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This book studies existence and necessary conditions, such as Pontryagin’s maxi-
mum principle for optimal control problems described by ordinary and partial dif-
ferential equations. These necessary conditions are obtained from Kuhn-Tucker
theorems for nonlinear programming problems in infinite dimensional spaces.

The optimal control problems include control constraints, state constraints, and
target conditions. Evolution partial differential equations are studied using semi-
group theory, abstract differential equations in linear spaces, integral equations,
and interpolation theory. Existence of optimal controls is established for arbitrary
control sets by means of a general theory of relaxed controls.

Applications include nonlinear systems described by partial differential equa-
tions of hyperbolic and parabolic type; the latter case deals with pointwise con-
straints on the solution and the gradient. The book also includes results on conver-
gence of suboptimal controls.

H. O. Fattorini is Professor of Mathematics at the University of California, Los
Angeles.
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FOREWORD

An initial value or initial-boundary value problem for an evolution partial differen-
tial equation (an equation whose solutions depend on time) can usually be written
as an abstract differential equation

Y = f(t, y() (1

in a suitable function space, the function f describing the action of the equation on
the space variables, with boundary conditions (if any) included in the definition of
the space or of the domain of f. The similarity of (1) with a true ordinary differential
equation is only formal ( f may not be everywhere defined, bounded or continuous)
but gives heuristic insight into the problem, suggests ways to extend results from
ordinary to partial differential equations and stresses unification, discovery of com-
mon threads and economy of thought. The “abstract” approach is not the best in all
situations (for instance, many controllability results depend on properties of partial
differential equations lost, or difficult to reformulate, in the translation to (1)), but it
applies very well to optimization problems, where it is expedient to obtain general
statements such as Pontryagin’s maximum principle and then elucidate what the
principle says for equations in various classes. Many of the techniques are (modulo
some fine tuning) oblivious to the type of equation and are at least formally similar
to classical procedures for systems of ordinary differential equations.

This work is on the Pontryagin’s maximum principle for equations of the form
(1), on its applications to diverse control systems described by partial differential
equations, including control and state constraints and target conditions, and on
other related questions such as existence and relaxation of controls. It is understood
for use by nonspecialists, and with this in view incorporates blocks of auxiliary
material (Sections 2.0, 5.0 and 12.0 and portions of other chapters).

Those familiar with Pontryagin’s maximum principle know that the key to its
meaning lies not so much in its proof but in understanding what it says or does not
say as applied to a particular optimal control problem, and finite dimensional sys-
tems are perhaps the best area where one can gain insight without much overhead.
This motivates Part I (the first four chapters), which give a cursory introduction to

xiil
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Xiv Foreword

some control problems for ordinary differential equations and a large number of
examples, all classical in the literature. Part of the material (such as the nonlinear
programming theory in Chapters 2 and 3) is also used later.

PartII (Chapters 5 to 11) is on infinite dimensional control systems, with Chapter
9 on linear systems. Linear problems are amenable to separation techniques more
elementary than nonlinear programming, and there are linear theorems that do not
yet have full nonlinear counterparts.

Part III (Chapters 12 to 14) is on relaxed controls; these appear when one tries
to insure existence of optimal controls, something not always attainable with the
“original” controls with which the problem is outfitted.

There are many obvious shortcuts through this book. To mention one, the fastest
way to the infinite dimensional maximum principle begins with 7.1 and 7.2 on the
general nonlinear programming problem in Banach spaces and then proceeds to
the maximum principle with state constraints in Chapter 10, with assistance of
various sections in Chapters 5 and 6; for the parabolic problems in Chapter 11,
some of the material in Chapters 7 and 8 is needed.

All through, “Examples” are results either informally proved or left to the reader
as exercises.

The references have no pretension of completeness. They only include works
that deal with control problems through the abstract evolution equation (1) and
are directly related with the results in this book, in particular with the maximum
principle. When appropriate, we include papers that arrive at similar results by
other methods.

We have also attempted to include a modicum of references to subjects not
treated in any detail in this work (for instance, controllability, stabilization and the
Hamilton-Jacobi approach to optimality); here, the words “.. . and other papers”
invite the reader to perform further search. When possible, we have deferred to the
extensive references in several recent books in control theory.
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