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Free vibrations

Most physical systems possess certain properties which enable them,
under suitable conditions, to vibrate; we shall examine a few examples in
chapter 2. But in order to discover the essential features of vibrational
behaviour, we first consider a ‘model system’: an imaginary prototype
system which possesses those properties which are necessary for vibra-
tional behaviour, and no others. This is a well-tried procedure in physics.
The basic idea is that, after examining in detail the behaviour of the
model, we shall be able to recognize, in real, complicated systems,
features which can lead to vibrational behaviour.

The model system in this case is a mass m attached to one end of a light
helical spring whose other end is fixed (fig. 1.1). In equilibrium we
suppose that adjacent coils of the spring are not in contact, so that there is
scope for it to be compressed as well as stretched. We choose to ignore all
forces not due to the elasticity of the spring: gravity, friction and viscosity
are all ‘switched off’.

w —F—
S
|
o b
Fig. 1.1 (a) The prototype vibrator in equilibrium. (b) Thé mass is instantaneously displaced
a distance ¢ to the right of its equilibrium position.
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2 1. Freevibrations

If the system has been disturbed at some earlier time, it may not be in
equilibrium. The mass may be at some position a distance ¢ to the right of
its equilibrium position, as in fig. 1.1(b). In that case the spring will exert a
force towards the left. If the displacement is to the left, the force will act to
the right. In either case the magnitude of the force will increase as the size
of the displacement increases: the mass always experiences a return force
which tends to change the displacement ¢ towards the value zero.

It is easy to see that the free motion of this system takes the form of a
vibration. The mass is given an acceleration

d’y
de?

I

i
which is determined by Newton’s second law

my = F, (1.1)

where Fj is the spring force. It will thus have acquired a certain velocity,
and a corresponding momentum, by the time it reaches its equilibrium
position, and so it will overshoot. Now the mass is acted on by a return
force in the opposite direction; it is decelerated, brought to rest, and
accelerated back to its equilibrium position where it overshoots again.
The direction of the displacement continually alternates.

It is clear that both the elasticity or ‘stiffness’ of the spring and the
inertial property of the mass are necessary for vibrational motion: the
stiffness ensures that the mass tries to return to its equilibrium position,
whereas the inertia makes it overshoot. We shall find that all vibrational
phenomena depend on the existence of a pair of quantities analogous to
stiffness and inertia.

1.1. Harmonic motion

The equation of motion (1.1) is a second-order differential equation from
which we wish to find an expression giving ¢ as a function of the time ¢.
The equation is too vague as it stands, however: we can solve it only if we
know exactly how F; varies with .

In order to get quantitative results, we shall make the simplest possible
assumption, that F; is proportional to  for the particular spring we are
dealing with. We write

Fo=—s¢ (1.2)

where s is a positive constant known as the spring constant, or the
stiffness. With this assumption, our system now possesses all the proper-
ties of the imaginary object known to physics as the Harmonic Oscillator.
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The equation of motion (1.1) now becomes

my = —sir (1.3)

In order to make the forthcoming results easier to carry over to other
vibrating systems, we shall write this equation in a standard form

Y+oip=0 (1.4)
which contains a new, positive quantity
wo=|(s/m)""?| (1.5)

It is easy to verify, by differentiation and substitution, that (1.4) is
satisfied by an expression of the form

Y(t)= A cos (wot +¢) (1.6)

where A is any constant length and ¢ is any constant angle. When a
quantity depends on time in this way it is said to vary harmonically. A
vibration in which ¢ varies harmonically is known as harmonic motion ; it
occurs for a mass on a spring only when the spring obeys (1.2).

The controlling quantity in (1.6) is the phase angle .t + ¢, sometimes
called simply the phase. The phase angle increases uniformly with time;
values of any angle differing by an integral multiple of 27 are physically
indistinguishable, however. Thus harmonic motion is periodic, repeating
itself endlessly in a sequence of identical cycles. All measurable quan-
tities, such as the displacement, speed, direction of travel and accelera-
tion of the mass, recur whenever the phase angle increases by 2. This
will happen at times separated by the interval 7 given by wor =27 (fig.
1.2). This characteristic time interval is called the period of the vibration.

v

A

IV VARVAS

Fig. 1.2 How ¢ varies with time during harmonic vibration. Identical events are separated
by time intervals 7. The origin =0 can be placed at any convenient stage in the cycle of
events.




