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CLIFFORD ALGEBRAS

In this opening chapter, we collect together fundamental properties of
a variety of (complex) Clifford algebras attached to the real inner prod-
uct space V. The plain complex Clifford algebra C(V) is the universal
unital associative complex algebra containing V' as a real subspace with
the property that if v € V then v? = ||v||?1; this algebra has a unique
involution such that if v € V then v* = v. The involutive algebra C(V)
carries & unique norm with the C* property, that if a € C(V) then
lla*e|| = |lali?; the completion of C(V) relative to this norm is a C*
algebra called the C* Clifford algebra C[V]. The C* algebra C[V] has
a unique (even) state 7 with the (central) property that if a,b € C[V]
then 7(ba) = 7(ab); the von Neumann algebra generated in the corre-
sponding cyclic representation of C[V] is the vN Clifford algebra A[V].
When V is finite-dimensional, these algebras coincide; when V is infinite-
dimensional they are all different.

In §1 we present a detailed account of the plain complex Clifford
algebra. We begin by studying the most immediate properties of C(V)
when V is arbitrary. We next consider C(V) first when V is finite-
dimensional and then when V is more particularly even-dimensional.
After this, we approach C(V) when V is infinite-dimensional by means of
approximations via subspaces of V having finite (often even) dimension.
Lastly, we comment on the structure of C(V) when the dimension of
V is odd. All of this material is quite standard and may be extracted
from a number of sources; we include it here for completeness and as an
introduction.
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2 1 Clifford algebras

In §2 we develop the basic structure of the C* Clifford algebra C[V]
when V is infinite-dimensional. The approach we adopt is only one of a
number that are possible; brief references to some alternative approaches
are given in the Remarks at the end of this chapter. In keeping with the
aim expressed in the Introduction, we develop the fundamentals without
the assumption that V be separable; again we refer to the Remarks for
a few special comments in case V is separable.

In §3 we study the vN Clifford algebra A[V] when V is infinite- dimen-
sional. As a matter of detail, we introduce it as the von Neumann algebra
that arises by closing (in either operator topology, weak or strong) the
range of the left regular representation of C(V') on its Hilbert space com-
pletion relative to the inner product determined by its unique central
state. Once again, we avoid the assumption that V be separable; if V is
separable then A[V] is a version of the hyperfinite II; factor, for more
on which see the Remarks.

1.1 Clifford algebras

Our primary aim in this opening section is to develop some of the
purely algebraic structure of the complex Clifford algebra over a real
inner product space. Accordingly, we make no completeness assumptions
on the underlying real inner product space, which we allow to have
arbitrary dimension.

Thus, let V be an arbitrary real vector space upon which (- | -} is
a positive-definite inner product and denote by || - || the corresponding
norm. By a Clifford map on V we shall mean a real-linear map f: V—B
into a unital associative complex algebra B such that if v € V then
f(©)? = ||v]|?1. In these terms, we define a complex Clifford algebra over
V to be a unital associative complex algebra A together with a Clifford
map ¢ : V— A satisfying the following universal mapping property: that
if f: V—B is any Clifford map, then there exists a unique algebra map
F: A—B such that Fo¢ = f.

As we now proceed to show, V always carries a complex Clifford al-
gebra and any two complex Clifford algebras over V are naturally iso-
morphic.

Existence

We dispose of the existence problem for complex Clifford algebras by
means of a standard tensor product construction. Denote by V¢ = CoV
the complexification of V: thus, V' is obtained from V by extending
from real to complex scalars. Let T'(V') stand for the full tensor algebra
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1.1 Clifford algebras 3

over VE: thus,

T(V) =17 (V)

r=0

where T%(V) = C and where if 7 > 0 then
—_— ——
(V) =V’ ..@V®
is the r-fold complex tensor power of V. Of course, T(V) is a unital

associative complex algebra with 1 = 1 € C = T%(V) as multiplicative
identity. Let I(V') be the bilateral ideal of T (V) generated by the subset
{v@v—(v|v)l:veV c V)

