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1

INTRODUCTION

1.1 (i) Let so=1/2, s, =12+ 2}'__11 cosjx for n=1. By writing s,=
(X7~ - n€")/2 and summing geometric series show that (n + 1) ™' X %5, — 0 as
n — o for all x # 0 mod 2, and so

0 =1/2 + >, cos jx in the Cesaro sense.
=1

(ii) Show similarly that, if x # 0 mod 2=, then

cot (x/2) = 2 , sin jx in the Cesaro sense.
j=1

1.2 (i) Suppose s,=(~1)"(2r+1) for r=0,1,2,.... Show that t,=
(n+ 1)1 % 4s; does not tend to a limit but that (n +1)7'>% ¢ does. In
other words, applying the Cesaro procedure once does not produce a limit, but
applying it twice does.

(ii) Give an example of a sequence where applying the Cesaro procedure
twice does not produce a limit, but applying the Cesaro procedure three times
does.

1.3 Can we improve on Cesaro? In particular can we find a,; € C such that

(A) if s, — s then Enoa,,,-s,- -5,
i=
(B) ioa,,,-sj converges for every sequence (s,)?
i=
A little thought suggests that this is too much to hope, but may leave open the
question if we replace condition (B) by
(B) ioa,,jsj converges for every bounded sequence (s,,).
i=
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2 Exercises for Fourier analysis

To tackle this question, we first try to find necessary and sufficient conditions
on the a,; to make (A) hold. Two conditions are obviously necessary.

(i) By taking s,,=1 and s, =0 for n# m, show that if (A) holds then
a,,, — 0 as n — o for each fixed m.

(i) By taking s, = 1 for all n show that, if (A) holds, then E};Oanj—» 1 as

n— %,

1.4 Suppose now that condition (A) of Question 1.3 holds.
(i) Using part (i) of Question 1.3 show that, given any M = 0 and any £ > 0,
we can find an N such that >} la,| < eforall n= N.
(ii) Hence show, using induction and part (ii) of Question 1.3, that we can
find integers 0 = N(0) < N(1) < N(2) <... such that
N(r-1)

> el =277,
i=o

N()
> anp;— 1
=0

<277

forall r = 1.

(iti) Now define s; = (—1)" for N(r — 1)< j< N(r) [r=1] and observe
that the s; form a bounded sequence with §V=(§"Da,v(2,_1) Si— =1,
> j-V:(g')aN(z,) i5i— 1. Conclude that (A) and (B)’ can not be simultaneously
satisfied.

(iv)* Find necessary and sufficient conditions on a,,; € C for condition (B)’ of
Question 1.3 to be satisfied.

1.5 In Question 1.3 we saw that the conditions

(«) a,;— 0 as n— « for each fixed j,
n
(9 Za,,j—> lasn— o,
j=0
are necessary for condition (A) to be satisfied. There is a third condition,

(y) there exists a K with Eo|a,,j] < K forall n,
i=

which is also necessary, as we prove in this question.

(i) Suppose the a,; satisfy condition (A), but the sequence K(n) = X% q|a,|
is unbounded. By imitating parts (i) and (ii) of Question 1.4, or otherwise,
show that we can find integers 0 = N(0) < N(1) < N(2) <... such that

N(r-1)
20 lanl <277,

j=
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1 Introduction to Fourier series 3

N(r)
> lan(n,| = 2%,
j=0

(i) Now recall the definition sgnA=A*/|A| if A#0, sgn0=0 and take
si=2""sgn(an(;) for N(r —1)<j<N(r) [r=1]. Show that 5;—>0 as
j—> % but 2?56 an(p)Sj—> ® asr — ®.

Conclude that condition (y) is necessary for condition (A) to be satisfied.

(iii) By imitating the proof of Lemma 1.4(i), or otherwise, show that the
three conditions («), (B), (y) are together also sufficient for condition (A) to
hold.

(iv) Find necessary and sufficient conditions on a,; € C for condition (B) of
Question 1.3 to hold.

