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1 Introduction

Recall that a symplectic manifold is a 2n-dimensional smooth manifold M
together with a closed nondegenerate 2-form w. A symplectomorphism is a
diffeomorphism of M which preserves w and an n-dimensional submanifold
L C M is called Lagrangian if w vanishes on T'L. Such structures arise nat-
urally from Hamiltonian dynamics and geometric optics and they have been
studied for many decades. The past ten years have seen a number of impor-
tant developments and major breakthroughs in symplectic geometry as well
as the discovery of new links with other subjects such as dynamical systems,
topology, Yang-Mills theory, theoretical physics, and singularity theory.

Many of these new developments have been motivated by Gromov’s pa-
per [3] on pseudoholomorphic curves in symplectic geometry. The role pseu-
doholomorphic curves play in Gromov’s work is reminiscent of the role of
self-dual Yang-Mills instantons in Donaldson’s theory on smooth 4-manifolds.
Gromov used pseudoholomorphic curves to prove a number of surprising and
hitherto inaccessible results in symplectic geometry. For example he proved
that there is no symplectic isotopy moving the unit ball in R?" through a hole
in a hypersurface whose radius is smaller than 1 (a symplectic camel cannot
pass through the eye of a needle). The paper by McDuff and Traynor below
gives a proof of this theorem which is based on Eliashberg’s techniques of
filling by pseudoholomorphic discs.

Moduli spaces of pseudoholomorphic curves also play an important role
in McDuft’s work on symplectic 4-manifolds. In her contribution below she
proves a uniqueness theorem for symplectic structures on CP? with one or
two points blown up. This problem is related to the question of connectedness
of the space of symplectic embeddings of two disjoint balls into CP%. The
paper by Ciriza deals with the uniqueness of symplectic structures for Kahler
manifolds of nonpositive sectional curvature.

Gromov also proved that for every embedded compact Lagrangian sub-
manifold L C R?" there exists a holomorphic disc with boundary on L (a kind
of generalization of the Riemann mapping theorem). This can be interpreted
as an obstruction to Lagrangian embeddings. Polterovich in his paper proves
new such obstructions involving the Maslov class.

Another result by Gromov is his celebrated squeezing theorem which as-
serts that there is no symplectic embedding of the unit ball in R*™ into a
cylinder B%(r) x R=2 of radius less than 1. As a result he proved that
the group of symplectomorphisms is closed with respect to the C° topology.
Hofer interpreted Gromov’s squeezing theorem as an example of symplectic
invariants which he termed capacities. He discovered a number of other ca-
pacities, for example the displacement energy. In their contribution Hofer
and Eliashberg prove a new inequality for the displacement energy and use
this to deduce C? properties of a hypersurface in R** from C° information.
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2 Introduction

This can be viewed as an example of symplectic rigidity.

Another example of symplectic rigidity is Arnold’s conjecture about the
fixed points of exact symplectomorphisms (time-1-maps of Hamiltonian flows)
on compact symplectic manifolds. He conjectured that the number of fixed
points of such a symplectomorphism is bounded below by the sum of the
Betti numbers. For the torus this was proved by Conley and Zehnder [1]
using Morse theory for the symplectic action functional on the loop space.
Angenent in his paper uses the symplectic action functional to give a new
interpretation of Melnikov’s formula for transverse intersections of stable and
unstable manifolds in area preserving diffeomorphisms. Zehnder’s paper deals
with stability problems for symplectomorphisms of R?". For n = 1 this is
related to the existence of quasi-periodic solutions which can be established
by KAM theory.

An important breakthrough came when Floer combined the variational
approach of Conley and Zehnder with Gromov’s elliptic techniques and Wit-
ten’s approach to Morse theory to prove the Arnold conjecture for monotone
symplectic manifolds [2]. His work can be summarized as an infinite dimen-
sional version of Morse theory for the symplectic action where the critical
points are periodic orbits of Hamiltonian systems and connecting orbits are
pseudoholomorphic curves. The resulting invariants are the Floer homology
groups. A similar version of Floer homology as an invariant of homology-3-
spheres is closely related to Donaldson’s theory of smooth 4-manifolds. This
amplifies the close relation of pseudo-holomorphic curves in symplectic man-
ifolds with self-dual Yang-Mills equations in 4 dimensions.

