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1

Calculus of Variations and
Control Theory

1.1. Calculus of Variations: Surface of Revolution
of Minimum Area

Consider the surfaces of revolution about the-axis whose boundary consists
of the circles

Fa = {(Xv yv Z)7X =a, y2+22 = ra}

r=rx
a \7
y

Figure 1.1.

(a < b, rg, rp > 0). Among these surfaces, we look for one having minimum area.
If r =r(x) > 0(a < x < b) is the equation of the surface, the aré& is

b
A(r)=271/ r(x)v/14r/(x)2dx.

@ If r (x) is negative for soma the expression for the area is incorrect unless one repiagedy
Ir (X)| in the integrand. This is ignored in some textbook treatments.



4 Calculus of Variations and Control Theory

Sincel'y andI'y are the boundary of,
r@) =ra, r(b) =ry. (1.1.1)

More generally, we may minimize

b
J(y) = / F(X, y(X), Y (x))dx. (1.1.2)

The “variable” inJ is itself a functiony(x) defined in the intervad < x < b. An
expression like this is calledfanctional; the admissiblefunctionsy(x) in the
integrand belong to the spa@?"[a, b] of continuously differentiable functions

in a < x < b and satisfy boundary conditions, in this case (1.1.1). Admissible
functions are araffine subspace o€®[a, b]: if y(x) satisfies (1.1.1) and(x)
belongs to the subspa@3”[a, b] of C?[a, b] defined byv(a) = v(b) = 0 then

y(x) + hv(x) (1.1.3)

is admissible for any. This makes viable the argument below, where we assume
thatF (x, y, y) is everywhere defined and continuously differentiable with respect
toy andy’, with F, aF /ady, aF /dy’ continuous in all variables.

Assume tha/(-) e CP[a, b] is aminimizing elementor aminimum of J(y)
(that is,J (y) < J(y) for all admissibley(-)). Letv(-) € C$"[a, b]. Then

J(y+hv) > J(y)

for all realh, henceg (h) = J(y + hv) has a minimum ah = 0. This implies
¢’(0) = 0. This condition can be written

o~ 9 _9 g
¢'(0) = dah h=0<15(h) = anl,_ J(y + hv)
b
_4d / F(x, y(x) + hv(x), Y (X) + hv'(x))dx
dhly_o/a

broF aF
= / {a—y(x, y(x), Y ) v(x)dx + a—y,(x, y(X), y (X)v (X)} dx=0
: (1.1.4)

for anyv(-) € C{"[a. b].

Lemma 1.1.1. Let f(x), g(x) be continuous in & x < b. Assume that for every
v e C{P[a, b] we have

b
/ {f (X)v(x) +g(x)v'(x)}dx = 0. (1.1.5)

Then (after possible modification in a null sef))ge C™M'[a, b] and d(x) = f (x).



1.1 Calculus of Variations: Surface of Revolution of Minimum Area 5

Proof. Assume first thaff (x) = 0; (1.1.5) and the boundary conditions imply

b
/ (g(x) — o' (x)dx =0 (1.1.6)

for anyc. Define
v(X) =/ (9(§) — co)dé

wherecy is such thaw(b) = 0; thenv(:) € Cél)[a, b]. Replacing this particular
v(-) andcp in (1.1.6) we obtairg(x) = co. In the general case, define

X
Foo= [ ede
0
and integrate (1.1.5) by parts, obtaining
b
/{mw—FuHMMMX=Q
a

for all v(-) € C$"[a, b] so thatg(x) andF (x) differ by a constant. n
Using this result in (1.1.4) we deduce thi(x, y(x), Y (X))/dy’ is a con-

tinuously differentiable function ok and thaty(x) = y(x) satisfies theEuler
equation

oF , d oF oo
8_y(x’ y(x), y'(X)) = &a—y/(X, y(x), y(x)) =0. (1.1.7)

Hence (assuming has a minimum inC®[a, b]), the minimization problem

reduces to solving (1.1.7) with boundary conditions (1.1.1). However, the theory
of boundary value problems for differential equations is not as simple as that of
initial value problems (where the value of a solution and its derivative are given

at a single point). For a glimpse on boundary value problems see Elsgolts [1970,
p. 165] or Gelfand—Fomin [1963, p. 16]; for a more complete treatment, see Keller

[1968].

If y(-) is twice continuously differentiable we may apply the chain rule in the
right side of (1.1.7) and obtaintzona fidesecond order differential equation for
y(-) (howevery(x) may not be so smooth; see Example 1.1.3)(if ¢ C®[a, b]
and, in additionF (x, y, y) = F(y, ¥ is independent ok, we multiply (1.1.7)
by y'(x) and integrate, obtaining

9F
FWMLVWD—VUBVWMLVunzﬂ, (1.1.8)

whereg is a constant. Conversely, any solution of (1.1.8) wittx) £ 0 neces-
sarily satisfies the Euler equation.
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The Euler equation for the minimal area problem is

d rr’
2 —0®
Vitrz— o - 0. (1.1.9)

r(x) =Bv1+r/(x)? (1.1.10)

with solutionr (x) = 0 for 8 = 0, and

Equation (1.1.8) is

FX) = B cosf(x%) (1.1.11)
for B #£ 0, whereq is arbitrary. (Gelfand—Fomin [1963, p. 20]).