Finally, let A be the quotient algebra T(V)/I(V) and let ¢ : V—A be
the map sending v € V € V€ = TY(V) to its coset modulo I(V). Tt
is plain both that A is a unital associative complex algebra and that
¢ : V—=A is a Clifford map. Now, let f : V—B be a Clifford map
and extend to f : VC—B by complex linearity. The universal mapping
property for the tensor algebra guarantees that f extends uniquely to
an algebra map T(f) : T(V)—B. The assumption that f is a Clifford
map ensures that T'(f) vanishes on the ideal I(V). Consequently, there
exists a unique algebra map F : A— B such that

(V)
\ T(f)
l B
A F
A

is a commutative diagram, in which the vertical is the canonical quotient
map. It is now evident that F is the unique algebra map from A to B
satisfying Fo¢ = f.

Uniqueness

That any two complex Clifford algebras over V are naturally isomorphic
follows as usual from the universal mapping property. In fact, let A and
A’ be complex Clifford algebras over V with Clifford maps ¢ : V—A4 and
¢’ : V—A'. Since ¢ : V— A satisfies the universal mapping property and
¢’ : V— A’ is a Clifford map, there is a unique algebra map &' : A—A’
such that ' o¢ = ¢'. Similarly, there is a unique algebra map ® : A’'— A
such that ® o ¢’ = ¢. Now ® 0 d’' : A— A4 is an algebra map such that

Podop=P0d =9

whence ® o @’ is the identity map, on account of the universal mapping
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4 1 Clifford algebras

property for ¢ : V—A applied to ¢ : V—A itself. Similarly, ' o ® :
A'— A’ is also the identity map. Consequently, ® and & are mutually
inverse algebra isomorphisms.

Having thus established that the real inner product space V carries
an essentially unique complex Clifford algebra, we may fix one and with
impunity refer to it as the complezx Clifford algebra C(V') of V. Notice
that the Clifford property

veV = ()2 =|vl2

satisfied by the Clifford map ¢ : V—C(V) implies that ¢ is necessarily
injective. This being so, we shall feel free to suppress ¢ and to identify
V' with its image in C(V) whenever convenient.

Theorem 1.1.1 The complex Clifford algebra C(V) is generated by its
real subspace V satisfying the Clifford relations

z,yeV = zytyz=2z]|yl

Proof The tensor algebra T(V) is of course generated by its real sub-
space V C V€ = TY(V); as a result, the quotient algebra C(V) =
T(V)/I(V) is generated by its own copy of V. The Clifford property of
C(V) asserts that v? = ||v?||1 whenever v € V; the Clifford relations
follow at once upon polarization, replacing v by z + y when z,y € V.
O

The Clifford relations just established have as a particular consequence
the following fact: that if z,y € V then

(z|ly)=0 & zy+yz=0

so that vectors in V' are orthogonal if and only if they anticommute as
elements of C(V'). This is but one manifestation of a theme that will be
repeated throughout the course of our study: namely, that geometry in
V is reflected by algebra in C(V).

Now the universal mapping property for the complex Clifford algebra
has certain standard functorial consequences. Fundamental among these
is the fact that isometries between real inner product spaces give rise to
homomorphisms between their complex Clifford algebras. Here, if (- | -)
and (- | -)’ are inner products on the real vector spaces V and V' then the
linear map g : V—V" is said to be isometric in case (gz | gy) = (z | y)
whenever z,y € V. For the sake of clarity, let us reinstate the canonical
embeddings ¢ : V—=C(V) and ¢’ : V'—C(V’) of the real inner product
spaces in their complex Clifford algebras.
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1.1 Clifford algebras 5

Theorem 1.1.2 If g : V=V’ is an isometric linear map then there
exists a unique algebra map 84 : C(V)—C (V') such that

byop=¢ og.

Proof By virtue of its isometric nature, g when followed by the canonical
embedding ¢’ : V/—C(V’) yields a Clifford map ¢’ og : V—C(V'). The
universal mapping property for C{V) now provides a unique algebra
map G : C(V)—C(V') with the property that Go ¢ = ¢’ 0 g. All that
remains is to set 64 equal to G. a

When we once again suppress the canonical embeddings, this result
may be formulated as saying that the linear isometry g : V—V" extends
uniquely to an algebra map 6, : C(V)—-C(V’).