The relation between symplectic geometry and gauge theory is fundamen-
tal in two of the papers. The moduli space of flat connections over a Riemann
surface is a symplectic manifold on which the mapping class group acts by
symplectomorphisms. The paper by Dostoglou and Salamon examines the
Floer homology groups of these symplectomorphisms. An entirely different
relation between contact geometry and gauge theory was discovered by Rumin
and this is explained by Pansu in his contribution.

The paper by Donaldson describes new links between complez-symplectic
structures on 4-dimensional cobordisms (to be thought of as a complexifica-
tion of the diffeomorphism group of a 3-manifold) and Ashtekhar’s formula-
tion of the self-dual Einstein equations.

The papers by Kazarian and Lerman/Montgomery/Sjamaar deal with sin-
gularities in symplectic geometry. In the former the singularities arise from
geometric optics while the latter deals with symplectic reduction in cases
where the quotient is not a manifold.

The paper by Robbin and Salamon explains how the metaplectic repre-
sentation can be obtained from Feynman path integrals in phase space with
general quadratic Hamiltonians. This leads to a simple model of Segal’s ax-
ioms for topological quantum field theory.
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About this volume

This volume is based on lectures given at a workshop and conference
on symplectic geometry at the University of Warwick in August 1990. The
area of symplectic geometry has developed rapidly in the past ten years with
major new discoveries that were motivated by and have provided new links
with many other subjects such as dynamical systems, topology, gauge the-
ory, mathematical physics and singularity theory. The conference brought
together a number of leading experts in these interacting areas of mathe-
matics. The contributions to this volume reflect the richness of the subject
and include expository papers as well as original research. They will be an
essential source for all research mathematicians in symplectic geometry.

Short description

This volume contains expository and research papers by leading experts
in symplectic geometry and topology. The contributions reflect the rapid
developments in this area in the past ten years and the diversity of the subject.
They illuminate the interactions with many other areas such as dynamical
systems, topology, gauge theory, mathematical physics and singularity theory.
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A Variational Interpretation
of Melnikov’s Function and Exponentionally
Small Separatrix Splitting

Sigurd Angenent
Mathematics Department, UW Madison
2 February, 1993

§1. Introduction

This note is about the exponentially small separatrix splitting which occurs
when one studies the separatrices of maps of “standard type”

®(u,v) = (u +¢,v + efo(u + €v)),

where fy is an entire function, or when one considers the Poincaré-map
associated with the ODE

u(t) = F(t/e, u(t)) (11)

for small values of ¢ > 0, and nonlinearities F' with F(t + 1,u) = F(t,u)
which are analytic in the u variable. We recall that the Poincaré—map &,

is defined in terms of the first order system
u' =v,v' = F(t/e,u)

which is equivalent to the second order ODE (1.1); ®. sends (u(0),v(0)) to
(u(e),v(€)), where (u(t),v(t)),(0 < t < ¢) is a solution of (1.1). For small

5

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521446996
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
0521446996 - Symplectic Geometry
Edited by Dietmar Salamon

Excerpt
More information
6 Angenent: A variational interpretation of Melnikov’s function

€ > 0 the theory of averaging tells us that we may regard (1.1) as a “small”
perturbation of the averaged equation

u'" = Fy(u) (1.2)

with Fo(u) = [ F(7,u)dr.

If the Poincaré map associated with (1.2) has a hyperbolic fixed point
with a homoclinic orbit, then one expects the same to be true! for the
perturbed Poincaré map ®. (¢ << 1). One also expects the homoclinic orbit
of perturbed map to come from a transverse intersection of the invariant
manifolds through the hyperbolic fixed point. Melnikov’s method allows
one to verify this for smooth perturbations of (1.2) with fixed period, e.g.
equations of the form u" = Fy(u) + pug(t, ). However, it has been observed
that the method does not apply directly to (1.1). Holmes, Marsden and
Scheurle? were the first to try to adjust Melnikov’s method to the averaging
situation. They gave an asymptotic expression for the separatrix splitting
if F is of the form F(r,u) = sinu + 8ePg(t), with g periodic, p sufficiently
large, and 6 a small parameter. This result was later improved by various
authors, the best result to date being due to Delshams, Teresa and Seara®.

