The constituents of the plasma state contribute to and are influenced by electric and magnetic fields, leading to a rich array of physical properties. *Plasma Physics* presents a wide ranging exposition of this ‘fourth state of matter’ that is scholarly, practical and eminently readable.

A basic knowledge of mathematics and physics is required to fully appreciate this text that weaves together general theory, special cases, and narrative explanations. Students will appreciate the frequent examples and the problem sets at the end of each chapter. Much of this material is drawn from astrophysics.

Plasma Physics provides astrophysicists with a unique resource, and laboratory physicists with an exciting alternative approach to this complex and fascinating field.
PLASMA PHYSICS
The Stanford–Cambridge Program is an innovative publishing venture resulting from the collaboration between Cambridge University Press and Stanford University and its Press.

The Program provides a new international imprint for the teaching and communication of pure and applied sciences. Drawing on Stanford’s eminent faculty and associated institutions, books within the Program reflect the high quality of teaching and research at Stanford University.

The Program includes textbooks at undergraduate and graduate level, and research monographs, across a broad range of the sciences.

Cambridge University Press publishes and distributes books in the Stanford–Cambridge Program throughout the world.
PLASMA PHYSICS

An introduction to the theory of astrophysical, geophysical, and laboratory plasmas

PETER A. STURROCK

Center for Space Science and Astrophysics, Stanford University
Contents

Preface xi

1 Introduction 1

2 Basic concepts 6
 2.1 Collective effects 6
 2.2 Charge neutrality and the Debye length 7
 2.3 Debye shielding 9
 2.4 The plasma parameter 11
 2.5 Plasma oscillations 14
 Problems 17

3 Orbit theory – uniform fields 19
 3.1 Particle motion in a static, uniform magnetic field 19
 3.2 Particle motion in electric and magnetic fields 22
 3.3 Particle motion in magnetic and gravitational fields 24
 3.4 Particle motion in a time-varying uniform magnetic field 25
 Problems 28

4 Adiabatic invariants 32
 4.1 General adiabatic invariants 32
 4.2 The first adiabatic invariant: magnetic moment 37
 4.3 Relativistic form of the first adiabatic invariant 38
 4.4 The second adiabatic invariant: the bounce invariant 40
 4.5 Magnetic traps 43
 4.6 The third adiabatic invariant 46
 Problems 47

5 Orbit theory 49
 5.1 Particle motion in a static inhomogeneous magnetic field 49
 5.2 Discussion of orbit theory for a static inhomogeneous magnetic field 53
 5.3 Drifts in the Earth’s magnetosphere 56

© Cambridge University Press www.cambridge.org
Contents

5.4 Motion in a time-varying electric field 57
5.5 Particle motion in a rapidly time-varying electromagnetic field 60
Problems 63

6 Electromagnetic waves in a cold electron plasma 66
6.1 The wave equation 66
6.2 Waves in a cold electron plasma without a magnetic field 68
6.3 Effect of collisions 74
6.4 Electromagnetic waves in a cold magnetized electron plasma 77
6.5 Wave propagation normal to the magnetic field 79
6.6 Propagation parallel to the magnetic field 82
6.7 Faraday rotation 85
6.8 Dispersion of radio waves 89
6.9 Whistlers 90
Problems 93

7 Electromagnetic waves in an electron–ion plasma 97
7.1 The dispersion relation 97
7.2 Wave propagation in an electron plasma 101
Problems 104

8 Two-stream instability 106
8.1 Particle streams of zero temperature 106
8.2 Two-stream instability 109
8.3 Two identical but opposing streams 111
8.4 Stream moving through a stationary plasma 113
Problems 116

9 Electrostatic oscillations in a plasma of nonzero temperature 118
9.1 Distribution functions 118
9.2 Linear perturbation analysis of the Vlasov equation 122
9.3 Dispersion relation for a warm plasma 124
9.4 The Landau initial-value problem 125
9.5 Gardner's theorem 132
9.6 Weakly damped waves – Landau damping 134
9.7 The Penrose criterion for stability 136
Problems 143

