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Part | - General concepts

1
Hamiltonian dynamics

The equations of motion in classical physics differ considerably
depending upon the subject they describe: a particle, an electromagnetic
field, or a fluid. However our natural yearning for unification in the
description of different phenomena has long since led to the development
of universal formalisms. Among these the Lagrangian and Hamiltonian
formalisms are the most advanced. This can be explained by the nature
of the phenomena discussed. The popularity of each method varied at
different stages in the development of physics. Throughout the whole
period of advancement of relativistically invariant theories, preference
was chiefly given to Lagrangian formalism (this was most conspicuous
in field theory and the theory of a continuous medium). To a large extent,
it was not before the generalization of the concepts of Hamiltonian
formalism and introduction of Poisson’s brackets that the Hamiltonian
method of analysis was able to compete with the Lagrangian one.

The formation of new ideas and possibilities triggered recently by the
discovery of the phenomenon of dynamic stochasticity (or simply, chaos)
have brought the methods of Hamiltonian dynamics to the fore.
Liouville’s theorems on the conservation of phase volume and on the
integrability of systems with a complete set of integrals of motion have
determined both the formulation of many problems of dynamics and the
methods of their study. The Hamiltonian method turned out to be of
extreme importance for the theory of stability, which was advanced in
this direction by Poincaré. Numerous subsequent studies have shown
that Hamiltonian systems (i.e., systems which can be described by Hamil-
tonian equations of motion) demonstrate fundamental physical differen-
ces from other (non-Hamiltonian) systems. This chapter provides the
most necessary information on Hamiltonian systems. (Note 1.1)
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2 Hamiltonian dynamics

1.1 Hamiltonian systems

The state of a Hamiltonian system can be described by N generalized
momenta p=(p,,..., py) and the same number N generalized coordi-
nates g=(q,,...,qn). Here N designates the number of a system’s
degrees of freedom. The evolution of p and q in time is determined by
the equations of motion

pi=—"" ==  (i=1,...,N), (1.1.1)

which make sense only together with the Hamiltonian
H=H(p,q,1t). (1.1.2)

Here a dot over a symbol stands for the time ¢ derivatives. The Hamil-
tonian function (or Hamiltonian) is given in 2 N-dimensional phase space
(p, q) and may also be an explicit function of time. Pairs of variables
(pi, q;) are called canonically conjugate pairs and the equations (1.1.1)
are canonical equations.

Time ¢ can also be added to the set of the system’s coordinate variables.
In order to do this, the phase space of a system should be expanded by
way of introduction of one more pair of canonical variables

po=—H; go=1. (1.1.3)
Now the Hamiltonian
¥ =H(p, q,q0)+Ppo (1.1.4)
defines the following equations of motion
,5,.=_%; q,:%; (i=0,1,...,N).  (115)

Fori=1,..., N the system (1.1.5) leads to the familiar equations (1.1.1).
For i =0 in accordance with (1.1.3) and (1.1.4) we get

_ _9H(p.g.90) __9H(p, g 1)

Po= 990 at
(1.1.6)
o _
90 e
The first equation in (1.1.6) signifies the well-known equality
dH(p,q,t) oH

ds at
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Hamiltonian systems 3

which can be easily verified by means of the equations of motion (1.1.1).
The second equation in (1.1.6) reflects the definition of time as one of
the coordinates.

Thus instead of an N-dimensional system with the Hamiltonian as a
function of time we may consider an (N + 1)-dimensional system with
a time-independent Hamiltonian . However from the definitions (1.1.3)
and (1.1.4) it becomes clear that #=0. The new momentum p,=—H
does not bear any additional information. All the properties of a dynamic
system can be described in a (2N +1)-dimensional phase space
(Pis s PN>G1s---»qN> Go=1). It is therefore sometimes said that a
system with the Hamiltonian H(p, g, t) has N +1/2 degrees of freedom.

Now let us introduce in a phase space ( p, g) an element of phase volume

dI'=dp,---dpnydg,---dgn=dpdg

I‘=J dr
s

with some hypersurface S as a boundary. Generally speaking, phase
volume of a dynamic system is a function of time. However, for Hamil-
tonian systems phase space is conserved

r,=T, (1.1.8)

for arbitrary moments of time ¢, and ¢, (Liouville’s theorem). This means
in particular that phase fluid is incompressible. The property of phase
volume conservation has some profound consequences. According to
one of them, among all the conceivable trajectories there are none
possessing an asymptotically stable equilibrium position (either points
or sets of points attracting the trajectory). To put it otherwise, Liouville’s
theorem rules out the existence of attractors. It is possible to make a
similar statement concerning the absence of repellers - the repellent
points or sets of points.