Example 1.1.2. There exist either two, one, or mox) of the form (1.1.11) satis-
fying the boundary conditions (1.1.1). For a proof, see Bliss [1925, p. 90] or Cesari
[1983, p. 143]. We just take a look at the case- 0,b = 1,r, =, =r. To sat-

isfy the boundary conditions we must make= 1/2 and solve the transcendental
equation

2B
If mis the minimum of the function o > 0 on the left-hand side, then the
equation has no solution if < m, one solution ifr = m, and two solutions if
r > m. We havem = 0.7544. . ., attained apg = 0.4167....
Forra =rp = 1(1.1.12) hastwo solutiong,= 0.2350...andp = 0.8483....

\ 0]
1

N —

$(B) = ﬂcosr(i) _r (1.1.12)

Figure 1.2.

Using formula (1.1.11) the area integral reduces to

1
Znﬂ/ cost((2x — 1)/2B)dx = nB + 7 B2 sinh(1/B).
0

The surface corresponding o= 0.2350... (resp. tof = 0.8483...) has area
6.8456. .. (resp. 59918. . ).

@ A minimizing elementr(x) of A(r) satisfies the Euler equation (1.1.9)rifx) > O; otherwise,
r(x) + hv(x) may be zero foh arbitrarily small invalidating (1.1.4). Note also that no solution of
(1.1.9) may be zero anywhere.
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Figure 1.3.

Obviously, the first surface cannot be a minimum. The second is, although this
is far from obvious; in fact, it is not even clear whether a minimal surface ex-
ists. On the other hand, i, = r, = m, the only solution of the form (1.1.11)
satisfying the boundary conditions (1.1.1), whose area.28908... is not a
minimum of the functional. In fact, the “surface” consisting of the two disks
spanned byl"g andI'; connected by the segment of tReaxis between them

has area 282 costf(1/28) = 3.5762... < 4.2903.... Obviously, this is not

one of the surfaces allowed to compete for the minimum, but it can be approxi-
mated by smooth surfaces of revolution having almost the same area, for instance,
rn(x) = X"+ (1 —x)MB cosh1/2B) for largen (see Figure 1.4).

AT

0.75

h(X) 1

Figure 1.4.

Takingr, = rp, = M > m with nY sufficiently close tan we obtain two func-
tions of the form (1.1.11) satisfying the boundary conditions, none of which is a
minimum.

For a complete solution of the minimal surface problem in the spirit of control
theory, seel0.5 classical treatments are given in Bliss [1925, Ch. 1V] or Cesari
[1983, p.143].

The results on the functional (1.1.2) extend easily to functionals depending on
n functionsy;(x), ..., Ya(X) and their derivatives,

b
‘J(yla ~~-vYn) = / F(X’ yl(X), -~~’yn(X)a yi(x)a ’yIII(X))dX (1113)
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Dealing with eachy; (x) separately, we deduce thatkf is everywhere defined
and continuously differentiable with respect to eaghandy; with F and par-
tial derivatives continuous in all arguments, then a minimyiix), ..., y,(x) of
(1.1.11) where eaci; (x) belongs tacC®[a, b] must satisfy theEuler equations

aF d [oF .

— - — =0 =12 ...,n). 1.1.14
gy;  dx <3yj‘> ( " ( )
Example 1.1.3.(Gelfand—Fomin [1963, p. 16]) The functional

1
Iy) = / ly2<x)(2x —y'(0)%dx

with boundary conditiony(—1) = 0, y(1) = 1 attains its minimum (zero) for
y(x) =0 (x < 0), y(x) = x% (x > 0). The minimumy(-) does not belong to
C@[a, b].

Example 1.1.4.(Gelfand—Fomin [1963, p. 17]) Assun&X, Y, ¥') has continu-
ous partials up to order two in all variables. lgt) € C®[a, b] be a solution of
Euler’s equation (1.7) with

2

8y|/:2 X yX),y(x) #0 (@a<x<bh). (1.1.15)

Then y(-) e C?[a, b]. This applies to the minimal area problem (where
32F (r,r')/or’? =r (1 +r?)~%2) as follows: ifr =r(x) is the equation of a min-
imal surface inC®[a, b] with r (x) > 0, thenr (-) e C®[a, b].

1.2. Interpretation of the Results

All we have shown on the problem of minimizing (1.1.2) is thaf € CY[a, b]

is @ minimum, thery(-) satisfies the Euler equation (1.1.7). Thus, we only have
necessanconditions for a minimum. They may not be sufficient: a solution of
(1.1.7) satisfying the boundary conditions may not be a minimudy(gj, as we

have seen in Example 1.1.2. We meet the same problem in calculus trying to find

the minima of a functionf (x) = f(Xg, X2, ..., Xm) in m-dimensional Euclidean
spaceR™; at a minimumx = (X, X, ..., Xm) of f we have
f f f
of ot _ 3t (1.2.1)
0X1 X2 0Xm

but these conditions are not sufficient. Pots R™ where (1.2.1) holds are called
extremalsof the functionf, and we use the same terminology for the functional
(1.1.2): a functiory € CV[a, b] satisfying (1.1.7) and the boundary conditions is
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anextremal of J. For instance, the inner surface in Figure 1.3rfpe=r, = 1 is
an extremal but not a minimum.