1.6 (Generalisations)

(i) Suppose 0=N@O)<N(1)<N@2)<... and a,eC [0=<j=<N(r),

r = 1]. Show that the condition,

(A) if s, — s then Efvz(é')anjsj -,
holds if and only if

(«) a,;— 0as n— = for each fixed j,
N(n)
B) 2 ay—1,
j=0
N(n)
(y) there exists a K such that », |a,| < K.
j=0

(We could repeat the earlier proofs with trivial changes. Another method is to
define

b,,j=aN(,_1)jfor0$j<N(r—1)<n<N(’)
b,,j=0forN(r—1)<jsn<N(r)

and apply the result of Question 1.5 to the b,;.)

(ii) In fact many classical techniques involve replacing the sum Zfﬁé’)anjsj in
(A) by an infinite sum E;‘;Oanjsj. (We shall see an important instance of such a
technique in Chapter 27.) Suppose now that a,; € C for all j, n = 0. Show using
the ideas of Question 1.5, or otherwise, that, if Z;’;Oanjsj converges whenever
s;— 0, then X, 7o|a,;| converges.

(iii) Now show that, if a,; € C for all j, n = 0, then the condition

(A) if s,— s as n— o, then 27’:0 a,;s; converges for each fixed n and
D 0ys;— s as n—> o,

holds if and only if

(«)" a,j— 0 as n— o for each fixed j,
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4 Exercises for Fourier analysis

(B) 2a,—>lasn— o,
="
(v)' there exists a K such that Eola,,jl < K for each n.
=

(Again we could repeat earlier proofs with minor changes. Alternatively we
could construct 0 = N(0) < N(1) <... in such a way that Zf:N(,,)H[anjl =<
27", and apply part (i).)

This result is due to Toeplitz. From now on we shall refer to an array (a,;) as
regular if it satisfies condition (A)'.

(iv) Show that if (a,) is regular, then there exists a bounded sequence s;
such that 2;‘;0 a,;s; does not tend to a limit as n — .

(v)* Find necessary and sufficient conditions on a,; € C for the following to
hold:

]

(A)" if s,— s as n— =, then ZOa,,jsj converges for each fixed n and
=

2]
> a,;s; tends to a limit as n — .
j=0

1.7 (i) Suppose s, is a sequence in C which fails to converge as n — » and let
y € C. Show that either

(I) We can find n(1) < n(2) <. .. such that |s,;| > «, or
(IT) we can find o, B € C and n(1) < n(2) <... such that o # B and
Sp2r+1) > &, Sp2r) ™ ﬂ

(ii) In case (II) show that we can find A, g€ C such that A+ u=1 and
Ao + uf = y. By setting a,,r) = 1, @211y = 4, @,; = 0 otherwise, show that
there is a regular array (a,;) such that >, oa,s;— v as r — .

(iii) Show that the conclusion of (ii) holds in case (I) also. Conclude that,
given any non convergent sequence s, and any y € C, we can find a regular
array (a,;) such that X, 2.oa,is; — y as r — .

(iv) For which sequences s, can we find a regular array (a,;) such that

Iz?;oarjsjl — ?

1.8 Among the arrays (a,;) which are regular in the sense of Question 1.6 there are
some which are more natural than others.
(i) Show that the following two conditions on a regular array (a,) are
equivalent.

(A) If s; is a sequence with M = 5; = 0 for all j and lim,,_,c an,,,-s]-
=

@©

exists then lim, ., a,;s; = 0.
j=0
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1 Introduction to Fourier series 5

(B) There exists a regular array (b,;) such that b,; =0 for all n, j =0

and D, |a, — by| > 0as n— =,
j=0

(ii) Let us call a regular array (a,;) positive if a,; =0 for all n, j = 0. Show
that for any positive regular array (a,;) and any real sequence s:

«©
P =t < ‘
lim infs; < lim inf Ean,s] < lim sup 2, a,;s; lim sup s;.
j n—w ]=1  andd

jo® n—ow ]=1
Show also that for any real sequence s; and any s with

im i =s<H .
liminf 5; < s < lim sup s;

o j—e
- ., . @
there exists a positive regular array (a,;) such that > j=00yiSj—> S s N —> .

