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Non-Euclidean harmonics

Our story of the Riemann zeta-function is to be unfolded on a stage
filled with non-Euclidean harmonics. Accordingly we need first to tune
our principal instrument. We are going to prove in this initial chapter a

spectral resolution of the non-Euclidean Laplacian

A =—y*((8/0x} + (3/3y))

with minimum prerequisites. The entire theory originated in a seminal
work of H. Maass, which was later developed by W. Roelcke, A. Selberg,
and many others. Our account is an elementary approach to their theory
in the case of the full modular group. Despite this specialization it
will not be hard to see that our argument extends to general arithmetic

situations.

1.1 Basic concepts

To begin with, we shall equip the upper half plane

H={z=x+iy : —0<x <00, y>0}

with the non-Euclidean differentiable structure. For this purpose we
introduce the group T(H) consisting of all real fractional linear transfor-

mations
az+b
lz+h

y iz (ah—bl =1; a,b,l,h € R).

(1.1.1)

The y’s map H onto itself conformally. To see this it is enough to note

that y has the inverse map z + (hz — b)/(—Iz + a), and that

d 1

y —_— — e ————
Iz + A2’ 2=

Imy(z) = e

(1.1.2)
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The elements of T(H) are also rigid motions acting on K in the sense
that H carries the non-Euclidean metric

y~Hdz] =y ((dx)? + (dy)?)?

which is invariant with respect to any y € T(H). This is a simple
consequence of the relations in (1.1.2), since they imply

(Im3(2) ] 2(2)| = (im )™

The invariance of the metric is inherited by A as being the negative of
the corresponding Laplace—Beltrami operator. It can also be checked by
direct computation: Putting f(x, y) = F(u,v) with y(x +iy) = u + iv and
invoking the Cauchy—Riemann equation for the function y(z), we have

Af(x,y) = —y*(u + v3)(Fuu + Fuv)
d
= _yz'EV(Z)IZ(Fuu + F) = _Uz(Fuu + Fu),

which amounts to A-y = A, ie, the invariance of A. We have also the
invariance of the non-Euclidean area element

du(z) = y~*dxdy
induced by the metric. This can be confirmed by computing the Jacobian

of the map vy :
522 -
a(x,y)
Further, we have the invariance of the non-Euclidean outer-normal
derivative

id y(2)]* = (0/y)?.

0 dy 0 dx 0
Von =M@ ox ~ oy
taken along any piecewise smooth curve in H : In fact we have, for f,F
as above,
of dx
= ——(Fy F,
Vo, = [ [( uy + Fyv,)}

d
=y{é(Fuuy — Fu,)— |d ’( —Fyoy + Fouy)}

dy
_Fux vVx) ™
y{ldz|( u, + F,oy)

dv
=gt 1d| Fo} =

This will be used in conjunction with Green’s formula, which is a basic
tool in the discussion below.
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1.1 Basic concepts 3

We next define the full modular group I' as the subgroup of T(X)
that is composed of those maps with a,b,/,h € Z in (1.1.1). This signifies
in particular that we do not regard I' as a matrix group. Thus, if an
element of I' is pulled back to SL(2,Z) in an obvious way, then we get
two image matrices with corresponding entries having opposite signs;
that is,

I =SL22,Z)/{*1}.

In any event readers should bear in mind that we are always dealing
with transformations of J.

The most basic fact about the motions caused by the elements of I’
is that they are discontinuous. This means that the action of I' on H
is comparable to, e.g., that of the group generated by two independent
linear translations acting on the Euclidean plane, which is equivalent to
tessellating C with congruent parallelograms. To make the situation with
I' explicit, we introduce the fundamental domain of I’

F={zeH :lz2=1LxI<i}, (1.13)

and also the notation

z=z mod

that indicates the existence of a y € I' such that y(z) = z’. Then we have

Lemma 1.1 The family of domains {y(F), y € I'} induces a tessellation of
.