In some cases, necessary conditions in combination with existence theorems
give the actual minima of a functional. For instance, if a minimizing element
y(-) € C![a, b] exists and solutions of the boundary value problem are unique,
then the solution of the boundary value problem must be the minimum. However,
this may fail as seen in Example 1.1.2 for the minimal area problem; solutions
in C®Y[a, b] may not exist or the boundary value problem may have multiple
solutions. Another problem without smooth solutions is

Example 1.2.1.(Gelfand—Fomin [1963, p. 61]) The functional

1
J(y) = / 1yz(x)(1_ y'(x))?dx

with boundary conditiony(—1) = 0, y(1) = 1 attains its minimum (zero) for
y(x) =0 (X < 0),y(xX) = x (x > 0). The minimumy(-) does not belong to
C®[a, b].

Proper treatment of variational problems (and of control problems) needs a less
demanding definition of solution; sd®.5for more on this.

1.3. Mechanics and Calculus of Variations
Consider a mechanical system with a finite number of degrees of freedom. We

denote by, Op, . . ., O, the generalized coordinatesof the system, in terms of
which the Cartesian coordinates can be determined in 3-space-diheensional
pointq = (di, gz, - . - , On) Moves arbitrarily in a region of Euclidean spaeor,

more generally, in an-dimensional differential manifold. Assume for simplicity
that the system consists of a finite number of particles with Cartesian coordinates
r,r2,....,rp € R

p=rj@,....a0) @L=<]j=<p), (1.3.1)
and that the forces acting on the system are due to a potential,

Fi=-V,U(y,....rj,....1p) (j=212,...,p).

The Lagrangian of the system is

P
m.
L=Z7’||r/j||2—U(rl,...,rp)=T—u (1.3.2)
j=1
where thekinetic energy T and thepotential energyU are expressed in terms of
the generalized coordinates. The motion of the system is descrili¢drifton’s
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principle (Kompaneyets[1978, p. 17]): the possible motigr®), gz(t), . .., ga(t)
of the system in a time intervl) <t < t; are extremals of thaction integral

t1
S:/ L(01, 92, - - - Ons 07, O3, - - - » O, (1.3.3)

to

that is, they solve the Euler equations

E(aL/)_izo, (1.3.4)
dt \ aq; o]

((see (1.1.14)). These are tRaler-Lagrange equationsof mechanics and are
combined with initial or boundary conditions: usually, the initial position and
velocity of the system (that is, the position and velocityt at ty) are given. It
also makes sense to specify the position of the system at differenttyjraedt,
which produces a boundary value problem in the sendelof

Example 1.3.1.A simple pendulumis a particle of massn connected to the
origin by a rigid rod of length and allowed to move on thg, y)-plane.

y

Figure 1.5.

Only one generalized coordinate, the anglés necessary. It moves in the cir-
cle obtained identifying points moduloz2on the line. The force of gravity
comes from the potential eneryy = mgy(g the acceleration of gravity). Since
r =1(sind, —cosh), r' = 16’(coss, sind) and

m

L=T-U= E|29’2—mg|(1—cos@), (1.3.5)

(where we have taken arbitrarily the stable equilibrium position as having potential
energy zero). The Euler-Lagrange equation is the nonlinear pendulum equation

0" + |9 sind = 0. (1.3.6)
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1.4. Optimal Control: Fuel Optimal Landing
of a Space Vehicle

A space vehicle on a vertical trajectory tries to land smoothly (that is, with velocity
zero) on the surface of a planet (see Figure 1.6). Denote(bythe height at
timet (so thatv(t) = h'(t) is the instantaneous velocity). Since combustible is
being consumed, the masgt) of the vehicle is a nonincreasing functiontotf
we callu(t) the instantaneous upwards thrust, Newton’s law gimégh” (t) =
—gm(t) + u(t), whereg is the acceleration of gravity. Assuming that the thrust
is proportional to the rate of decrease of mass (that is, proportional to the rate at
which combustible is used up) we introduog) = h'(t) as a variable and obtain
the following first-order system of differential equations:

u(t)

h'(t) = v(t), v(t) =-g+ no’ m(t) = —Ku(t),

whereK > 0. At the initial timety = O we have initial conditions
h(0) = hg, v(0) = v, m(0) = mg.
The vehicle will land softly at timé > 0 if

h) =0, v(t) =0.

trajectory of rocket
in (h, v, m)-space

(ho, vo, MY

m(f)

/ (ho, vo)

trajectory of rocket
in (h,v) plane

Figure 1.6.

The thrust cannot be negative or arbitrarily large:

O<u) <R
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for someR > 0. We have an optimization problem if we try to land minimizing
the amount of combustible

t
m(0) — m(t) = K/ u(r)dr = J(u)
0

consumed front = 0 until the landing time = t.
A complete solution of the landing problem is givendirtr and4.8.

