

dh

∣∣∣∣
h=0+

y0(t, ūs,h,v) = lim
h→0+

1

h

(
y0(t, ūs,h,v) − y0(t, ū)

)
(1.6.3)

exists, we have
ξ0(t̄) ≥ 0 (1.6.4)

for s, v arbitrary.
Spike perturbations can also be defined forh < 0 (the spike stands to the right

of s). Sincey0(t̄, ūs,h,v) ≥ y0(t̄, ū) for h of any sign, this should improve (1.6.4)
to ξ0(t̄) = 0 for all s, v. However, the functionh → y0(t̄, ūs,h,v) may not have a
two-sided derivative ath = 0 (see Example 1.6.1).

We computeformallyξ0(t) for arbitraryt ; justification is postponed to2.3. The
first step is to calculate

ξ(t) = d

dh

∣∣∣∣
h=0+

y(t, us,h,v) = lim
h→0+

1

h

(
y(t, us,h,v) − y(t, u)

)
, (1.6.5)

wherey(t, u) denotes the solution of (1.5.2) corresponding to the controlu(t). We
have

ξ ′(t) = lim
h→0+

1

h

(
y′(t, ūs,h,v) − ȳ′(t, ū)

)
= lim

h→0+
1

h

{
f (t, y(t, ūs,h,v), ūs,h,v(t)) − f (t, y(t, ūs,h,v), ū(t))

}
+ lim

h→0+
1

h

{
f (t, y(t, ūs,h,v), ū(t)) − f (t, y(t, ū), ū(t))

}
. (1.6.6)
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The function f (t, y(t, ūs,h,v), ūs,h,v(t)) − f (t, y(t, ūs,h,v), ū(t)) is zero except in
s − h < t ≤ s, whereūs,h,v(t) = v. Assuming thaty(t, ūs,h,v) ≈ y(s, ū) and
ū(t) ≈ ū(s) in the intervals− h ≤ t ≤ s for h small enough, the first limit on the
right should be the same as

lim
h→0+

1

h
χh(t){ f (s, y(s, ū), v) − f (s, y(s, ū), ū(s))}

(χh(t) the characteristic function ofs − h < t ≤ s), which equals

{ f (s, y(s, ū), v) − f (s, y(s, ū), u(s))}δ(t − s)

(δ the Dirac delta). The limit in the second term is computed by the chain rule. We
obtain in this way thevariational equation for ξ(t),

ξ ′(t) = ∂y f (t, y(t, ū), ū(t))ξ(t) + { f (s, y(s, ū), v)− f (s, y(s, ū), ū(s))}δ(t − s)

(0 ≤ t ≤ t̄), ξ(0) = 0. (1.6.7)

Equivalently,ξ(t) = 0 for t < s and

ξ ′(t) = ∂y f (t, y(t, ū), ū(t))ξ(t) (s ≤ t ≤ t̄),

ξ(s) = { f (s, y(s, ū), v) − f (s, y(s, ū), ū(s))}. (1.6.8)

In both equations,∂y f denotes the Jacobian matrix off with respect to they
variables. To figure out the limit (1.6.3) for a cost functional of the form (1.5.1),
we write the integrand in the form

f0(τ, y(τ, ūs,h,v), ūs,h,v(τ )) − f0(τ, y(τ, ū), ū(τ ))

= { f0(τ, y(τ, ūs,h,v), ūs,h,v(τ )) − f0(τ, y(τ, ūs,h,v), ū(τ ))}
+ { f0(τ, y(τ, ūs,h,v), ū(τ )) − f0(τ, y(τ, ū), ū(τ ))}

and argue as in the computation of (1.6.5). The final result is

ξ0(t) = { f0(s, y(s, ū), v) − f0(s, y(s, ū), ū(s))}
+

∫ t

s
〈∇y f0(τ, y(τ, ū), ū(τ )), ξ(τ )〉dτ + 〈∇yg0(t, y(t, ū)), ξ(t)〉. (1.6.9)

where∇ denotes gradient and〈·, ·〉 inner product inRm. From all the transgressions
in the argument, the worst is perhaps the continuity assumption thatū(t) ≈ ū(s)
nears; optimal controls are often discontinuous. A correct proof needs some
measure theory.