Proof We fix an arbitrary z € H, and consider max[Imy(z)] as y given
in (1.1.1) varies in I'. This should exist. For the first relation in (1.1.2)
implies that Im y(z) takes its maximum when |Iz 4 h| takes its minimum;
and the latter can readily be seen to exist by observing that lz+h,y € T,
are among the lattice points generated by 1 and z. We assume that
Zo = Xo + iyo has the maximum imaginary part in this context; naturally
we may assume also that |xp] < % Then we note that —1/zp = zg mod I',
and thus Im(—1/z0) = yolzo|™> < yo. Hence we have |z5| > 1, namely
zo € F. This means that the tiles y(F), y € I', cover H. We shall next show
that these tiles have common points only on their boundaries. This is
clearly equivalent to the assertion that if z; = x; +iy; and y(z;) = x2+iy>
with a non-trivial y € I' are in F then both are on dF, the boundary of
7. To see this let y be as in (1.1.1) with integral coefficients. Obviously we
may suppose also that [ > 0 as well as y; > y;. Comparing the imaginary
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4 Non-Euclidean harmonics

parts of z; and y(z;) we have |lz; + h| < 1, which implies Iy; < 1. On
noting that y; > %ﬁ, we find that [ is equal either toQ orto 1. If [ =0
then ah = 1; and y(z) = z £ b. Here b = 0 is excluded because of an
obvious reason. Thus b = +1, and z,7(z;) € 8F. On the other hand, if
I=1then |z; +h| < 1. Thus |h| < 1. If h =0 then |z;| = 1 and y(z) =
a—1/z;and if h = +1 then z; = %($1+i\/§) and y(z) = a—1/(z+1). We
readily get |a| < 1, and hence z;,7(z1) € 0F again. This ends the proof.

We note that tiles y(F), y € I', are generally different in shape for our
Euclidean eyes, but if they were corrected with the metric y~!|dz| they
would look just like each other. We remark also that the left and the
right vertical edges of F are obviously equivalent to each other mod I',
and that the circular part of 0F is mapped onto itself by z+— —1/z; thus
the left half of the arc is equivalent to the right half. The identification
of the equivalent boundary elements of F yields a punctured Riemann
surface. The puncture corresponds to the point at infinity, and will be
called the cusp of I' in the sequel. The Riemann surface thus obtained
is designated as the manifold F, which carries the metric y~!|dz| with
an obvious localization. Without this specification the symbol F stands
for the fundamental domain of I'. In passing we stress that the possible
overlapping of y(F)’s on their boundaries will not raise any pathological
situations in our later discussion.

Turning to the analytical aspect, we introduce the concept of auto-
morphy: A function f defined on H is said to be I'-automorphic if
f(y(z)) = f(z) for all y € I'. This is the same as to have f defined
originally on the manifold F and to view it as a function over K in an
obvious way. In this context the invariance of A means precisely that A
can be regarded as a differential operator acting on the manifold F.

A very important example of I' -automorphic functions is the Poincare
series: We put, for a non-negative integer m and a complex number s,

Pu(z,s)= Y (Imy(z) e(my(z)) (z€3Res>1), (114
yel \I

where e(z) = exp(2miz), Iy, is the stabilizer in I' of the cusp, ie., the
cyclic subgroup generated by the translation z +— z + 1, and y runs over
a representative set of the left cosets of I', in I". The summands are
independent of the choice of the representatives, and the sum converges
absolutely, as can be seen from the expression (1.1.5) below. Hence
P,(z,s) is I' -automorphic. We note that the relation ny~! € I',,, where
v €l y(z)={(az+b)/(z+h),n(z)=(dz+bV)/(Vz+HW)with LI >0,
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is equivalent either to I =1, h =} or to y,n € I'y. Also we observe that

forl >0
1

a
')’(Z)—T—m, ah=1modl.

Thus we have

Pulz,s) = yemz) +y* Z Z 1z + b~ ( " Jexp (- l(zzznrih)>

I=1 h=—w0
(hD)=1

(1.1.5)

with hh* = 1 mod 1. We classify the summands according to 2 mod I, so

that we have
!

P,(z,5) = y'e(mz) + y* Z |72 Z e(mh’ /1)
S

= _as 2nmi
X Z lz+h/l+n| exp(—

R=—00

P(z+h/1+ n)>‘

Applying Poisson’s sum-formula to the last sum, we get, for Res > 1,

o]

P(z,5) =y*e(mz) + y'~* Z e(nx)Zl"sz(m,n ;1)

n=—auo I=1

© 2nm
x/_ exp(—2nny€i Byl = é))(l'i-f ySdE,
where
i
S(m,n;1) = Z ((hm+ hm)/1)

1

(1.1.6)

(1.1.7)

is the Kloosterman sum. Here we have performed an exchange of the
order of summation, which is legitimate because the convergence is
absolute, as can be seen by shifting the path to Im¢ = —%sgn(n) in the

integral. The formula (1.1.6) will be used in the next chapter.
In particular we put