4 1. Freevibrations

Of the two constants in the phase angle, w, is fixed by (1.5) but any
value of ¢, the phase constant, will give an acceptable solution of (1.4).
Changing the value of ¢ merely makes all events in the cycle happen
earlier or later by the same amount, without affecting the sequence of
events within any cycle. Again, retarding or advancing the action by any
whole number of periods will produce no observable difference. Thus we
can increase or decrease ¢ by any whole multiple of 27 without changing
anything physically.

During a cycle of vibration, ¢ takes on all values between the limits
+A; we call A the amplitude. The number of cycles per unit time,

vo=wo/2m

is the frequency. If the time is measured in seconds, v, is quoted in hertz
(Hz); a vibration at 5000 cycles per second, for example, has a frequency
of 5 kHz.

The quantity e, clearly has the same dimensions as v,. Since wot
appears in (1.6) as an angle, we shall usually call w, the angular frequency
to distinguish it from v,. Although v, is easier to measure, w, makes for
tidier formulas containing fewer factors of 2#. To distinguish the two
quantities further, we shall measure w, in inverse seconds (s™") rather
than hertz.t

Boundary conditions. Equation (1.6), being the solution of a second-
order differential equation (1.4), correctly contains two arbitrary con-
stants. Any pair of values of A and ¢ will describe a vibration which can
be executed by the mass and spring provided. In practice, however, we
shall be dealing with a particular vibration whose details have been
determined by some other physical conditions: usually the method used
to set the vibration going in the first place. These boundary conditions will
fix the values of A and ¢ that must be used for that particular vibration.

If, for example, the mass was originally held steady at some distance A
to the right of its equilibrium position, and then released at time ¢ = 0, we
could say that

Yg(0)=Acosp=A,

. (1.7)
$(0)=—woA sing =0

¥ One might use rads ™' for angular frequencies. The radian, however, being dimension-
less, is not so much a unit as a signal saying ‘angle’. It is more convenient to omit the radian
when discussing vibrations, as we shall be cancelling angular frequencies with other
quantities measured in s~ ' and having nothing to do with angles.
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where ¢ means dy/dt. These two boundary conditions (which are actually
initial conditions in this case) are sufficient to fix A and ¢. The second
condition tells us that ¢ is either 0 or 7; we reject the latter alternative
because the first condition makes cos ¢ positive. Thus A = A, and (1.6)
becomes

Y{t) = A cos wot (1.8)

Different starting arrangements would lead to different answers for A
and ¢.

Phase differences. In the example above we chose to label the moment at
which the vibration was started as ¢ = 0. This choice assumes that we are
measuring time with a stopwatch which we start at the instant when the
mass is released. There is no reason why we should not use an ordinary
clock and start the vibration at some different time ¢,; but by choosing the
starting time to be zero we have been able to arrange that ¢ is zero also.
As we saw above, having a different value for ¢ would merely advance or
retard all the action by the same amount in time.

The real significance of the phase constant becomes apparent when we
are dealing with two or more vibrations of the same frequency. Some
examples are shown in fig. 1.3. In each case one of the vibrations is of the
kind described by (1.8); that is, we have started it in the way described and
have chosen t = 0 as the starting time.

The second vibration in fig. 1.3(a) has a different amplitude A, but it
again has zero phase constant. The two displacements vary exactly in step
with each other, and are always in the ratio A,/ A ;. We say that these two
vibrations are in phase.

Under all other circumstances we say that the vibrations are out of
phase. In fig. 1.3(b) the second vibration has ¢ > 0, and all events such as
passing the equilibrium point from left to right, or reaching the point of
maximum positive , happen earlier for this vibration than for the other.
In this case we say that the second vibration leads in phase by ¢, or has a
phase advance of ¢ relative to the first. When the second vibration has
¢ <Oasinfig. 1.3(c), itis said to lag in phase by ||, or to have a phase lag
of |].

Clearly a phase lag greater than 180° is equivalent to a phase lead of
less than 180°, and it is usually more convenient to quote the smaller
value. The two special cases ¢ = 7 are of course equivalent; vibrations
such as those in fig. 1.3(d) with a 180° phase difference are said to be in
antiphase. If |¢| =37 they are in quadrature.
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Fig. 1.3 Phase differences. In each diagram the vibration with amplitude A, has a phase
constant of zero. The vibration with amplitude A, has (@) ¢ =0; (b) ¢>0; (c) ¢ <0;
(d) ¢ = £7. Vector diagrams representing these vibrations are shown on the right.