10 Collision theory 145
10.1 Lagrange expansion 145
10.2 The Fokker–Planck equation 147
10.3 Coulomb collisions 149
10.4 The Fokker–Planck equation for Coulomb collisions 153
<table>
<thead>
<tr>
<th>Contents</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.5 Relaxation times</td>
<td>159</td>
</tr>
<tr>
<td>Problems</td>
<td>167</td>
</tr>
<tr>
<td>11 MHD equations</td>
<td>169</td>
</tr>
<tr>
<td>11.1 The moment equations</td>
<td>169</td>
</tr>
<tr>
<td>11.2 Fluid description of an electron-proton plasma</td>
<td>170</td>
</tr>
<tr>
<td>11.3 The collision term</td>
<td>171</td>
</tr>
<tr>
<td>11.4 Moment equations for each species</td>
<td>172</td>
</tr>
<tr>
<td>11.5 Fluid description</td>
<td>173</td>
</tr>
<tr>
<td>11.6 Ohm's law</td>
<td>175</td>
</tr>
<tr>
<td>11.7 The ideal MHD equations</td>
<td>177</td>
</tr>
<tr>
<td>11.8 The conductivity tensor</td>
<td>180</td>
</tr>
<tr>
<td>Problems</td>
<td>182</td>
</tr>
<tr>
<td>12 Magnetohydrodynamics</td>
<td>184</td>
</tr>
<tr>
<td>12.1 Evolution of the magnetic field</td>
<td>184</td>
</tr>
<tr>
<td>12.2 Frozen magnetic field lines</td>
<td>186</td>
</tr>
<tr>
<td>12.3 Diffusion of magnetic field lines</td>
<td>191</td>
</tr>
<tr>
<td>12.4 The virial theorem</td>
<td>193</td>
</tr>
<tr>
<td>12.5 Extension of the virial theorem</td>
<td>194</td>
</tr>
<tr>
<td>12.6 Stability analysis using the virial theorem</td>
<td>197</td>
</tr>
<tr>
<td>Problems</td>
<td>199</td>
</tr>
<tr>
<td>13 Force-free magnetic-field configurations</td>
<td>201</td>
</tr>
<tr>
<td>13.1 Introduction</td>
<td>201</td>
</tr>
<tr>
<td>13.2 Linear force-free fields</td>
<td>204</td>
</tr>
<tr>
<td>13.3 Examples of linear force-free fields</td>
<td>206</td>
</tr>
<tr>
<td>13.4 The generating-function method</td>
<td>208</td>
</tr>
<tr>
<td>13.5 Calculation of magnetic-field configurations</td>
<td>212</td>
</tr>
<tr>
<td>13.6 Linear force-free fields of cylindrical symmetry</td>
<td>214</td>
</tr>
<tr>
<td>13.7 Uniformly twisted cylindrical force-free field</td>
<td>216</td>
</tr>
<tr>
<td>13.8 Magnetic helicity</td>
<td>220</td>
</tr>
<tr>
<td>13.9 Woltjer's theorem</td>
<td>223</td>
</tr>
<tr>
<td>13.10 Useful relations for semi-infinite force-free magnetic-field configurations</td>
<td>224</td>
</tr>
<tr>
<td>Problems</td>
<td>229</td>
</tr>
<tr>
<td>14 Waves in MHD systems</td>
<td>233</td>
</tr>
<tr>
<td>14.1 MHD waves in a uniform plasma</td>
<td>233</td>
</tr>
<tr>
<td>14.2 Waves in a barometric medium</td>
<td>239</td>
</tr>
<tr>
<td>Problems</td>
<td>246</td>
</tr>
<tr>
<td>15 Magnetohydrodynamic stability</td>
<td>248</td>
</tr>
<tr>
<td>15.1 The linear pinch</td>
<td>248</td>
</tr>
<tr>
<td>15.2 Stability analysis</td>
<td>250</td>
</tr>
</tbody>
</table>
Contents

15.3 Boundary conditions
15.4 Internally homogeneous linear pinch
15.5 Application of the boundary conditions
Problems

16 Variation principle for MHD systems
 16.1 Variation principle for a spatially distributed system
 16.2 Convection of magnetic field
 16.3 Variation principle of MHD motion
 16.4 Small-amplitude disturbances
Problems

17 Resistive instabilities
 17.1 Introductory remarks
 17.2 Current sheet configuration
 17.3 Evolution of the magnetic field
 17.4 Equation of motion
 17.5 The tearing mode
 17.6 Solution of the differential equations
Problem

18 Stochastic processes
 18.1 Stochastic diffusion
 18.2 One-dimensional stochastic acceleration
 18.3 Stochastic diffusion, Landau damping and quasilinear theory
Problem

19 Interaction of particles and waves
 19.1 Quantum-mechanical description
 19.2 Transition to the classical limit
 19.3 The three-state model: emission and absorption
 19.4 Diffusion equation for the particle distribution function
Problem

Appendix A Units and constants
Appendix B Group velocity
Appendix C Amplifying and evanescent waves, convective and absolute instability

References
Author index
Subject index
Preface

This book is based on a series of lectures that has been given at Stanford University, for longer than I care to remember, to graduate students from several departments: Aeronautics and Astronautics, Applied Physics, Electrical Engineering, Mechanical Engineering, and Physics. The course has also formed part of the Astronomy Course Program and of the Space Science Program.

The course has changed over the years, beginning as a three-quarter sequence emphasizing laboratory and geophysical plasmas, and evolving into a two-quarter sequence emphasizing solar and other astrophysical applications. Selected material has also been offered as a one-quarter course. The course has been much improved by input from many students (in fact, the first set of lecture notes was produced by students in the class) and from a sequence of dedicated teaching assistants, notably, in recent years, Dr Anton Bergmann, Ms Lisa Porter and Dr Yuri Taranenko.

For invaluable assistance in the preparation of this text, I am indebted to Mrs Louise Meyers-Norney, who entered the text, to Dr James and Mrs Maria Klimchuk, who entered the equations, and to Dr Taeil Bai and Mr David Faust, who helped prepare the figures. Thanks are due also to Dr George Field, Dr Robert Helliwell, Dr Eric Priest and Dr Gerard Van Hoven, who kindly reviewed some of the chapters, and to Dr Simon Mitton and Ms Fiona Thomson of Cambridge University Press for their generous support.

Some of the problems were developed as part of this course, but some were taken from other books. I regret that I did not keep records of the sources of all problems, and it is therefore inevitable that some problems are reproduced in the following pages without proper acknowledgement. For this delinquency I offer my apologies to the original authors. I would greatly appreciate being informed of these errors of omission – and also, of course, of errors of commission.
Preface

Finally, it is a pleasure to acknowledge my debt to my good friend Dr William Thompson, who first introduced me to plasma physics, and to thank Dr Marshall Rosenbluth, who has kindly permitted me to quote not only from his physics but also from his wit.