1.5. Optimal Control Problems Described by Ordinary
Differential Equations

The rocket landing problem is a particular case of a gengptimal control
problem: minimize acost functional or performance indexof the form

t
Yo(E, u) = /0 fo(z, y(0), U@z + goE, D) (1.5.1)

among all the solutions (drajectories) of the vector differential equation
Y = f(t, y@),u®)), y) =¢ (1.5.2)

with y(t) and f (t, y, u) m-vector functions ang am-vector. The system (1.5.2)
is called thestate equationof the system. Theontrol u(t) is ak-vector function
satisfying acontrol constraint

u) e U (15.3)

whereU C RK is thecontrol set (more generally, we may use control seté)
depending on time). Controls satisfying (1.5.3) are cadléohissible In general,
the problem includes target condition

yt) eY (1.5.4)

whereY C R™is thetarget set Theterminal time t at which the target condition
(1.5.4) is to be satisfied may be fixed or free. The problem may also instatie
constraints

y(t) € M(t) (1.5.5)

to be satisfied in < t < t.

To fit the rocket landing problem in this scheme, we take= 3,k =1,
y(t) = (h(t), v(t), mt)), f(t,y,u) = (v, =g +u/m, —Ku), ¢ = (ho, vo, Mo),
andU = [0, R]. The target set is the half liné = {0} x {0} x [me, c0), and in the
cost functional, we havéy(t, y, u) = Ku, go = 0. The problem actually includes
two state constraints, namely

h(t) >0, m(t) > me > 0. (1.5.6)
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The second says that the mass at tineannot be less than the masg of the
rocket with empty fuel tanks, and is automatically satisfied sirite> 0; the first
warns that we must not drive the rocket into the ground. These state constraints
are of the form (1.5.5) wittM (t) = [0, co) x (—00, 00) X [Me, 0o) for all t.

A prerequisite to the solution of the general optimal control problem is the
controllability problem : can we find an admissible contna(lt) such that the cor-
responding trajectory(t) with y(0) = ¢ satisfies the target condition (1.5.4)
and the state constraint (1.5.5)? This controllability problem may not have a
solution. For instance, in the landing problem,cannot be hit at all (that is,
soft landing is impossible) if the initial amount of combustiloig is insuffi-
cient.

1.6. Calculus of Variations and Optimal Control.
Spike Perturbations

Optimal control problems are similar to problems of calculus of variations; both
deal with minimizing functionals. One may try to apply to control problems the
arguments irL.1, based on affine perturbation&) + huv(t) of an optimal control
u(t). However, it is not clear how to takke and v(t) in order that the target
condition (1.5.4) be satisfied by the trajectory correspondingtio+ hv(t). Even
if we ignore the target condition, we must be sure that the coattoH+ hv(t) is
admissible, that is,

u(t) 4+ ho(t) e U.

u(t)

Figure 1.7.

Forh > 0, this requiresv(t) to “point into U” at u(t) (see Figure 1.7)Spike

or needleperturbations are better suited to control constraints and are defined as
follows. Lett > 0,0 < s <t,0 < h < sandv an element of the control set.

Given an admissible controkt) we define a new contrais , , (t) by

v (s—h<t<ys)

u(t) elsewhere (1.6.1)

us,h,v(t) = {



14 Calculus of Variations and Control Theory

(see Figure 1.8).

Spike perturbation of acontrol u(t)

u(t)

Figure 1.8.

Obviously, usp , (t) is an admissible control. I&(t) is optimal in an interval
o<t<t, - -
Yo(t, Ushv) > Yo(t, U) (1.6.2)

for s, h, v arbitrary, thus if

d _ o1 _ _
o) = 4 h:o+y0(t’ Ushp) = h'g& H(yo(t, Ush.v) — Yo(t, U)) (1.6.3)
exists, we have

£(t) >0 (1.6.4)

for s, v arbitrary.

Spike perturbations can also be definedHot O (the spike stands to the right
of s). Sinceyo(t, Ush.») > Yo(t, U) for h of any sign, this should improve (1.6.4)
to £y(t) = O for all s, v. However, the functiom — yo(t, Us ) may not have a
two-sided derivative at = 0 (see Example 1.6.1).

We computdormally &q(t) for arbitraryt; justification is postponed 1.3 The
first step is to calculate

d 1
O =g, Y Yon) = lim, H(ytusny) =yt w), - (1.6.5)

wherey(t, u) denotes the solution of (1.5.2) corresponding to the contitol We
have

= lim (Yt G y (¢, O
é()—erT(LE(Y(»Us,h,v)_y(yu))
1 _ o
= lim E{ f(t, y(t, Usn), Usno() — f(t, y(t, Usno), UH) }

.1 _ _ .
+ lim S{ @y Usn), UG) = FE y(E O, U} (1.6.6)
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The functionf (t, y(t, Ush.), Ush.o (1)) — (t, Y(t, Ush,), U(t)) is zero except in
s—h <t <s, whereugp,(t) = v. Assuming thaty(t, Ush,) ~ Y(s, u) and
u(t) ~ u(s) in the intervals — h <t < sfor h small enough, the first limit on the
right should be the same as