Replacing in (1.6.4), a necessary condition forū(·) to be optimal is obtained.
Some work will be needed in Chapter 2 to put this result in a usable form; we only
show here how it works in a particular problem.
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Example 1.6.1.Consider the control system

y′(t) = −u(t), y(0) = 1 (1.6.10)

in the interval 0≤ t ≤ t̄, with control constraint

0 ≤ u(t) ≤ 1 (1.6.11)

and cost functional

y0(t̄, u) =
∫ t̄

0
u(τ )2dτ + y(t̄)2. (1.6.12)

Applications buffs may imagine a reservoir being pumped out at rateu(t). The first
term in the functional reflects the cost of pumping, thus minimization ofy0(t, u)

means draining the reservoir as much as possible while minimizing cost.
We havef (t, y, u) ≡ −u, so that the variational equation is

ξ ′(t) = −δ(t − s){v − u(s)}, ξ(0) = 0

with solutionξ(t) = −ν(t − s){v − u(s)}, ν(·) the Heaviside functionν(t) =
1(t ≥ 0), u(t) = 0 (t < 0). Assuming an optimal control̄u(t) exists and taking
into account thatf0(t, y, u) = u2, g(t, y) = y2, (1.6.4) and (1.6.9) giveξ0(t̄) =
{v2 − ū(s)2} − 2y(t̄, ū){v − ū(s)} ≥ 0, or v2 − 2y(t̄, ū)v ≥ ū(s)2 − 2y(t̄, ū)ū(s)
for 0 ≤ s ≤ t̄ and 0≤ v ≤ 1, so that

ū(s)2 − 2y(t̄, ū)ū(s) = min
0≤v≤1

{v2 − 2y(t̄, ū)v}. (1.6.13)

This is a protoexample of Pontryagin’s maximum (minimum) principle and shows
one of its features: it gives the optimal controlū(s), but only in terms of the
unknown optimal trajectoryy(t̄, ū). In some cases (here for instance), it is possible
to computeū(s) anyway. In fact, the initial value problem (1.6.10) and the fact
that 0 ≤ ū(t) ≤ 1 imply that 0 ≤ y(t̄, ū) ≤ 1. Accordingly, the minimum of
v2 − 2y(t̄, ū)v in 0 ≤ v ≤ 1 is ū(s) ≡ y(t̄, ū). Replacing in the equation and
makingt = t̄, we gety(t̄, ū) = 1 − t̄ y(t̄, ū), so that

ū(s) ≡ 1

1 + t̄
(0 ≤ s ≤ t̄).

Note that ifh is of arbitrary sign andt > s + h we have

y(t, ūs,h,v) = (t − |h|)ū2 + |h|v2 + (1 − (t − |h|)ū − |h|v)2

for t > s; thush → y(t, ūs,h,v) is not (two-sided) differentiable ath = 0. Com-
puting the limit (1.6.3) forh < 0 just produces (1.6.4) again.
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1.7. Optimal Control: Minimum Drag Nose Shape
in Hypersonic Flow

A vehicle moves through a fluid in the direction of the positivey-axis with uniform
speedV. Its nose is a body of revolution whose projection on thex, y plane is a
curve described by parametric equationsx = x(t), y = y(t) (0 ≤ t ≤ T) with
(x(0), y(0)) = (0, h), (y(0), y(T)) = (r, 0); h is theheight of the nose andr its
maximum radius. The quotientr/h is thefineness ratio.

x

y

fluid flow
V

r

h

Figure 1.9.

A model due to Newton (see Goursat [1942, p. 658], McShane [1978/1989])
proposes that the drag normal to each surface element is proportional to the square
V2x′(t)2/(x′(t)2 + y′(t)2) of the normal component of the velocity vector. The
resultant of all these forces (obviously in they-direction) is then the integral of
V2x′(t)3/(x′(t)2 + y′(t)2)3/2 over the surface with respect to the area element
2πx(t)(x′(t)2 + y′(t)2)1/2 dt, thus is proportional to the integral∫ T

0

x(t)x′(t)3

x′(t)2 + y′(t)2
dt.(1) (1.7.1)

It is easy to see that, without further conditions, the minimum of the integral is
−∞, but there are physical reasons to consider only nondecreasingx(t) and non-
increasingy(t); if this is not the case (Figure 1.10) there may be parts of the surface
of the body isolated from the flow by stagnant fluid or by other parts of the body.(2)

This problem is treated in textbooks such as Goursat [1942] using classical
calculus of variations, but it admits a more natural formulation as a control problem.
We set

x′(t) = u(t), y′(t) = −v(t), x(0) = 0, y(0) = h (1.7.2)

in a variable interval 0≤ t ≤ t̄ with control setU = [0, ∞) × [0, ∞), target
condition

(x(t̄), y(t̄)) = (r, 0), (1.7.3)

(1) For air flow, this model is said to be “. . .very good at hypersonic speeds butnot very good at
subsonic speeds” in Bryson–Ho [1969, p. 52]. Hence the title of this section.