Choosing our zero of time in a different way would have led to a
non-zero phase constant for the first vibration in these examples. The
phase constant of the other vibration would have been increased or
decreased by the same amount, however, and the phase difference would
have been unaffected.

Vector diagrams. For handling two or more harmonic vibrations of the
same frequency, a geometrical method is helpful. We have already noted
that the phase angle wot + ¢ increases uniformly with time as the vibra-
tion takes place. The displacement at any moment ¢ is propoftional to the
cosine of this angle. We can therefore generate ¢(t) by letting a radius
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vector of length A rotate anticlockwise, as in fig. 1.4, and projecting it on
to some fixed axis. An axis through the origin is the most convenient. The
radius vector should make an angle ¢ with the axis at time ¢t =0, and
should rotate with angular speed w,. The rotating vector is sometimes
called a phasor.

Fig. 1.4 The rotating vector which generates ¢(t). At time ¢t = 0 the vector makes an angle ¢
(anticlockwise) with the reference axis. At other times it makes an angle wot+¢. Its
projection on the reference axis is ¢(?).

A second vibration, with a different amplitude and phase constant, is
represented by a vector of a different length, rotating at a fixed angle (the
phase difference) to the first. This angle is measured in an anticlockwise
sense from the first vector to the second if the second vibration leads the
first; conversely, a phase lag is measured clockwise.

Since the vibrations have a common frequency, we shall usually be
more interested in amplitudes and phase constants. Their values can be
specified by means of a static diagram showing the rotating vectors in
their ¢ = 0 positions. Vector diagrams for the four examples in fig. 1.3 are
shown beside the ¢ —¢ plots.

Velocity and acceleration. As an example of the use of vector diagrams,
we illustrate the phase relationships between the displacement, the
velocity and the acceleration of the mass during harmonic vibration. The
velocity can be obtained as a function of time by differentiating (1.6) with
respect to ¢; we find

G(t) = —wo A sin (wot + @)

(1.9)
=woA cos (wol +¢ +37)

A second differentiation gives the acceleration

(1) =—w3 A cos (wot + )

=wjA cos (wot +¢ + )
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These expressions show that ¢ and ¢, like ¥, vary harmonically, and
that the frequency is the same in all three cases. The amplitude of ¢ (the
maximum speed reached by the mass) is wy A, and that of z// iswiA. The
velocity, however, leads the displacement in phase by 90°; the accelera-
tion leads the velocity by a further 90°, bringing it into antiphase with the
displacement, as is necessary if (1.3) is to be obeyed.

(b} @)

©

Fig. 1.5 Vectors showing the relative phases of (a) the displacement, (b) the velocity, and
(c) the acceleration, for a vibration with amplitude A and phase constant ¢. The velocity
amplitude is wo A and the acceleration amplitude is w3 A.

In vector diagram terms (fig. 1.5) each differentiation with respect to ¢
can be seen as a multiplication of the length of the rotating vector by w,
together with an anticlockwise rotation through 90°. The vectors drawn in
fig. 1.5 are all lengths. On other occasions it may be more convenient to
choose vectors which represent velocities, accelerations or forces; these
quantities should not be mixed in the same diagram, however.

Energy. As usual in mechanical systems, two kinds of energy are present.
When the mass is moving with speed |¢| in either direction, its kinetic
energy is

T=3imy? (1.10)

When the spring is stretched or compressed by an amount ||, it stores
potential energy

V=isy’ (1.11)
The total energy
W=T+V=3mp’+3s¢° (1.12)
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remains constant during the vibration, since all dissipative forces like
friction and viscosity are assumed to be absent. Thus

%V=O (1.13)
Using (1.12) we obtain
myn + sy = 0
mx/;+sx// =0

The last equation is just (1.3), reached by a new route.
To discover how T and V vary individually with time, we substitute
(1.9) into (1.10), and (1.6) into (1.11), to find

T=3imwiA?sin® (wot + ¢)
V=1sA%cos® (wot + @)
These are plotted in fig. 1.6. The value of their constant sum is
W=3m(w,A)’ =1sA°

since s = mw§ by (1.5). For a given mass and spring, the total energy is
proportional to the square of the amplitude, but does not depend on the
phase constant.

Fig. 1.6 Variation of kinetic energy T and potential energy V during harmonic vibration.
The total energy W is constant.