1 _ o
hIlrr(; =xn(®{ (s, y(s,u),v) — f(s, y(s, u), u(s))}
-0+ h

(xn(t) the characteristic function af— h <t < s), which equals

(8 the Dirac delta). The limit in the second term is computed by the chain rule. We
obtain in this way thevariational equation for &(t),

E'(t) = oy f(t, y(t, u), u)E®) +{f (s, y(s,u), v) — (s, y(s, u), u(s)}s(t —s)
(0O<t<t), £0)=0. (1.6.7)

Equivalently&(t) = 0 fort < sand

E't) =0y f(t,yt, ), ut)Et) (s<t=<t,
&(s) = {f(s,y(s,u), v) — f(s,y(s, u), u(s))}. (1.6.8)
In both equationsgy f denotes the Jacobian matrix &fwith respect to they

variables. To figure out the limit (1.6.3) for a cost functional of the form (1.5.1),
we write the integrand in the form

fO(Tv Y(T» LTS,h,U)v LTS,h,v(‘l")) - fO(‘C7 Y(Ta J)7 lj(‘l"))
= {fO(T’ Y(T, lTS,h,U)7 lTS,h.v(T)) - fO(Tv Y(T, lTSJ"I,U)a J(T))}
+{fo(z, Y(t, Ush.), U(¥)) — fo(z, y(z, U), U(x))}

and argue as in the computation of (1.6.5). The final result is

£o(t) = {fo(s, y(s, ), v) — fo(s, y(s, U), u(s))}
t
+/ (Vy fo(z, y(z, U), u(r)), §(0))dt + (VyGo(t, y(t, ), §(1)).  (1.6.9)

whereV denotes gradientard -) inner productirR™. From all the transgressions
in the argument, the worst is perhaps the continuity assumptiomu et u(s)
nears; optimal controls are often discontinuous. A correct proof needs some
measure theory.

Replacing in (1.6.4), a necessary conditiontdi¢n to be optimal is obtained.
Some work will be needed in Chapter 2 to put this result in a usable form; we only
show here how it works in a particular problem.
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Example 1.6.1.Consider the control system
y'(t) = —u(, y(0) =1 (1.6.10)
in the interval O< t < t, with control constraint
O<uit) =<1 (1.6.11)
and cost functional

t
Yo(t,u) = / u(r)dr + y(0)>2. (1.6.12)
0

Applications buffs may imagine a reservoir being pumped out atiajeThe first

term in the functional reflects the cost of pumping, thus minimizatiop @f, u)

means draining the reservoir as much as possible while minimizing cost.
We havef (t, y, u) = —u, so that the variational equation is

£'(t) = =3t —s){v —u@©)}, £0)=0

with solution&(t) = —v(t — s){v — u(s)}, v(-) the Heaviside functiomw(t) =
1(t > 0), u(t) = 0 (t < 0). Assuming an optimal contral(t) exists and taking
into account thatfo(t, y, u) = U2, g(t, y) = y?, (1.6.4) and (1.6.9) givéy(t) =
{v2 = U(9)%} — 2y(t, W{v — U(s)} = 0, or v — 2y(t, Wv > U(s)* — 2y(t, WYU(S)
for0<s<tand0O<v <1, sothat

a(s)? — 2y(t, Wu(s) = or<nigl{v2 — 2y(t, Uyv}. (1.6.13)

This is a protoexample of Pontryagin’s maximum (minimum) principle and shows
one of its features: it gives the optimal contrals), but only in terms of the
unknown optimal trajectory(t, U). In some cases (here for instance), it is possible
to computeu(s) anyway. In fact, the initial value problem (1.6.10) and the fact
that 0 < U(t) < 1 imply that 0< y(t,u) < 1. Accordingly, the minimum of

v2 — 2y(t, v in 0 < v < 1isU(s) = y(t, U). Replacing in the equation and
makingt = t, we gety(t, ) = 1 — ty(t, U), so that

_ 1
u(s)=m O<s<t).

Note that ifh is of arbitrary sign and > s + h we have
y(t. Usn) = (t = DT + [hjv? + (1 — (t — [T — [hjv)?

fort > s; thush — y(t, usp ,) is not (two-sided) differentiable &t = 0. Com-
puting the limit (1.6.3) foh < 0 just produces (1.6.4) again.
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1.7. Optimal Control: Minimum Drag Nose Shape
in Hypersonic Flow

A vehicle moves through a fluid in the direction of the positaxis with uniform
speedV. Its nose is a body of revolution whose projection onxhg plane is a
curve described by parametric equations= x(t),y = y(t) (0 <t < T) with
(x(0), y(0)) = (0, h), (y(0), y(T)) = (r, 0); h is theheight of the nose and its
maximum radius. The quotient / h is thefineness ratio

y
fluidflow |, /T,

Figure 1.9.