The conservation of phase volume holds true not only for Hamiltonian
systems. The progress of contemporary nonlinear analysis has led to a
generalization of the concept of Hamiltonian systems (see [4]). Let us
assume that z; is a coordinate in 2N-dimensional phase space, the
variables z; not yet separated into generalized coordinates and generalized
momenta. First, the operation of generalized Poisson’s brackets should
be introduced. For the two arbitrary functions A(z) and B(z), Poisson’s
brackets are defined by the formula

and a phase volume

2N dA 4B
[A,Bl= Y gu— — (1.1.9)
k=1 azi sz
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4 Hamiltonian dynamics

where the tensor g, = gi(z) in general depends on the variables. It is
also assumed that the following conditions are satisfied:
(a) the bilinearity condition

[aA+bB, C]=a[A, C]+b[B, C] (1.1.10)

where a and b are constants;
(b) the skew-symmetry condition

[A, B]=-[B, A}. (1.1.11)

This condition, for example, cannot be satisfied if the phase space
dimensionality is uneven;
(c) Leibniz equality

[AB, C]1=B[A, C]+A[B, C]; (1.1.12)
(d) Jacoby’s equality
[A,[B, CI1+[C,[A, B]1+[B,[C, Al]1=0. (1.1.13)

With the help of Poisson’s brackets (1.1.9) we are able to define the
tensor g as follows

8 =Lz, 2], (1.1.14)
while the brackets themselves can be expressed in the following way

2N 3A 4B
[A, B]: Z __[Zis zk]' (1'115)
ik=10Z; 9Zy

Now let us consider the arbitrary function H = H(z), which is referred
to as the Hamiitonian. A system is called a generalized Hamiltonian
system if it can be described by the following equations of motion

z;=[z, H), (i=1,...,2N). (1.1.16)

The variations of any system A(z) with time can be defined with the
help of the equations (1.1.14)-(1.1.16):

A 2N aA 2N aA
A=Y —4=3 [z, HI=[A H]. (1.1.17)
i=10Z;

i=1 GZ; i=

Specifically, if g, is an identity skew-symmetry matrix,

_( 0 1)
8ik = -1 0 ’
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The phase portrait 5

equations (1.1.16) are equivalent to equations (1.1.1) for N=1and z, = q,
z,=p. For an arbitrary N, the equations (1.1.1) should follow from

{1.1.16), if we assume that
01
8ix =<_'~ ), (1.1.18)

1 0
where 1 is the identity matrix of the order of N and
(z4,.-,z)=(q1, ..., qn);
(zZns1s---sZan)=(P1,- .., PN)-

The above generalized form of Hamiltonian dynamics will be applied
later during an analysis of equations of motion of vector fields.

In the special case of (1.1.18), where the Hamiltonian equations (1.1.1)
are true, Poisson’s brackets may be presented in the following way

N (6A dB 3B A
[A, B]=1% (———————) (1.1.19)
i=1 \0g; dp; 9q; Ip;
and time derivatives (1.1.6) can be presented as
. N [6AoH oHJA
4= (122 stony a1
i1 \0g; dp; 9q; op;

The equations of motion written in the form (1.1.1) or (1.1.16), or
equivalent definitions of Poisson’s brackets, are fundamental to canonical
or Hamiltonian formalism.

1.2 The phase portrait

The system’s family of trajectories in phase space comprises its phase
portrait. The simplest form of the phase portrait is obtained for N=1.
Phase space then is a plane { p, ¢). One-dimensional motion, for example,
may be defined by the Hamiltonian

1
=§——-p2+ Vig), (1.2.1)
m

where V(q) is the potential energy (the potential) of a particle. According
to (1.1.7), if the Hamiltonian is not an explicit function of time, then
H =0 and H is an integral of motion (invariant):

H =const=E, (1.2.2)
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6 Hamiltonian dynamics

where E is some fixed value of the invariant. In the case of (1.2.1) the
quantity E is the system’s total energy. In the example (1.2.1), motion
occurs on the surface of constant energy and

p=={2m[E - V(¢)1}'/*>= mq. (1.2.3)

Equation (1.2.3) defines a parametric family of trajectories comprising
the phase portrait of the system (Fig. 1.2.1).

If a system’s trajectory is localized in a finite region of phase space,
the corresponding motion is said to be finite. Otherwise, it is infinite.

Singularities in phase space are defined as the fixed points of the
equations of motion, so that they may be derived from the following
equations

oH oH

—=0; — =0, (1.2.4)
a4g; op;

Fig. 1.2.1 Potential V(q) (a) and the corresponding phase portrait
(b) of one-dimensional motion. The trajectories C; and C, are
separatrices.

AV D

A

q 92 93 g

(a)

(h)

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521438284
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521438284 - Weak Chaos and Quasi-Regular Patterns

G. M. Zaslavsky, R. Z. Sagdeev, D. A. Usikov and A. A. Chernikov
Excerpt

More information

‘ Action-angle’ variables 7

In case (1.2.1), these are the points where p =0 and the potential V(gq)
has an extremum: V'(q)=0.

Figure 1.2.1 shows that these points can be either of the elliptic type
(g,), or of the hyperbolic type (q,), or saddles. In the neighbourhood of
an elliptic point the motion is stable, and the trajectories have the shape
of ellipses (Fig. 1.2.2a). In the neighbourhood of a saddle the motion is
unstable, and the trajectories have the shape of hyperbolas (Fig. 1.2.2b).
The trajectory passing through a saddle is called a separatrix (trajectories
C, and C, on Fig. 1.2.1). A saddle always has entering and outgoing
whiskers of separatrices. (1.2.2b).