We can think of the vibration as the repeated transfer of a fixed amount
of energy from the mass to the spring and back again, twice in each cycle.
When the spring is stretched or compressed its maximum distance
(¢ =+ A) the mass comes momentarily to rest and the kinetic energy
vanishes. At that moment all the energy of the system is stored in the
spring as potential energy. When the mass is passing through ¢ =0 (in
either direction) it has its maximum speed woA and contains the entire
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energy of the system, since the spring s neither stretched nor compressed.
At other points in the cycle there is a variable mixture of kinetic and
potential energy, but their sum never changes.

Summary. The free motion of the model system is a vibration because the
system possesses the two essential properties of stiffness and inertia. In
the special case of a spring which exerts a return force proportional to the
displacement of the mass, the vibration is harmonic. For a given mass and
a given spring the frequency is fixed, but the amplitude and the phase
constant depend on boundary conditions.

The velocity and the acceleration of the mass also vary harmonically,
with the same frequency as the displacement. Because displacement and
velocity are in quadrature, the energy of the system flows back and forth
between the mass and the spring twice in each cycle.

1.2. Alternative mathematics for harmonic motion

There are several alternative ways of writing the solution (1.6). Each has
its own special advantages, and in the rest of the book we shall adopt
whichever one is most suitable for the particular purpose in hand. From
now on we shall refer to (1.6) as form A ; here we derive, with little further
comment, three other versions which we identify for convenience as
forms B, C and D.

In discussing the various vibrational systems introduced in the next
chapter it is not necessary to write down the solution at all. You may
therefore prefer to leave this section until later.

Form B. Expanding the cosine in (1.6) gives immediately

()= A cos ¢ cos wot — A sin ¢ sin wot (1.14)

=B, cos ot + B, sin wot

We call this form B. Information about the amplitude and the phase
constant of the vibration is conveyed by means of two new constants

B,=Acos ¢
B,=—-Asin¢

each of which can be either positive or negative. These constants will be
fixed by the boundary conditions, as were A and ¢. Thus, in the example
considered in the previous section we would find B,=A; and B,=0:
comparison of (1.8) with (1.14) gives the same result directly.
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It is worth noting here that a second vibration of amplitude A,, in
quadrature with the previous one, has B, = 0 and B, = £ A, and so takes
the simple form

Y(t) =+ A, sin wyt

Here the plus sign means that the second vibration lags the first, and vice
versa. By adopting a vibration with ¢ = 0 as a standard of phase (as in fig.
1.3) we can use the suffixes p (‘phase’) and q (‘quadrature’) as memory
aids.

Form C. We can always try to solve a differential equation like (1.4) by
substituting a trial expression of the form

y=Ce”
In the present case we find that such a solution is acceptable if the relation
p’=-w;

is satisfied. This will be so for two values of p, given by +iw,. The general
solution may therefore be written as a linear combination

(1) = Cexp (iwgt) + C’ exp (—iwpt) (1.15)

in which the constants C and C’ are both complex.

This solution is actually too general for our purpose. It has four
arbitrary constants (Re C, Im C, Re C’ and Im C’) whereas the boundary
conditions can only cope with two. It is easy to see what is wrong with
(1.15) as it stands. In order to represent a single physical displacement, ¢
may be either real or imaginary, but must not be complex. The expression
on the right of (1.15) can be made real by insisting that the two terms are
complex conjugates of each other, that is

[C' exp (—iwet)]* = C exp (iwot)

The complex conjugate of a product of two quantities is the product of
their complex conjugates, and so

C'™* exp (iwot) = C exp (iwot)
C'=c*
Form C now appears as
(1) = C exp (iwot) + C* exp (—iwgt) (1.16)

Now there are only two arbitrary constants (Re C and Im C). By
expanding the exponentials in (1.16) in terms of sines and cosines with the
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aid of de Moivre’s theorem
e =cos x +1isin x

and comparing the result with (1.14), we obtain the relation between
these new constants and the previous ones,

Re C=3B,=3A cos ¢
(1.17)
ImC=-3B,=3A sin¢

Form D. Since we have arranged that the expression on the right of (1.16)
is real, it must be possible to write

() =Re[C exp (iwot)]+ Re [C* exp (—iwot)]

(1.18)
=2 Re [C exp (iwot)]
By defining a new complex constant D =2C, we reach form D,
¢ (t) =Re [D exp (iwpt)] (1.19)

We shall call D the complex amplitude of the vibration. Like C, however,
it contains information about the phase constant.