A model due to Newton (see Goursat [1942, p. 658], McShane [1978/1989])
proposes that the drag normal to each surface element is proportional to the square
V2xX/(t)2/(X'(t)% + y'(1)?) of the normal component of the velocity vector. The
resultant of all these forces (obviously in tii@irection) is then the integral of
V2x'(1)3/(x' (1) + y'(1)%)%? over the surface with respect to the area element

2 X () (X' (1) + y'(1)?) Y2 dt, thus is proportional to the integral

T /
/ XOXWO® (1.7.1)
0o X' (D24 y(1)?
It is easy to see that, without further conditions, the minimum of the integral is
—00, but there are physical reasons to consider only nondecreadingnd non-
increasingy(t); if this is not the case (Figure 1.10) there may be parts of the surface
of the body isolated from the flow by stagnant fluid or by other parts of the bdy.
This problem is treated in textbooks such as Goursat [1942] using classical
calculus of variations, butit admits a more natural formulation as a control problem.
We set

XM =u®t), Yyt =-vt), x©0=0  yO=h (1.7.2)

in a variable interval O< t < t with control setU = [0, co) x [0, c0), target
condition

(x@), yt)) = (r,0), (1.7.3)

@ For air flow, this model is said to be “.very good at hypersonic speeds Imatt very good at
subsonic speeds” in Bryson—-Ho [1969, p. 52]. Hence the title of this section.

@ Ignoring these conditions has led some authors to brand Newton’s drag model as “absurd.” See
McShane [1978/1989] for a refutation; careful reading of Newton’s original formulation of the
problem reveals that monotonicity ®ft) andy(t) is actually required. See also Goldstine [1980,

p. 7].
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fluid flow

sheltering by sheltering by other |
stagnant fluid parts of body '
Figure 1.10.
and cost functional
t 3
X(T)u(t
Yo(t, U, v) = / RAQLICP (1.7.4)
0 U(r)?+v(7)?

Adifference with the soft landing problem is that the control setis unbounded; thus,
conditions on the controls(-), v(-) are needed in order that (1.7.4) be finite. Since
xu3/(u? +v?) < xu, it is enough to require the controls to be integrable. Another
difference is that the parametein the minimum drag nose shape problem has no
physical meaning so that we are free to reparametrize the curve at our pleasure.
This will be used in the solution of this problem, presented.t) 13.7and13.8

1.8. Control of Functional Differential Equations:
Optimal Forest Growth

Let N(t) represent a population (bacteria in a test tube, people in a city, trees in a
forest). The Malthusian model assumes a rate of growth proportional to the pop-
ulation: N’(t) = aN(t). This gives the exponential growth laM(t) = €N (0),

which is only accurate for relatively small valuesht); overcrowding and com-
petition for resources lower the rate of growth. A more realistic model assumes a
steadily decreasing, eventually negative growth coeffi@énNt). Assuminga(N)

linear, Verhulst'dogistic equation

N'(t) = (@ — bN()N(t) (1.8.1)

results, where, b > 0. This model gives good results for bacteria populations,
but does not describe accurately phenomena such as forest growth. In fact, the
inhibiting effects of new trees on the growth rate are negligible until these have
reached a certain “adult” size. Thus, the growth rate should be a function not of
N(t) but of N(t — h) for a suitable time delayh > 0, leading to thedelayed
logistic equation

N’(t) = (a— bN(t — h))N(t). (1.8.2)
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Similar delay effects are observed in the influence of overcrowding in human
populations (for an elementary exposition of logistic equations with and without
delays see Haberman [1977, p. 119ff]). Equation (1.8.2) (the same as (1.8.1)) has
two equilibrium solutions: one Bl (t) = 0O, the other

N(t) = N = a/b. (1.8.3)

Assume tree seeds are planted, and trees are logged with seeding and logging rates
Uo(t) anduy(t) respectively. Lek be the time it takes a seed to become a baby
tree. Then the equation becomes

N'(t) = (@ — bN(t — h))N(t) + cug(t — k) — uy(t) (1.8.4)

where the coefficient (0 < ¢ < 1) accounts for the fraction of seeds that actually
result in a tree. To start the equation we need to know the forest population in an
interval of lengthh,

N(t) = No(t) (to—h <t <tp). (1.8.5)
To “attain the equilibrium populatioiNe” has at least two meanings. One is
N() = Ne (1.8.6)

and says the population is at equilibriumtat t but not necessarily afterwards.
If the population is to stay at equilibrium, the target condition must be

Nt)=Ne (t—h<t<t), (1.8.7)

which guarantees th&t(t) = Ne for all t > t if cug(t — k) — uy(t) = O fort > t.
Target conditions of the form (1.8.6) are callegclidean; those of the form (1.8.7)

are calledfunctional. To see the reason for this name, consider for instance the
spaceC[—h, 0] of continuous functions defined in the intervah <t < 0. Given

a functiony(t), denote byy; (-) thesectionof y(-) defined by

() =yt+71) (-h=1=<0). (1.8.8)

Then the target condition (1.8.7) can be written as an ordinary target condition in
the space&[—h, O]:
Ni(-) = Ne (1.8.9)

where N denotes the constant function. An “optimal net profit” problem is, for
instance, to maximize the functional

t t
J(t, Uy, up) = oe/ uy(r)dr — ,3/ Uo(t)dt
0 0
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with o, B > 0 at some fixed timé > 0O; the first term represents the profit from
logging and the second, the cost of seeding. Cleasl{,), u;(t) are nonnegative
and it is reasonable to include upper bounds on both rates:

O<u® <R  O=u®<S (1.8.10)

Straight maximization of the profit may result in destruction of the forest at time
t, thus we supplement the problem with a (functional) target condition, say

IN(H) = Nel <& (t—h=<t<t) (1.8.11)

(Ne the equilibrium solution (1.8.3)), and terminate seeding at timek. If
the equilibrium position is stable, this means the forest population will stay near
equilibrium aftert. Admissible controls for this problem are paitg(t), us(t)),
ug defined in—k <t <'t, u; defined in 0O< t < t, and satisfying (1.8.10) in their
respective intervals of definition.