In section 2 we give a variational interpretation of the Melnikov func-
tion, and in the subsequent sections show how this interpretation can be
adapted to study the homoclinic orbits of (1.1). Like Holmes et.al. we
only get an upper bound for the size of the splitting in the most general
setting, while we only get transverse homoclinic intersections for a special
nonlinearity, F(r,u) = u — 3/5u® + §¢!°H'(7), with H(r) periodic, and §
a small parameter. For this particular example the variational approach is
an improvement on the results of Holmes et.al. but fails to give the result
of Delshams et.al.

One advantage the variational point of view may have over others, is
that it can easily be generalized, to find entire solutions of elliptic PDE’s
such as

Au = Fy(u) + pg(z,u(z)), u(o0) =0, (1.3)

where g(z,u) is periodic in the z-variable; given a nontrivial solution U(z) of
the spatially homogeneous equation Au = Fy(u) which vanishes at ¢ = oo,

1 See chapter 4 of [GH83] for a discussion of averaging.

2 [HMSss)

3 See [DTS91] and the references given there.

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521446996
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
0521446996 - Symplectic Geometry
Edited by Dietmar Salamon

Excerpt

More information

Angenent: A variational interpretation of Melnikov’s function 7

the analysis in section 2 allows one to find solutions of (1.3) close to some
translate U(z + o) of U(x).

Although there is no obvious Poincaré-map in this situation, one can
still show* that nondegenerate solutions of (1.3) generate many more solu-
tions of (1.3), much in the same way that a transverse homoclinic point of
the Poincaré—map generates an abundance of homoclinic orbits.

The two main examples we have in mind throughout the paper are a
forced Duffing equation

u" — Fy(u) = 8g(2), (1.4)

and a “kicked anharmonic oscillator”

u'(t)=e Y 6t — je)- Fo(u(t)) (1.5)
J€EZ
with Fo(u) = u — 3/5u?.
In the second example the equation is to be interpreted in the sense of
distributions: a solution is a Lipschitz function whose second distributional
derivative satisfies (1.5). In fact, solutions will be piecewise linear, and their

values uj = u(je) satisfy the recurrence relation
Ujp1 — 2“1 + Uj—1 = SZF()(UJ‘). (16)

One easily verifies that the Poincaré-map ®. is given by the standard type
map (u,v) — (u+ev,v + eFo(u + €v)).

In section 3 we introduce a large class of nonlinearities F' which includes
both of these examples.

§2. A variational account of the Melnikov function

\'\/ e assume in this section that € = 1, and that the nonlinearity F' is of
the form F(t,u) = Fy(u) + pg(t,u), where g is some smooth function, p is
small, and Fj satisfies

Fo(0) =0, F}(0)>0. (2.1)

This last condition implies that the origin is a hyperbolic fixed point for the
local flow ¥, generated by the system u' = v,v' = Fy(u).

4 See [A886].
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8 Angenent: A variational interpretation of Melnikov’s function

The potential energy associated with Fjy is given by

o) = - | " Fo(w)do.

We shall assume that V(u) < 0 for some u > 0, and that Vj(a) = —Fy(a) <
0 where a is the smallest positive root of Vy(a) = 0. Under this assump-
tion the stable and unstable manifolds W*, W* of the origin coincide; they
are parametrized by (U(t),U’(t)) where U is the unique positive and even
solution of

U" = Fy(U),  U(oo0)=0. (2.2)

Consider the Poincaré map @, of the perturbed system u' =v,v' =F(u,t,u).
If p is small @, will have a hyperbolic fixed point O, near the origin, whose
stable and unstable manifolds we denote by W, W,. Since ®, depends
smoothly on 4, the fixed point O, as well as the W, W} vary smoothly
with p.

For most perturbations g(t,u) the invariant manifolds W, W, will not
coincide when g # 0. Melnikov’s method was designed to compute the
separation between the invariant manifolds for small values of y, and in
particular, to find the transverse intersections in Wi N W .

v
v NI
WS
Wi =W; p
u - /ON u
Wy
/

It is a commonplace® to remark that these transverse intersections are
of interest since they are known to be a cause of complicated dynamics of
the Poincaré map @,.