(2) Ignoring these conditions has led some authors to brand Newton’s drag model as “absurd.” See
McShane [1978/1989] for a refutation; careful reading of Newton’s original formulation of the
problem reveals that monotonicity ofx(t) andy(t) is actually required. See also Goldstine [1980,
p. 7].
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fluid flow

sheltering by 
stagnant fluid

sheltering by other
parts of body

V

Figure 1.10.

and cost functional

y0(t, u, v) =
∫ t

0

x(τ )u(τ )3

u(τ )2 + v(τ)2
dτ. (1.7.4)

A difference with the soft landing problem is that the control set is unbounded; thus,
conditions on the controlsu(·), v(·) are needed in order that (1.7.4) be finite. Since
xu3/(u2 + v2) ≤ xu, it is enough to require the controls to be integrable. Another
difference is that the parametert in the minimum drag nose shape problem has no
physical meaning so that we are free to reparametrize the curve at our pleasure.
This will be used in the solution of this problem, presented in4.9, 13.7and13.8.

1.8. Control of Functional Differential Equations:
Optimal Forest Growth

Let N(t) represent a population (bacteria in a test tube, people in a city, trees in a
forest). The Malthusian model assumes a rate of growth proportional to the pop-
ulation: N ′(t) = aN(t). This gives the exponential growth lawN(t) = eat N(0),

which is only accurate for relatively small values ofN(t); overcrowding and com-
petition for resources lower the rate of growth. A more realistic model assumes a
steadily decreasing, eventually negative growth coefficienta(N). Assuminga(N)

linear, Verhulst’slogistic equation

N ′(t) = (a − bN(t))N(t) (1.8.1)

results, wherea, b > 0. This model gives good results for bacteria populations,
but does not describe accurately phenomena such as forest growth. In fact, the
inhibiting effects of new trees on the growth rate are negligible until these have
reached a certain “adult” size. Thus, the growth rate should be a function not of
N(t) but of N(t − h) for a suitable time delayh > 0, leading to thedelayed
logistic equation

N ′(t) = (a − bN(t − h))N(t). (1.8.2)
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Similar delay effects are observed in the influence of overcrowding in human
populations (for an elementary exposition of logistic equations with and without
delays see Haberman [1977, p. 119ff]). Equation (1.8.2) (the same as (1.8.1)) has
two equilibrium solutions: one isN(t) ≡ 0, the other

N(t) ≡ Ne = a/b. (1.8.3)

Assume tree seeds are planted, and trees are logged with seeding and logging rates
u0(t) andu1(t) respectively. Letk be the time it takes a seed to become a baby
tree. Then the equation becomes

N ′(t) = (a − bN(t − h))N(t) + cu0(t − k) − u1(t) (1.8.4)

where the coefficientc (0 ≤ c ≤ 1) accounts for the fraction of seeds that actually
result in a tree. To start the equation we need to know the forest population in an
interval of lengthh,

N(t) = N0(t) (t0 − h ≤ t ≤ t0). (1.8.5)

To “attain the equilibrium populationNe” has at least two meanings. One is

N(t̄) = Ne (1.8.6)

and says the population is at equilibrium att = t̄ but not necessarily afterwards.
If the population is to stay at equilibrium, the target condition must be

N(t) = Ne (t̄ − h ≤ t ≤ t̄), (1.8.7)

which guarantees thatN(t) = Ne for all t ≥ t̄ if cu0(t − k) − u1(t) = 0 for t ≥ t̄ .
Target conditions of the form (1.8.6) are calledEuclidean; those of the form (1.8.7)
are calledfunctional. To see the reason for this name, consider for instance the
spaceC[−h, 0] of continuous functions defined in the interval−h ≤ t ≤ 0. Given
a functiony(t), denote byyt (·) thesectionof y(·) defined by

yt (τ ) = y(t + τ) (−h ≤ τ ≤ 0). (1.8.8)