1.9 There is another natural condition on regular arrays. To introduce it, we have
recourse to the ideas of linear algebra. Let us write v for the sequence of
complex numbers who jth term is v; and, if u, v are sequences, let us write
Au + uv for the sequence whose jth term is Au; + pv;. Let V be the collection
of sequences such that lim,,_,mE;‘;o a,v; exists. If v eV, we write To =
im0, e0@ri0 ;-

(i) Show that, if u,0 € V and A, ue C, then Au + uv € V and T(Au + uv)
= ATu+ uTv.

(ii) If o is a sequence, let us write Sov for the sequence whose jth term is
vj+1. Show that S(Au + uv) = ASu + uSvo. Show that, if u;— u, then ;4 > u
as j— «.

(iii) In view of (ii), it is natural to demand that the regular array (a,;) should
be translation consistent in the sense that, if veV, then SveV and
TSo = Tw.

Now suppose that (a,;) is indeed regular and translation consistent and that
v; =7 for some z € C. Show that, if veV, then To=TSv =2zTv, and
deduce that, if z # 1, then Tv = 0. What happens if z = 1?

(iv) With the same hypotheses on (a,;) and with the same definition of V
show that, if u; = >,1_qv,, then

(@) ueVifandonlyifve Vand z #1,
(b) ifue V,then Tu=(1-z)"L.

Taking z = —1 we obtain a formal version of the argument, which goes back at
least as far as Leibnitz, that if the sum S of 1 —1+ 1 — ... has any meaning
then we must have § = 1/2.

(v) Suppose now that (a,) is also positive. By taking z = e’? and taking real
and imaginary parts (explain carefully why this is possible), show that if the
formula u; = I_oe™? defines a sequence u € V for some 6 € R, then writing
bj=1/2+ Si_gcos r8, ¢ = >i_ysin r6 we have b, ¢ € V and
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6 Exercises for Fourier analysis

Th=0, 2Tc =coth/2.

Comment on the relation of these results to those of Question 1.1.

(vi) Suppose (a,;) is a regular, translation consistent array. Let u; = (-1)/j.
Show that, if u € V, then Tu = —1/4. Let w; = (—1)/j2. Assuming that w e V,
compute Tw.

(vii) Let (a,) be a regular array. Show that (a,;) is translation consistent if
and only if E;"zo Apjkr1 — k™! for each integer k =1 and each integer [ = 0.
(You may wish to consider the sequence s, given be s =1 for j=0, 5,=0
otherwise.)

(viii) Show that the Cesaro array given by a, =(n+ 1)7! for
0 =<j < n, a,; = 0 otherwise, is translation consistent.

(ix) Let s;=(-1)" for2" - 1< j < 2"*1 — 1 [r = 0]. Show that given any A
with —1<A=<1 we can find a regular, positive, translation consistent array
() such that 3, oays;— Aas n— .

1.10 (i) We start with a preliminary calculation. Observe that, if f(n)=<
f(r+D=...<f(n+m),0=<]<kand!+ rk=<m,then

r—1 r—1 r
> fn+jky< 3 f(n+jk+ D <2 fn+ jk).
j=0 j=0 j=1

Now suppose g: N — R satisfies g(r) = 0 for all r,
g =s=gh)=s...sgM), gM)=gM+1)=...,

and that >, ,_, g(r) converges. By using the idea of the first sentence show that
2, 8(ki) = 2, g(kj + 1)) =< 4g(M)
j= i=

forall0=/<k.

(i) Next we have a trivial but, to my mind, interesting observation. Let
X, X1, ... be random variables taking non negative integer values and such
that P(X, = r) — 0 as n — = for each fixed r. Show that, if a,, = P(X,, = r),
then (a,,) is a regular positive array. It is thus possible that interesting random
variables such as binomial (coin tossing) and Poisson will give rise to interesting
arrays.