We shall now proceed to describe a variational method which produces
a result equivalent to Melnikov’s. To begin with we construct a periodic

5 See [Mo73, HG84] and the references given there.
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Angenent: A variational interpretation of Melnikov’s function 9

solution which corresponds to the hyperbolic fixed point O, by applying
the implicit function theorem to the map F : R x C?(T) — C°(T) given by

F(p,p) =p" — Fo(p) — pg(t,p).

Here T = R/Z and C¥(T) is the space of k times continuously differentiable
functions u(t) with u(t + 1) = u(¢).

We have F(0,0) = 0 while d,F(0,0), the derivative of F w.r.t. p, is
given by D% — F{(0); since Fy(0) > 0 the operator d,F(0,0) has a bounded
inverse from C°(T) to C?(T), and we have a smooth branch of solutions
p(p,-) € C*(T) of F(u,p) = 0 with p(0,t) = 0. The fixed point O, is now
given by (p(y,0),p'(1,0)).

Homoclinic orbits of ®, correspondend to solutions u(t) of u" =
F(p,t,u) which are defined for all ¢ € R, and which are asymptotic to
the small solution p(p,t) as t — *oo. To find such solutions we substitute
u(t) = v(t) + p(u,t) and obtain the following equation for v:

o" = F(p,t,0(t)), v(do0) =0, (2.3)
where

F(u,t,v) = F(u,t,p+v)—p"
= Fo(p+v) — Fo(p) + u{g(t,p +v) — g(t,p)}

with p = p(u,t), and ' = 9/0t. The corresponding potential energy is given
by

V(,u,t,v):/ F(u,t,w)dw;
0

it satisfies |V (,t,v)| < Cv? for small v, and hence the functional

Au0) = A0 = [ (a0 = V(wtio@)) de (24)

is well defined for v € H!(R).

2.1. Lemma. Critical points of A, are ezactly the solutions of (2.3), and
hence they correspond to the homoclinic orbits of @, i.e. to the intersections
of W and W .

For small p a critical point of A, 13 nondegenerate if and only if the
corresponding intersection of W and W, 1s transverse.
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10 Angenent: A variational interpretation of Melnikov’s function
Proof. The first statement holds since (2.3) is the Euler-Lagrange equa-
tion for A,.

Concerning the connection between nondegeneracy and transversality
we remark first of all that the Poincaré-maps &, and $ u, Where the latter
is derived from w" = F(u,t,w), are conjugate. The conjugation is provided
by the translation

T (“o,uﬁ) = (vO,vé)) = (uO +P(H>0)a“6 +pt(ﬂ'a 0)) .

Thus if P € Wy N W, then 7(P) € W" n W’, and W;f and W‘f intersect
transversally at 7(P) iff W} and W do so at P. We may therefore consider
Wy and W, instead of W and W;.

Let v € H' be a critical point of A,. Then v € C®, and P =
(v(0),v'(0)) is the corresponding intersection of W;: and W: The second
derivative of A, at v is given by

d®Au(v) - (9, %) = (L, %),

where L : H! — H™! is the differential operator

L= —D2 + Q(t), Q(t) =def %g'(ﬂat’ ’U(t)),

and where (¢,%) = [ ¥¥.
When g is small p(y,t) is also small, so it follows from

Fu(p,t,v) = Fy(p(p, 1) +v) + ugu(t, p(s, 1) +v),
F§(0) > 0, and v(Zo0) = 0 that for small x

hm inf Q(t) > 0. (2.5)

t—ztoo

Hence L is Fredholm with index zero for small p.

Indeed, Lo = —D? 4 Qo(t) with Qo(t) = F,(u,t,0) is invertible, since
inf Qo(t) > 0; L — Lo is given by multiplication with Q(t) — Qo(t), which
vanishes at ¢ = +oo and hence is a compact operator from H! to H™!; so
L is indeed Fredholm.

By definition the critical point v will be nondegenerate iff L = d>A,(v)
is invertible, which, due to L’s Fredholmness, will be the case iff L is injec-
tive. The nullspace of L consists of those y € H' which satisfy

y"' = Q(t)y. (2.6)
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