As usual, we shall let O(V) signify the orthogonel group of V: thus,
O(V)) comprises all isometric real-linear automorphisms of V. As a par-
ticular instance of the functorial property in the preceding theorem, each
orthogonal transformation g € O(V) extends uniquely to define an au-
tomorphism @, of the complex Clifford algebra C(V). We shall follow
the custom of referring to 6, as the Bogoliubov automorphism of C(V)
induced by g. If also h € O(V') then each of 04, and 8, o 6 is an auto-
morphism of C (V') extending gh; it follows that 0y, = 6, 08. Thus, we
in fact have a group homomorphism

6:0(V)—AutC(V)
representing the orthogonal group by automorphisms of the complex
Clifford algebra. This automorphic group representation and its descen-
dants will feature quite prominently in what follows.

One particular Bogoliubov automorphism is of special importance and
deserves a separate symbol: we denote by 7 the Bogoliubov automor-
phism 6.; induced by minus the identity; thus v is the unique auto-
morphism of C(V') sending each element of V to its negative. Since the
orthogonal transformation —I has period 2, so also does the automor-
phism v; accordingly, we refer to y as the grading automorphism of C(V).
The subalgebra ker (y — I) of C(V) fixed pointwise by + is called the
even complex Clifford algebra C*T(V) of V; the complementary subspace
ker (v + I) C C(V) on which v acts as minus the identity is denoted by
C~ (V). In keeping with our referring to -y as the grading automorphism,
we refer to elements of C* (V) as being even and to elements of C~ (V)
as being odd.

In addition to its grading, the complex Clifford algebra has a canonical
antiautomorphism and a canonical conjugation, their product being a

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521450225
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
978-0-521-45022-5 - Spinors in Hilbert Space
R. J. Plymen and P. L. Robinson

Excerpt

More information

6 1 Clifford algebras

canonical adjoint operation on the complex Clifford algebra. We take
each of these in turn.

Let us denote by C(V)? the algebra opposite to C(V): thus, C(V)? is
C(V) as a set, with precisely the same linear structure but with reversed
product, so that the identity map C(V)—C(V)? is an antiisomorphism
of algebras. It is plain that the canonical inclusion V—C(V)0 is a Clif-
ford map, this being the suppressed ¢ : V—C(V) followed by the identity
map C(V)—C(V)°. The universal mapping property for C(V) provides
a unique algebra homomorphism « from C(V) to C(V)? restricting to
V as the identity; of course, we may view o as an antihomomorphism
from the algebra C(V) to itself. The composite o & : C{V)—=C(V)
is now an algebra homomorphism restricting to V' as the identity and
hence coinciding on the whole of C(V') with the identity. Thus « is in
fact an antiautomorphism of C(V): indeed, it is the unique antiauto-
morphism of C(V) that fixes V pointwise. We shall refer to « as the
main antioutomorphism of the complex Clifford algebra. Incidentally, o
arises also as follows: reversal of all tensor products defines an antiau-
tomorphism of the tensor algebra T'(V') stabilizing the ideal I(V') and «
is the antiautomorphism induced on the quotient T(V)/I(V) = C(V).

Let us denote by C(V) the algebra conjugate to C(V): thus, C(V)
is C(V) as a set, with precisely the same ring structure but with con-

jugated scalar multiplication, so that the identity map C(V)—C(V) is
an antilinear ring isomorphism. The canonical inclusion V—>C_(V5 be-
ing a Clifford map, the universal mapping property for C(V') provides a
unique algebra homomorphism « from C(V') to C(V) restricting to V as
the identity; of course, we may view k as an antilinear ring homomor-
phism from C(V) to itself. Being an algebra homomorphism restricting
to V as the identity, the composite x o x : C(V)—C(V) is the identity
on all of C(V). Thus, « is an antilinear ring automorphism of C(V):
in fact, it is the unique such fixing V' pointwise. We shall refer to « as
the main conjugation of the complex Clifford algebra, often writing @ in
place of x(a) when a € C(V). Incidentally, the conjugation of V' point-
wise fixing V' extends functorially to a conjugation of T(V) stabilizing
I(V); the main conjugation of C(V) is the induced map on the quotient
T(V)/I(V).