The arbitrary constants of forms A and D are linked through the
relations

ReD=A cos¢
(1.20)
ImD=Asing¢

which follow immediately from (1.17). For a vibration started as before
with ¢ =0, D is purely real; for a vibration in quadrature with that one
(¢ = xim) D is imaginary.

Form D provides an extremely powerful way of handling harmonic
motion. Its chief merit is the ease with which it can be differentiated and
integrated. To find :/}, for example, we could differentiate (1.16) with
respect to ¢ and proceed as we did in (1.18) and (1.19). The result

¥ (t) = Re [iwoD exp (iwot)]

is, however, just what we would get if we first differentiated the complex
function D exp (iwot) and then took the real part. The same is true of the
acceleration

¥ (t)=Re[~wiD exp (iwot)] (1.21)

At each differentiation we merely have to multiply the complex function
by i(l)().

It is instructive to examine the behaviour of the controlling function

D exp (iwot) on an Argand diagram. First we write the complex am-
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plitude in conventional modulus-and-argument form,
D = A cos ¢ +i(A sin )= A exp (ip)
The whole function then becomes
D exp (iwot) = A exp [i(wot + )]

On the Argand diagram (fig. 1.7) this is represented by a radius vector of
length A rotating anticlockwise with angular speed w,. Its initial (¢ = 0)
position makes an angle ¢ measured anticlockwise from the real axis.

LY

g Re

Fig. 1.7 Argand diagram representing ¢/(z). The real axis is equivalent to the reference axis
of fig. 1.4.

This is, of course, the same rotating vector as the one in fig. 1.4. In
complex number terminology we describe ¢ as the projection on the real
axis.

In this book form D will always be written as in (1.19); but it is common
practice to write ¢ equal to a complex function such as D exp (iwot),
leaving implicit the instruction to take the real part. It will be obvious that
this is being done whenever a simple physical quantity such as a length
appears to be complex.

Summary. We collect together for reference purposes the four forms of
the solution,
U(t)= A cos {wot +¢)
Yr(t) = B, cos wot + B sin wot
(1.22)
Y(t) = Cexp (iwot) + C* exp (—iwot)

¥(t)=Re[D exp (iwot)]
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Each version contains two real constants whose values can be adjusted to
fit boundary conditions.

It will sometimes be convenient to change from one form to another.
The simplest relations connecting the four pairs of constants are

Acos¢ =B,=2Re C=Re D
(1.23)
Asing=—B;=2ImC=Im D

Other relationships, such as the expressions giving A and ¢ individually
in terms of the other constants, can readily be obtained from (1.23).

Problems

1.1 If the system shown in fig. 1.1 has m = 0.010 kg and s =36 N m™', calculate
(a) the angular frequency, (b) the frequency, and (c) the period.

1.2 For the same vibrator as in problem 1.1, at time t = 0, the mass is observed to
be displaced 50 mm to the right of its equilibrium position and to be moving to the
right at aspeed 1.7 ms™'. Calculate (a) the amplitude, (b) the phase constant, and
(c) the energy.

1.3 An identical system is set into vibration with the same amplitude as the
vibrator in problem 1.2, but with a phase advance of 90°. Calculate (a) the
displacement, and (b) the velocity of this second vibrator at time ¢ = 0. (c) At what
time will it next come to rest?

1.4 The system shown at rest in fig. 1.1(a) could be set into vibration by giving
the mass a sudden momentum impulse to the left: by tapping it with a hammer, for
example. If the magnitude of the impulse is p, and it is given at time ¢ =0, find
(a) the amplitude and (b) the phase constant of the ensuing motion.

1.5 The system shown at rest in fig. 1.1(a) could be set into motion by giving it an
initial displacement 4, and an initial velocity v, (both to the right, say). Assuming
that the motion is started in this way at time ¢ = 0, show that the amplitude 4 and
the phase constant ¢ are given by

A =[A1+ (0, /0]
tang = —v,/4 0,

1.6 Calculate (a) the amplitude, (b) the phase constant, and (c) the complex
amplitude, for the vibration given by
¥ = (10 mm) cos wet + (17 mm) sin we?

1.7 During a vibration with a frequency of 50 Hz, the displacement is observed
to be 30 mm at time ¢ = 0, and —14 mm at 7 = 12 ms. Find the complex amplitude.

1.8 Calculate the maximum acceleration (in units of g) of a pickup stylus
reproducing a frequency of 16 kHz, with an amplitude of 0.01 mm.