Another growth model is described by the integrodifferential equation

0
N'(t) = (a - (/ b(z)N(t + r)dr)> N(t) + cup(t — k) —ui(t) (1.8.12)

h

which takes into account the inhibiting effects of new trees of all sizes on the
growth rate.

1.9. Control of Partial Differential Equations: Optimal
Cooling of a Plate and Optimal Stabilization of a
Vibrating Membrane
Consider a plate occupying a domain with boundaryI" in 2-dimensional
Euclidean spacR?. In suitable units, the nonlinear partial differential equation

ay(t, X)

TE Ay, x) — f(y,x)) +u,x) (xeQ), (1.9.1)
WX 5 xer), (1.9.2)
av

(X = (X1, X2), A the Laplaciang/dv the outer normal derivative dn) describes
the temperaturg(t, x) in Q. The sum— f (y(t, X)) + u(t, X) means applied heat,
the first term through feedback, the second as a control, subject to the constraint

O<u,x)<R. (12.9.3)

Condition (1.9.2) indicates the boundary is insulated (there is no heat flow through
the boundary). A conceivable problem is to drive the temperature from an initial
value

y(0, %) = ¢(X) (1.9.4)
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to a final value
y(t, x) = y(x) (1.9.5)

in timet, minimizing the cost of heating/cooling, which might be measured in the
form

Yo(t, u) =/ u(t, X)%dx dr.
O, t)xQ

A number of variants are possible. For instance, control maykdimensional
function (uy(t), ux(t), ..., ux(t)) of t entering the equation asi(t,Xx) =
2g;(X)uj(x), or theexactor point target condition (1.9.5) may be weakened
to approximate conditions such g&t, x) — y(x)| <& (x € Q) or

/ (y(t, ¥) — y(x)%dx < e.
Q

Control may also be applied on the boundary,

ay(t, X)
av

=g(y(, x), ut,x)) xel). (1.9.6)

Engineers call systems such as (1.9.1)-(1.6i8yibuted parameter systems
when control appears in the boundary condition as in (1.9.6), we Haweradary
control system

For a peek into the results, we consider the distributed parameter system (1.9.1)
with boundary condition (1.9.2), control constraint (1.9.3), fixed terminal time
and no target condition. The cost functional measures the final deviation from the
target:

Yot 0) = [ (@0 - 5%l (L.9.7)
Q
We do spike perturbations in time,

v(X) (s—h<t<ys)

u(t, x) elsewhere (1.9.8)

uS,h,v(tv X) = {

wherev(-) is an element of the (functional) control &etlefined by O< v(x) < R.
If u(t, x) is an optimal control,

Yo(t, Usn.») > Yo(t, U)

for s, h, v(.) arbitrary; thus, if

d _ 1 _ _
§o(t) = ah h:0+yo(t, Ush,y) = hhﬁrg+ E(Yo(t, Usho) — Yo(t, W), (1.9.9)
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we have
() >0 (1.9.10)

for s, v(-) arbitrary. As inl.6, the first step in the computation &f(t) is to figure
out

d
t,X) = — t »
£(t, x) ah h=0+y( . X, Ush,v)

1
hll)n(-)l_'_ E (y(t» Xa uS,h,U) - Y(t, Xa u))a (1911)

wherey(t, x, u) indicates the solution of (1.9.1)-(1.9.2) correspondingi te-
u(t, x). A formal computation similar to that in the lines following (1.6.5) reveals
that&(t, x) is the solution of the linear initial value problem

&, X) af (y(t, u, x))
s = AELX) - Té(t, X)
+@W(X) —u(s, x)8t—s) O<t<t,xeQ) (1.9.12)
85;;)() =0 O<t<t,xel). (1.9.13)
§0,x)=0 (xeQ) (1.9.14)

(6 the Dirac delta) or, equivalently,

ML _ ey = TVCUXD) 4 oy (s<t<fxeQ). (1.9.15)
at ay

aégl’)x) —0 (s<t<ixel), (1.9.16)

£(s,X) = v(X) —U(S, X) (X € Q). (1.9.17)

We then computéy(t) and use (1.9.10), obtaining

/(y(t_, U, x) — Y(X))E&(t, x)dx > 0, (1.9.18)
Q

where O< s < t andv(-) € U. Now, letz(t, x) be the solution of the backwards
equation

az(att, X) = —Az(t,X) + WW;—;/U’X))Z(L x) O0<t<t xe®) (19.19)
822, X) =0 O<t<t,xel), (1.9.20)
v

2t %) = y& U, %) - Y0 (x € Q). (1.9.21)
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Then