Now the main antiautomorphism « and the main conjugation x com-
mute; their product is the unique antilinear antiautomorphism of C(V)
restricting to V' as the identity. Thus, a0 k = K 0 & is an involution or
adjoint operation: we shall call it the main involution of the complex
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1.1 Clifford algebras 7

Clifford algebra and shall denote it by a star, so that if a € C(V) then

a* = afa) = afa).
In this way, C(V) naturally becomes an algebra with involution, or invo-
lutive algebra. As such, it satisfies a further universal mapping property,
the statement of which requires a definition: if B is an involutive unital
associative complex algebra, then the Clifford map f : V—B is self-
adjoint in case f(v)* = f(v) whenever v € V.

Theorem 1.1.83 If f : V=B is a self-adjoint Clifford map then the
unique algebra map F : C(V)—B such that F | V = f is involution-
preserving.

Proof Simply note that the set {a € C(V) : F(a)* = F(a*)} is a
subalgebra of C(V) containing V' and recall that V generates C(V) as
a complex algebra. O

In this regard, it should be noted that if g € O(V') then the Bogoliubov
automorphism 6, is involution-preserving and hence an automorphism of
C(V) as an involutive algebra; moreover, §, commutes with the grading
automorphism, the main antiautomorphism and the main conjugation.

After these remarks on complex Clifford algebras in general, we now
pay more particular attention to the finite-dimensional situation. Thus,
let the real inner product space V' be finite-dimensional with {vy, ..., v}
as a specific orthonormal basis. It is notationally convenient to write m
in place of {1,...,m}. If § = {51 < ... < sp} is a nonempty subset of
m then we shall put

vs =vsl...vsp

with the product formed in C(V). By convention, we shall associate
the multiplicative identity of C(V) to the empty index: vy = 1. Notice
that vg is a unitary element of the involutive algebra C(V) whenever
S C m: on the one hand, vectors in V are self-adjoint in being fixed by
the main involution; on the other hand, unit vectors in V' have square 1
on account of the Clifford property. It turns out that {vg : S C m} is
a basis for C(V) as a complex vector space, whence C'(V) has complex
dimension 2™ = 2™ Our route towards establishing this fact lies by
way of properties of the elements {vs : § C m} that prove rather useful
in probing further the structure of C(V').

First, let S and T be subsets of m having cardinalities |S| and |T|
respectively. Repeated application of the Clifford relations shows that

UPUg = (~—1)|Sl IT"Us’UT
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8 1 Clifford algebras

whenever S and T are disjoint. In general, we have the following result.
Theorem 1.1.4 IfS,T C m then vpvg = (—1)ISITIHSTly g,

Proof Put R=SNT, S5 =85—Rand T’ = T — R; indicate cardinalities
by the corresponding lower case letters. Note that
Vg = OURVg, VU = TURVUT!
where the signs o,7 € {+1,—1} arise from the Clifford relations as
a result of reordering. The special case recorded before the theorem
implies that
TOUTUS = VRUTIURVS/

= (—l)rtlvRvRvT/vsf

— (_1)rt’+s’r+s’t'vR,vSI VRV
(_1)rt'+s'r+s't'

OTUSVT.
Moreover,
rt' + 8+t =(r+8)r+t)-r?
is congruent to
(r+sYr+t)+r=st+r
modulo 2. Consequently,
vpvg = (=1)*FTygup
and the proof is complete. 0O

We pause to reformulate this result and to consider some special cases.
Recall that if T C m then v € C(V) is unitary. As a consequence, the
identity just established can be reformulated as saying that if S and T’
are subsets of m then

vrvgvy = (=1)ISHTHS Ty,

In particular, if § C m and if j € m then
VU805 = (_l)ISl+]Sﬂjl,US'
More particularly still, if |S] is even then

o _fJtus (GES)
whilst if |S] is odd then
. Jmvs (1€5)
VjUSV; = {+’US Ges)
This reformulation and these special cases turn out to be particularly
valuable in our analysis of the complex Clifford algebra.
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1.1 Clifford algebras 9