Then the target condition (1.8.7) can be written as an ordinary target condition in
the spaceC[−h, 0]:

Nt̄ (·) = Ne (1.8.9)

whereNe denotes the constant function. An “optimal net profit” problem is, for
instance, to maximize the functional

J(t, u1, u2) = α

∫ t

0
u1(τ )dτ − β

∫ t

0
u0(τ )dτ
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with α, β > 0 at some fixed timēt > 0; the first term represents the profit from
logging and the second, the cost of seeding. Clearly,u0(t), u1(t) are nonnegative
and it is reasonable to include upper bounds on both rates:

0 ≤ u0(t) ≤ R, 0 ≤ u1(t) ≤ S. (1.8.10)

Straight maximization of the profit may result in destruction of the forest at time
t̄ , thus we supplement the problem with a (functional) target condition, say

|N(t) − Ne| ≤ ε (t̄ − h ≤ t ≤ t̄) (1.8.11)

(Ne the equilibrium solution (1.8.3)), and terminate seeding at timet̄ − k. If
the equilibrium position is stable, this means the forest population will stay near
equilibrium after̄t . Admissible controls for this problem are pairs(u0(t), u1(t)),
u0 defined in−k ≤ t ≤ t̄, u1 defined in 0≤ t ≤ t̄, and satisfying (1.8.10) in their
respective intervals of definition.

Another growth model is described by the integrodifferential equation

N ′(t) =
(

a −
( ∫ 0

−h
b(τ )N(t + τ)dτ

))
N(t) + cu0(t − k) − u1(t) (1.8.12)

which takes into account the inhibiting effects of new trees of all sizes on the
growth rate.

1.9. Control of Partial Differential Equations: Optimal
Cooling of a Plate and Optimal Stabilization of a

Vibrating Membrane
Consider a plate occupying a domainÄ with boundary0 in 2-dimensional
Euclidean spaceR2. In suitable units, the nonlinear partial differential equation

∂y(t, x)

∂t
= 1y(t, x) − f (y(t, x)) + u(t, x) (x ∈ Ä), (1.9.1)

∂y(t, x)

∂ν
= 0 (x ∈ 0), (1.9.2)

(x = (x1, x2), 1 the Laplacian,∂/∂ν the outer normal derivative on0) describes
the temperaturey(t, x) in Ä. The sum− f (y(t, x)) + u(t, x) means applied heat,
the first term through feedback, the second as a control, subject to the constraint

0 ≤ u(t, x) ≤ R. (1.9.3)

Condition (1.9.2) indicates the boundary is insulated (there is no heat flow through
the boundary). A conceivable problem is to drive the temperature from an initial
value

y(0, x) = ζ(x) (1.9.4)
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to a final value
y(t̄, x) = ȳ(x) (1.9.5)

in time t̄, minimizing the cost of heating/cooling, which might be measured in the
form

y0(t, u) =
∫

(0,t)×Ä

u(τ, x)2dx dτ.

A number of variants are possible. For instance, control may be ak-dimensional
function (u1(t), u2(t), . . . , uk(t)) of t entering the equation asu(t, x) =
6gj (x)u j (x), or the exact or point target condition (1.9.5) may be weakened
to approximate conditions such as|y(t̄, x) − ȳ(x)| ≤ ε (x ∈ Ä) or∫

Ä

(y(t̄, x) − ȳ(x))2dx ≤ ε.

Control may also be applied on the boundary,

∂y(t, x)

∂ν
= g(y(t, x), u(t, x)) (x ∈ 0). (1.9.6)

Engineers call systems such as (1.9.1)-(1.9.2)distributed parameter systems;
when control appears in the boundary condition as in (1.9.6), we have aboundary
control system.

For a peek into the results, we consider the distributed parameter system (1.9.1)
with boundary condition (1.9.2), control constraint (1.9.3), fixed terminal timet̄,
and no target condition. The cost functional measures the final deviation from the
target:

y0(t, u) =
∫

Ä

(y(t̄, x) − ȳ(x))2dx. (1.9.7)

We do spike perturbations in time,

us,h,v(t, x) =
{

v(x) (s − h < t ≤ s)
u(t, x) elsewhere

(1.9.8)

wherev(·) is an element of the (functional) control setU defined by 0≤ v(x) ≤ R.