/z(t_, X)E(t, x)dx—/z(s, X)E(s, X)d X
Q Q
:/ 3(z(t,x)g(t,x))dxdt
sDxq ot

=/_ (az(t’ X)E(t,X)+Z(t,x)ag(t’x))dxdt=o
(S,t))xQ

ot ot

in view of the divergence theorem. Accordingly, (1.9.18) is

/ Z(s, X)(v(X) — u(s, x))dx >0
Q

forall s, v(-), or
/z(s, X)U(S, X) = min/z(s, X)v(X)dx (1.9.22)
Q v(-)eU Q

for 0 < s < 1, another protoexample of Pontryagin’s minimum principle. Due to
the control constraint, (1.9.22) implies

R wherez(s, x) < 0,

0 wherez(s,x) >0 (1.9.23)

u(s, x) = {

but gives no information on(s, x) in the sete C (0, t) x Q wherez(t, x) = 0. If
y(t, U, X) # y(t) thenz(s, x) is nontrivial (that is, not identically zero), but there is
some distance from this property to the statementehats measure zero; when it
does, (1.9.23) gives information on the optimal contril x) almost everywhere
and deserves to be calledbang-bang principle. For more on this, see Chapter
11, in particular Problem 11.6.7 and the Miscellaneous Comments to Part II.

Typically for the maximum principle, (1.9.22) does not determimgrectly; in
fact, both the equation (1.9.19) fa¢s, x) and the final condition (1.9.21) presup-
pose knowledge of the unknown optimal solutigs, x, u). Eveninthelinear case,
where (1.9.19) does not depend on the optimal solution, we must ktow, x)
in (1.9.21). We shall take up the study of optimal control problems described by
parabolic equations in Part Il of this work.

Another problem with some claims to realism is that of bringing to equilibrium
a vibrating membrane occupying the doma&inand glued to the boundary; in
suitable units, the corresponding system is

3%y(t, x)
at2
yt,x)=0 (xel), (1.9.25)

= Ay(t, xX) — T(y(t, X)) +u(t,x) (xeQ), (1.9.24)
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where the sum- f (y(t, X)) + u(t, x) represents an applied force, the first term
through feedback, the second as a control subject to a constraint, for instance

ux, | =R (1.9.26)
or

/u(x,t)zdx <R (1.9.27)
Q

Bringing the membrane to equilibrium from the initial conditions

ay(0, x
yO0 =m0, P = g0 (1.9.28)
in timet amounts to the target condition(s)
yEx) =0, Bygt, ¥ _o, (1.9.29)

and the membrane will stay at equilibrium if the restoring foffag) satisfies

f (0) = 0 and application of the control force terminatet att. As in the cooling
problem, control could be finite dimensional or applied through the boundary
condition; thedistributed parameteor boundarylabels apply.

The two control problems above do not include state constraints for reasons of
simplicity, but more realistic modeling must take them into account. For instance,
equation (1.9.1) can only be expected to describe the evolution of the temperature
y(t, X) in an actual heatingooling process within a certain range, which justifies
the first of the bounds

ly(t, x)| < K, IVy(t, x)| < L. (1.9.30)

The second restriction reflects the fact that, in cooling a material such as glass,
large temperature gradients may produce cracks and should be avoided. Of course,
constraints such as (1.9.30) make the problem much harder to handle. However,
we shall see in Chapter 11 that the minimum principle (1.9.22) still holds with a
different definition ofz(t, x).

In the vibration model (1.9.24), the integral state constraint

2 2
LG e ve
Q

puts a bound on the energy and reminds us of the fact that the wave equation
(1.9.24) is just an approximation to the “true” nonlinear equation describing the
vibration of the membrane, and that this approximation is only valid at low energy
levels.
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1.10. Finite Dimensional and Infinite Dimensional
Control Problems

There is an important difference between the landing problerh.4nand the
optimal control problems ii1.8 and 1.9. In the former, as well as in any other
optimal control problem that fits into the ordinary differential modelLif, the
state of the system is a finite dimensional vector; in the soft landing problem, this
vector is the 3-dimensional vectdn(t), v(t), m(t)).

The state of the system described by the delay differential equation (1.8.4)
(or the functional differential equation (1.8.12)) is a finite dimensional vector as
well, namely the 1-dimensional vectdk(t). This way to look at the equation is
adequate if one deals with the Euclidean target condition (1.8.6). However if the
target condition is functional like (1.8.7) it is natural to consider as state of the
system at timé the sectiony;, which belongs to the infinite dimensional space
C[—h, 0]

The state of the system (1.9.1)-(1.9.2) at titris a functiony(t, -), thus an
element of an infinite dimensional function space, for exan@ui®) or L?(Q).

Same for the system (1.9.24)-(1.9.25): the state of the system atiirnttes vector
(y(t, ), ye(t, -)) in a suitable energy space suchH(2) x L2(Q).

Ordinary differential equations like (1.5.2) and partial differential equations like
(1.9.10) or (1.9.24) are specimens with something in common: akaskition
equations that is, they describe a system’s evolution in time. It comes as no
surprise that their control theory contains many common elements, athread running
through this work. However, the treatment of systems whose states lie in an infinite
dimensional space is much more involved, and complete generalizations of finite
dimensional results are often unavailable.