E(z,5) = Poz,5) = Y (Imy(2))",

yel\I

(1.1.8)

and call it the Eisenstein series attached to I'. This function will appear
at various important stages of our discussion. Its principal properties are

collected in
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6 Non-Euclidean harmonics

Lemma 1.2 For any z € H the function E(z,s) is meromorphic in s over

the whole of C, and we have the expansion

E(z,5) =y + or(s)y"™

M s—1
+ T'(s){(2s) ; In"" 201 25(In))K_s (27|nly)e(nx),
where
_1 _ - _ ~
or(s) = A2k D) 7T - LR =)

I'(s)C(2s) [(s){(2s)

(1.1.9)

(1.1.10)

Hence E(z,s) is regular for Res > % save for the simple pole at s = 1 with

residue 3/m, and satisfies the functional equation
E(z,s) = or(s)E(z,1 —s)
as well as the differential equation

AE(z,s) = s(1 — s)E(z, s).

Proof We invoke first the functional equation
{(s) = 2°n* T sin(3sm)T(1 — s){(1 — s)

TG0 —3)

=7
and the representation

or(m) =L(1—&)Y I a(n) (n>0,Reé <0),
I=1
where
!

a(n) = S(n,0;1) = Z e(nh/1)

h=
(hDy=1

(1.1.11)

(1.1.12)

(1.1.13)

(1.1.14)

(1.1.15)

is the Ramanujan sum. When Res > 1 the expansion (1.1.9) is a
consequence of the relations (1.1.6) and (1.1.14) with (1.1.13), since we

have

© 1 _ I'(v)
/oo (1 + E2y+1 de = \/EF(V +1) (Rev>0)

and

T _eosd) ey o /2 ' B
-/—oo (1+§2)v+%d€ 2\/7_1: K,(y) (y>0, Rev > 2)'

T'(v+ %)

(1.1.16)
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We then note the other representation

1 o0
K) = [ & e (= be+e)ae,

which shows that K,(y) is entire in v, K,(y) = K_,(y) for Rey
moreover

1

K0) = +o)(5;) e (v +0)

(1.1.17)

> 0, and

(1.1.18)

for any fixed v. In fact this asymptotic formula can readily be proved
by putting £ = 1 +r in (1.1.17) and observing that the main part of the
integral comes from the short interval |r| < y=%/5. Hence E(z,s) exists as
a meromorphic function of s over C. The assertion (1.1.11) follows from
(1.1.13) and these properties of K,(y). As to (1.1.12) it is a consequence

of the definition (1.1.8) and
Al(Imy(2)f] = s(1 —s)Imy(z))’ (s € C,y € T(H)),

(1.1.19)

which is due to the invariance of A. An alternative proof is to use the
expansion (1.1.9) and the fact that \/?KS_%(ann[ y) is a solution of the

differential equation

[Dsngl(y) = —y°¢"(y) + (2nny)* + s(s — 1))g(y) =0 (v > 0)

(see the next lemma). This ends the proof of the lemma.

(1.1.20)

It is appropriate to make here a little digression about the nature of
the differential operator D, : It is a result of the application of the

separation of variables to the operator A + s(s — 1). In fact
formally

(A+ss— 1D ape(mx)} =D [Dsnanl(y)e(nx).

we have

(1.1.21)

This relation and the following assertion will be used in our later discus-

sion.

Lemma 1.3 The differential equation (1.1.20) with n > O has linearly in-
dependent solutions \/}KS_%(27rny) and A7 ! (2rny). Thus the resolvent

kernel of the differential operator y~2Ds,, n > 0, is equal to
\/i)?]s_%(2nnv)Ks_%(2nny) ifo<y,
Zsnl(y,v) =
\/T)YIS_%(Znny)KS_%(hnv) ifv=y.

(1.1.22)
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8 Non-Euclidean harmonics

Proof That the above two functions are solutions of (1.1.20), and that the
Wronskian of these is equal to 1, can be checked by using the recurrence
relations
Loy (2) + Lipa(z) = 21(2), I,_1(2) = I, 41(z) = 2vz U, (z),
Ky-1(2) + Kys1(2) = =2K;(2), K,-1(2) — Kyqa(z) = —2vz7 'K, (2),

(1.1.23)
and also the definitions
B © (2/2)v+2k
L) = ; Tk+ 1L +k+1) (1.1.24)
K,(z) {I_v(z) —Iv(z)}, (1.1.25)

) sin(znv)

where z¥ = exp(vlogz) with |argz| < m. The rest of the proof is
a standard application of the general theory of ordinary differential
equations. The excluded case n = 0 is easy, and left for readers. This
ends the proof.