If ū(t, x) is an optimal control,

y0(t̄, ūs,h,v) ≥ y0(t̄, ū)

for s, h, v(·) arbitrary; thus, if

ξ0(t) = d

dh

∣∣∣∣
h=0+

y0(t, ūs,h,v) = lim
h→0+

1

h

(
y0(t, ūs,h,v) − y0(t, ū)

)
, (1.9.9)
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we have

ξ0(t̄) ≥ 0 (1.9.10)

for s, v(·) arbitrary. As in1.6, the first step in the computation ofξ0(t) is to figure
out

ξ(t, x) = d

dh

∣∣∣∣
h=0+

y(t, x, us,h,v)

= lim
h→0+

1

h

(
y(t, x, us,h,v) − y(t, x, u)

)
, (1.9.11)

where y(t, x, u) indicates the solution of (1.9.1)-(1.9.2) corresponding tou =
u(t, x). A formal computation similar to that in the lines following (1.6.5) reveals
thatξ(t, x) is the solution of the linear initial value problem

∂ξ(t, x)

∂t
= 1ξ(t, x) − ∂ f (y(t, ū, x))

∂y
ξ(t, x)

+ (v(x) − ū(s, x))δ(t − s) (0 ≤ t ≤ t̄, x ∈ Ä) (1.9.12)

∂ξ(t, x)

∂ν
= 0 (0 ≤ t ≤ t̄, x ∈ 0). (1.9.13)

ξ(0, x) = 0 (x ∈ Ä) (1.9.14)

(δ the Dirac delta) or, equivalently,

∂ξ(t, x)

∂t
= 1ξ(t, x) − ∂ f (y(t, ū, x))

∂y
ξ(t, x) (s ≤ t ≤ t̄, x ∈ Ä), (1.9.15)

∂ξ(t, x)

∂ν
= 0 (s ≤ t ≤ t̄, x ∈ 0), (1.9.16)

ξ(s, x) = v(x) − ū(s, x) (x ∈ Ä). (1.9.17)

We then computeξ0(t) and use (1.9.10), obtaining∫
Ä

(y(t̄, ū, x) − ȳ(x))ξ(t̄, x)dx ≥ 0, (1.9.18)

where 0< s ≤ t andv(·) ∈ U. Now, let z(t, x) be the solution of the backwards
equation

∂z(t, x)

∂t
= −1z(t, x) + ∂ f (y(t, ū, x))

∂y
z(t, x) (0 ≤ t ≤ t̄, x ∈ Ä) (1.9.19)

∂z(t, x)

∂ν
= 0 (0 ≤ t ≤ t̄, x ∈ 0), (1.9.20)

z(t̄, x) = y(t̄, ū, x) − ȳ(x) (x ∈ Ä). (1.9.21)
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Then ∫
Ä

z(t̄, x)ξ(t̄, x)dx −
∫

Ä

z(s, x)ξ(s, x)dx

=
∫

(s,t̄)×Ä

∂

∂t

(
z(t, x)ξ(t, x)

)
dxdt

=
∫

(s,t̄)×Ä

(
∂z(t, x)

∂t
ξ(t, x) + z(t, x)

∂ξ(t, x)

∂t

)
dx dt = 0

in view of the divergence theorem. Accordingly, (1.9.18) is∫
Ä

z(s, x)(v(x) − ū(s, x))dx ≥ 0

for all s, v(·), or ∫
Ä

z(s, x)ū(s, x) = min
v(·)∈U

∫
Ä

z(s, x)v(x)dx (1.9.22)

for 0 < s ≤ 1, another protoexample of Pontryagin’s minimum principle. Due to
the control constraint, (1.9.22) implies

ū(s, x) =
{

R wherez(s, x) < 0,

0 wherez(s, x) > 0
(1.9.23)

but gives no information onu(s, x) in the sete ⊆ (0, t̄) × Ä wherez(t, x) = 0. If
y(t̄, ū, x) 6= y(t̄) thenz(s, x) is nontrivial (that is, not identically zero), but there is
some distance from this property to the statement thatehas measure zero; when it
does, (1.9.23) gives information on the optimal controlū(t, x) almost everywhere
and deserves to be called abang-bang principle. For more on this, see Chapter
11, in particular Problem 11.6.7 and the Miscellaneous Comments to Part II.