(iii) Let 0 < p <1 and let

Anr = (f)pr(l - p)n—r

for 0 < r < n, a, =0 otherwise. Show that a,, form a regular positive trans-
lation consistent array. (You may find Question 1.9 (vii) and part (i) of this
question useful.) Show that >, 7_ya,,z" tends to a limit as n — o if and only if
1+ (z—1)p|<1or z=1. Find a value of p such that > /_ga,(—2)" con-
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1 Introduction to Fourier series 7

verges. Returning to the ideas of Question 1.9(iv), we may say that, if the sum
1—-2+4— ... has any meaning, it must be 1/3 and we have found a method
for giving meaning to that sum.

(iv) Let A(n) be a sequence of real positive numbers with A(n) — . Let
a,, = e"l(”)l(n)’/r! for n,r =0. Show that the a,, form a regular positive
translation consistent array. Show that >, ;¢ a,,z" tends to a limit if and only if
Rez<lorz=1.

(VIfpeCandp#0, 1set

Anr = (f)pr(l -p)"

for 0<r<n, a, =0 otherwise. For what values of p is the array (a,,)
regular?

(vi) Let A(n) be a sequence of real positive numbers with A(n) — . Let
@€ C, a#0 and set a,, = ¢ **"(wA(n))’"/r! for n, r = 0. For what values of
« is (a,,) regular? (Part (iii) goes back to Euler, part (iv) to Borel.)

1.11  Question 1.7 to 1.9 and Question 1.10(iv) suggest that our attempt to general-
ise the notion of a limit via regular arrays is at once too broad and too narrow.
The attempt is too broad because many regular arrays do not give ‘natural’
results, and too narrow because there may be processes which give ‘natural’
results, but do not depend on arrays. Let us try another approach using the
ideas of Question 1.9.

Let U be the space of all sequences of complex numbers and write u for the
sequence of complex numbers ug, uy.... Let B be the set of all bounded
sequences and C the set of all convergent sequences. Let S: U — U be given
by Su = u where w; = u; 1 [i = 0].

(i) Show that U is a vector space. Show that B is a subspace of U and C
subspace of B. Show that §: U — U is linear and that § is surjective. Is S
injective? Show that S(B) = B, S(C) = C.

(ii) Let V be a subspace of U and L:V — C a linear map. We say that L is a
generalised limit if

(A) CCVand Lu=lim,_.u,forallueC,
B) S(V)=Vand LSu= LuforallueV.

If we say that L preserves positivity if, in addition,

(C) if u € V and u, is real and non negative for all n, then Lu is real
and non negative.

Show that, if (a,;) is regular array, and we write

V= {u: lim >, Apjld; exists}, Lu = lim ann,-uj,

n—® j=0 n—o j=
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8 Exercises for Fourier analysis

then L is a generalised limit if and only if (a,;) is translation consistent. Show
that L is a generalised limit which preserves positivity if and only if there is a
positive translation consistent array (b,;) such that 3, 2 4|a,; — b, — 0.

(iii) Let V be the set of u such that Z;-LO ujxf /j! converges for all x = 0 and
e’xz;Lg ujxf /j! tends to a limit L(u), say, as x — «. Using Question 1.10(iv),
or otherwise, show that L is a generalised limit which preserves positivity.

(iv) Let £;: [0, ®)— C be a collection of functions such that 2 7o|f(x)|
converges for all x = 0. Let V be the set of u such that 2?:0 ufi(x) converges
for all x =0 and 2;‘;0 ufi(x) tends to a limit L(u), say, as x — . Find
necessary and sufficient conditions on the f; for L to be a generalised limit.
When does L preserve positivity?

(v) By using the fact that power series can be multiplied term by term within
their circles of convergence, show that there exist b, € R such that
> _obnax™ = e*sinmx for all x € R. Let u, = n!b,. Show that u ¢ V where V
is the set of part (iii) of this question but that, if, following Question 1.10(iv),
we set a,, = e "n’/r! then D, —o @, U, tends to a limit as n — co.