The remaining property of the vectors {vg : S C m} will not be
needed in establishing that these vectors form a basis for C(V') but it is
important for other reasons and is conveniently disposed of at this point.
In order to state the property, we require some notation. For subsets
S Cc mand T C m we denote their symmetric difference by SAT as
usual, so that

SAT = (S—T)U (T - 8);
in addition, we denote by (S, T) the sign (—1)* where k is the cardi-
nality of the set

{(s,t): s>t} C I xT.
Theorem 1.1.5 If S,T C m then vsvr = &(S, T)vsar.

Proof Let S ={s1 <...<sptand T = {t; < ... < tg}. Forj =
1,...,p let k; denote the cardinality of the set {¢: s; >t} C T so that
€(S,T) = (=1)* where k = k1 + ... + kp. Making repeated use of the
Clifford relations,

VSUT = Vg -« vsp'vtl . .’th

= (-1)*r ... (=1)krrugar
= (-1)*vgar
=¢(S, T)vsar
since ,sz_ =1 for 7 € m and since to arrange the elements of the set SAT

in increasing order we must move s, past each t € T with s, > t for
r=p,...,1 (in that order). O

Actually, the use to which we shall put this result only calls for the
weaker result that if 5,7 C m then

vsUT = HUSAT
and does not require a determination of the sign.
We are now able to establish the advertised fact that {vg: S C m} is
a basis for C(V). That {vs : S C m} spans C(V) is almost immediate
from Theorem 1.1.1, according to which the algebra C(V) is generated
by its subspace V; all we need note in addition is that the Clifford
relations permit the reduction of any finite product from {vi,...,vm}
to one of the form vg for some S C m. Of course, this already implies
that C(V) is finite-dimensional. To see that {vs : § C m} is linearly
independent, suppose
Z tsvs =0

sScm
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10 1 Clifford algebras

to be a nontrivial relation involving as few nonzero coefficients as pos-
sible. This minimality and an application of the idempotent operators
3(I+~) and (I — ) together show at once that the indices $ C m
for which pg # 0 all have the same parity: either |S| is even when-
ever ug # 0 or | S| is odd whenever pgs 7% 0. Now hypothesize that the
relation involves (at least) two nonzero coefficients; select 7 in the sym-
metric difference of the corresponding pair of indices in m. From the
first special case following Theorem 1.1.4 we deduce that
0=v;( ) usvs)v;
scm
= > (-1)SH8Nlgug

SCcm

whence
0=> (-1)¥Vugvg

Scm
since the sign (—1)!5! is constant over {S C m : us # 0}. By hypothesis,
addition of this relation to the original will result in a nontrivial relation
having fewer nonzero coefficients, a patent absurdity. The supposed
nontrivial relation cannot have just one nonzero coefficient since vg is
invertible whenever S C m. Thus, the supposed nontrivial relation
among the vectors {vs : S C m} is nonexistent, so that {vs : § C m}
is indeed linearly independent. Of course, it now follows that C(V') has
complex dimension 2™ = 2™

Theorem 1.1.6 If {v1,...,vm} is an orthonormal basis for V then
{vs : S C m} is a basis for C(V) so that
dime C(V) = 2dime V'
O

A little later, we shall offer an alternative proof that the vectors
{vs : § C m} are linearly independent: Theorem 1.1.9 states that C(V)
carries a natural positive-definite Hermitian inner product, relative to
which {vg : § C m} is an orthonormal basis. Our construction of this
natural inner product will be performed with the aid of another natural
structure carried by the complex Clifford algebra: namely, a normalized
even central linear functional which we call its trace. Our handling of
this trace is facilitated by having access to the left regular representation
of the complex Clifford algebra. In order not to interrupt the develop-
ment of the trace, it is convenient to present a brief introduction to the
left regular representation at this juncture.

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521450225
http://www.cambridge.org
http://www.cambridge.org