Typically for the maximum principle, (1.9.22) does not determineū directly; in
fact, both the equation (1.9.19) forz(s, x) and the final condition (1.9.21) presup-
pose knowledge of the unknown optimal solutiony(s, x, ū).Even in the linear case,
where (1.9.19) does not depend on the optimal solution, we must knowy(t̄, ū, x)

in (1.9.21). We shall take up the study of optimal control problems described by
parabolic equations in Part II of this work.

Another problem with some claims to realism is that of bringing to equilibrium
a vibrating membrane occupying the domainÄ and glued to the boundary; in
suitable units, the corresponding system is

∂2y(t, x)

∂t2
= 1y(t, x) − f (y(t, x)) + u(t, x) (x ∈ Ä), (1.9.24)

y(t, x) = 0 (x ∈ 0), (1.9.25)
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where the sum− f (y(t, x)) + u(t, x) represents an applied force, the first term
through feedback, the second as a control subject to a constraint, for instance

|u(x, t)| ≤ R (1.9.26)

or ∫
Ä

u(x, t)2dx ≤ R. (1.9.27)

Bringing the membrane to equilibrium from the initial conditions

y(0, x) = ζ0(x),
∂y(0, x)

∂t
= ζ1(x) (1.9.28)

in time t̄ amounts to the target condition(s)

y(t̄, x) = 0,
∂y(t̄, x)

∂t
= 0, (1.9.29)

and the membrane will stay at equilibrium if the restoring forcef (y) satisfies
f (0) = 0 and application of the control force terminates att = t̄ . As in the cooling
problem, control could be finite dimensional or applied through the boundary
condition; thedistributed parameteror boundarylabels apply.

The two control problems above do not include state constraints for reasons of
simplicity, but more realistic modeling must take them into account. For instance,
equation (1.9.1) can only be expected to describe the evolution of the temperature
y(t, x) in an actual heating/cooling process within a certain range, which justifies
the first of the bounds

|y(t, x)| ≤ K , |∇y(t, x)| ≤ L . (1.9.30)

The second restriction reflects the fact that, in cooling a material such as glass,
large temperature gradients may produce cracks and should be avoided. Of course,
constraints such as (1.9.30) make the problem much harder to handle. However,
we shall see in Chapter 11 that the minimum principle (1.9.22) still holds with a
different definition ofz(t, x).

In the vibration model (1.9.24), the integral state constraint

1

2

∫
Ä

{(
∂y

∂t

)2

+
(

∂y

∂x

)2}
dx ≤ E2 (1.9.31)

puts a bound on the energy and reminds us of the fact that the wave equation
(1.9.24) is just an approximation to the “true” nonlinear equation describing the
vibration of the membrane, and that this approximation is only valid at low energy
levels.
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1.10. Finite Dimensional and Infinite Dimensional
Control Problems

There is an important difference between the landing problem in1.4 and the
optimal control problems in1.8 and1.9. In the former, as well as in any other
optimal control problem that fits into the ordinary differential model in1.5, the
stateof the system is a finite dimensional vector; in the soft landing problem, this
vector is the 3-dimensional vector(h(t), v(t), m(t)).

The state of the system described by the delay differential equation (1.8.4)
(or the functional differential equation (1.8.12)) is a finite dimensional vector as
well, namely the 1-dimensional vectorN(t). This way to look at the equation is
adequate if one deals with the Euclidean target condition (1.8.6). However if the
target condition is functional like (1.8.7) it is natural to consider as state of the
system at timet the sectionyt , which belongs to the infinite dimensional space
C[−h, 0].

The state of the system (1.9.1)-(1.9.2) at timet is a functiony(t, ·), thus an
element of an infinite dimensional function space, for exampleC(Ä) or L2(Ä).

Same for the system (1.9.24)-(1.9.25): the state of the system at timet is the vector
(y(t, ·), yt (t, ·)) in a suitable energy space such asH1

0 (Ä) × L2(Ä).

Ordinary differential equations like (1.5.2) and partial differential equations like
(1.9.10) or (1.9.24) are specimens with something in common: all areevolution
equations, that is, they describe a system’s evolution in time. It comes as no
surprise that their control theory contains many common elements, a thread running
through this work. However, the treatment of systems whose states lie in an infinite
dimensional space is much more involved, and complete generalizations of finite
dimensional results are often unavailable.