Proceeding to our main issue, we let L2(F,dy) stand for the set of all
I' -automorphic f’s such that

112 = L f(2)du(z) < oo,

It should be observed that C = L*(F,dy), since we have

/?du(z) = %

The set L*(F,dy) is a Hilbert space equipped with the Petersson inner-
product

(i f2) = /? (2 TaEdu(a). (1.1.26)

We are going to diagonalize the operator A in L*(F,du); that is, we shall
try to find a set of I'-automorphic functions which spans L*(F,du) and
in which the operator A is well-defined and reduces, in an informal sense,
to a scalar multiplication at each element. To this end we introduce the
linear set defined on the manifold F:

BX(F) = {f € C®(F) :
cach partial derivative of f(z) is of rapid decay}. (1.1.27)

Here, that a I'-automorphic function g(z) is of rapid decay means that

© Cambridge University Press

www.cambridge.org



http://www.cambridge.org/0521445205
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press
0521445205 - Spectral Theory of the Riemann Zeta-Function - Yoichi Motohashi

Excerpt

More information
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g(z) = O(y™) for any M > 0 as z € F tends to the cusp, where the
implied constant may depend on M. This is dense in L%(F,dy), for it
contains all C*-functions having compact supports on the manifold ¥.
Then A is a symmetric operator in the sense that

(Af1,f2) = (fi.Af2)  (f1,f2 € BX(F)). (1.1.28)

In fact we have, by Green’s formula,

(Af1,f2) =Ly2Vf1(z)~Vf2(z)du(z), (1.1.29)

where V denotes the ordinary gradient. For the manifold F has no
boundary, and the integrand is of rapid decay around the cusp. More
precisely, we apply Green’s formula to

af1.1) = Jim [ ARG, (1.1.30)
- Fy
where Fy = FN{z :Imz < Y}. We have

(afufo) = Jim | Vfie)- i dvdy

~gim [y e
o a".fy
- L Vfl(Z)‘Vf_z(Z)dxdy
— Jim [ fl(x+zY)f2(x+zY)dx (1.1.31)

which gives (1.1.29). Here we have used the invariance of (9f/0n)f,|dz]
and the consequential cancellation of integrals on the boundary elements
of ¥ which are equivalent mod I’ to each other. This cancellation is
due to the invariance of the non-Euclidean outer-normal derivative, and
to the reverse of orientation in the corresponding boundary elements.
Intuitively it is the same as what happens when the process of folding
and pasting is applied to F to transform it into a Riemann surface.
The formula (1.1.29) implies, in particular,

(Af,f) >0 (1.1.32)

for any non-constant f € B®(J). This and (1.1.28) mean that A is a semi-
bounded symmetric operator which has a dense domain in L3(¥,dp).
Thus we could appeal to the general theory on the self-adjoint exten-
sion of such an operator with the effect of a shorter presentation. We
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shall, however, dispense with the operator theory in order to make our
discussion as elementary as possible.

We shall next show that B*(J) is a proper place to look for L?-
eigenfunctions of A :

Lemma 1.4 Let f € CXF) N LXF,du) be such that Af = (3 + &*)f with
Imk >0,k # %i. Then we have the absolutely convergent expansion

f@)=y2 Y pWKi(2nlniy)e(nx) (z€H) (1133
n#0

with certain complex numbers p(n). Thus f € B™(F); and this implies
Sfurther that

K > 3.815. (1.1.34)

Proof As is shown below, f is a constant if k = %i. Thus this case is
excluded in the above; and we may assume that f is non-trivial. Since
f is of period 1 in the variable x, it can be expanded into an absolutely
convergent Fourier series

ee]

f@ = amylemx) (z€H). (1.1.35)

n=—00
Expressing a(n, y) in terms of the integral of f(x + iy)e(—nx) over the
unit interval and applying integration by parts appropriately, we get

D%+ik,na(n, y)=0
(cf. (1.1.21)). Thus we see that

oyt +doytTi* i ke # 0,

a(0,y) =
coy% + doy% logy ifxk=0,

and by Lemma 1.3 that if n £ 0
a(n,y) = cay Kin(2mlnly) + dyy} [ie(2miny).
On the other hand the condition f € L*(F,du) gives

$ * 2,,-2 2
S [ty < [ ife)Pdu) <o (11.36)

n=—w

Taking account of the fact that K, is of exponential decay (see (1.1.18))
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