(vi) Let L be a generalised limit and V its associated vector space. Let

vj= 7/ and w; =j. By recalling the proof in Question 1.9(iii), or otherwise,
show that, if v € V, then Lo = 0 or z = 1. Show also that w ¢ V. Show that, if
L preserves positivity and u; is a sequence of real numbers with u; — %, then
ug¢V.
(Thus V # U. This does not exclude the possibility that we can find a
generalised positivity preserving limit L with V D B. The reader is invited to
try to decide whether such an L and V can exist, but warned that no answer is
possible within the mind set of this book. What we have here is a seventeenth-
century problem whose resolution depends on twentieth century ideas from the
foundations of mathematics.)
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2

PROOF OF FEJER’S THEOREM

2.109 By considering the function f(¢) = 0 for ¢ # 0, f(0) = 1 show that the condition
f continuous cannot be dropped in Theorems 2.3 and 2.4.

2.2 If f: T—C is continuous and g = Re f show that g(r) = (F(r) + f(=r)®)/2.
Find the Fourier coefficients of Im f.

2.3 (An alternative proof of Theorem 2.4)

(i) Suppose f: T— R is continuous but f# 0 and so there exists an ce T
with f(c) #0. By considering —f if necessary, we may suppose f(c)>0.
Explain why we can find a 7/2 > 8> 0 such that f(r) > f(c)/2 for [t = c| < 6
and a K > Osuch that |f(¢)] < K forallt e T.

(i) Show that we can find an & >0 so small that A(t) =&+ cos(t —c)
satisfies |h(f)] <1 —¢g/2 for |t —c|> 8. Show that there exists an 7 with
&> 1> 0 such that h(t) =1 + ¢/2 for |t — ¢| < 7. Show that

1

2 jlt—d;a h(t)nf(t) dt

. < K(1-¢2)"—>0 asn—

1

- n _ _
2w Jo>|t—c|=n h(t)"f(t)dt =0 foralln=1,

and

1

2 Jypieg HO O 1= ﬂ%:—) (1+¢&2)" >» asn— .

Deduce that

—‘21?]1 ()" f(t)dt - » asn— .

(iii) By first considering the case n =1, show that we can write hA(#)" =
E}L_,,a,,}-e’” for some a,; € C. Show that
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10 Exercises for Fourier analysis
n

e RGO CH)

j==n

and deduce that, if f(j) = 0 for all j, then
1 n —
5o | my fydr =0 foral n.

Conclude that, if f: T — R is continuous and f(r) =0 for all r, then f = 0.
(iv) By considering the real and imaginary parts of f, show that, if f: T —C
is continuous and f(r) = 0 for all , then f = 0.

2.4 (i) Show that, if P and Q are trigonometric polynomials, then

"21? Jr P(1)Q(mt) dt = 31; L P(t) dt % fv O(r) dt

whenever m is a sufficiently large integer.

(ii) By using Theroem 2.5 to produce a sequence (, of trigonometric
polynomials with Q, — g uniformly, show that, if P is a trigonometric polyno-
mial and g a continuous function, then

1 1 1
Ef'ﬂ' P(t)g(mt)dt — ﬁf'ﬂ' P(t)dt E;T_Lr g(t)ydt asm— o,

(iii) Deduce that, if f and g are continuous,

L[ jwgmya— - [ roya [ sy asm— .

(iv) Hence show that, if f:T — C is continuous, f(m)—0 and f(—m)—->0
as m — . (This is the Riemann Lebesgue lemma proved later as Theorem
52.4.)

2.5 (A Bernstein inequality) If P is a trigonometric polynomial of degree n or less
(i.e. P(t) = >, "—_,a,exp (irt)) show that

P'(t) = El;fv P(t — y)L,(y)dy

where L,(y) = —2nK,_1(y)sinny. (Hint: it suffices to verify the simple cases
P(t) = exp (irt) with —n < r < n.) Hence deduce that

|[P'(1)] <2n sup | P(x)].

(This result can be improved by replacing 2n by n. See e.g. Question 43.8.)
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