The absence of limit points and limit quantities such as a limit cycle
makes the phase portrait of Hamiltonian systems less diverse. Neverthe-
less, it does not lessen their complexity. Introduction of dissipative factors
and the asymptotically limited trajectories associated with them, makes
the system in a way less sensitive to various small perturbations (Note
1.2). This book is almost exclusively dedicated to the properties of the
Hamiltonian systems, which are absent in the dissipative case (Note 1.3).
Therefore, having made this remark, we do not go into any further details
here.

1.3 ‘Action-angle’ variables

For the sake of convenience, we shall first introduce ‘action-angle’ vari-
ables for the case of motion with one degree of freedom (1.2.1). In the
case of finite and therefore periodic motion, action I is defined by the
expression:

1
I=—§p dgq, (1.3.1)
27

where integration is performed over a closed orbit of the system. In the

Fig. 1.2.2 The trajectories in the vicinity of an elliptic (a) and a

hyperbolic point (b).
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8 Hamiltonian dynamics

case of infinite but still periodic motion, integration in (1.3.1) should be
performed over the whole period. The value

S(q,I)=J p(q, H)dq (1.3.2)

is called truncated action. Both here and in (1.3.1) the expression for
p=p(q, H) is given in equation (1.2.3). We should also substitute (1.3.1)
for I in (1.3.2) having replaced H by H(I). In this case the value S(g, I)
is also a generating function. It enables us to define a new coordinate,
the angle:

S(g, I
g5 D)

Y (1.3.3)

The variables (I, §) make up a canonically conjugate pair, i.e. the Hamil-
tonian equations of motion will be valid for them:

jo_oHD o
)
(1.3.4)
j_HW_aHD_ o

al dI

Being expressed as a function of the integral of motion H, the action is
itself an integral. This is reflected in the first equation in (1.3.4). The
second equation defines the frequency of periodic motion w(I). In
general, it is the function of action and the system’s energy E = H. The
dimensionless parameter

a=—— (1.3.5)

determines the degree of this dependence. If « # 0, the oscillations are
called nonlinear. Their frequency is a function of energy. Now we can
integrate the equations of motion (1.3.4):

I =const; 0=w(I)t+6,. (1.3.6)

That is why the ‘action-angle’ variables are so useful (although, as we
shall see later, this is not their only merit).
For a linear oscillator:

H=3p*+iwiq® (1.3.6a)
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*Action-angle’ variables 9

(unit mass is assumed). With the help of definitions (1.3.1)-(1.3.3) we
can easily obtain

q=2I/w)"?cos 6;
p=2I0)"?sin 6, (1.3.7)
6 = wyt.
From (1.3.6a) and (1.3.7) there follows
H = wyl, (1.3.8)

i.e., @ = const = wyand a = 0. This is exactly what determines the linearity
of the oscillator (1.3.6).

Applying the definitions of variables (I, 8) we can express the old
variables (p, g) in terms of the new ones

p=p(l, 8); q=q(l, 6). (1.3.9)

Due to the cyclicity of the variable 6, i.e. phase shift in 8 by 27n, for an
integer n, does not change the expression (1.3.9), g and p can be expanded
in a Fourier series:

g=q(Lo)= Y a,(I)e";

n=-—o0

(1.3.10)
p=p(L,6)= Y b,(I)e",
where the coefficients a,, and b, are equal to:
1 27 .
a,==—— J do e "q(1, 9);
277' 0
(1.3.11)

1 27 )

b,=— J do e "p(l, 6).
2 0

The Fourier harmonics (1.3.11) determine the spectral properties of the

system. As the variables (p, g) are real, the following relations for the

expansion coeflicients can be presented:

a_,=a}; b_,= b}, (1.3.12)

Out of general considerations, the important asymptotic property of the
system’s spectrum can be found [6] if the system motion is periodic:

a, ~exp(=n/No);
(1.3.13)
b, ~exp(=n/No)  (n-00),
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10 Hamiltonian dynamics

where N, is a constant, defining an effective number of harmonics within
the spectrum of the system’s oscillations. For n> N, the amplitudes of
the Fourier harmonics are exponentially small. Specifically, in the case
of a linear oscillator, the oscillations (1.3.7) contain exactly one harmonic.

1.4 The nonlinear pendulum

The nonlinear pendulum is a common physical model. This is due to the
fact that many problems concerning oscillations can be more or less
easily reduced to the equations of the nonlinear pendulum. Its Hamil-
tonian has the form

H=1%*—w}cos x, (1.4.1)

where unit mass is assumed, i.e. p =X, and w, is the frequency of weak
oscillations. The equation of motion for a nonlinear pendulum is as
follows:

i+ wisinx=0 (1.4.2)

and its phase portrait is as shown in Fig. 1.4.1. The singularities are of
the elliptic type (x=0, x=2#n), and saddles (x=0, x=2nw(n+1));
n=0,+1,.... When H <wj, the trajectories correspond to the pen-
dulum’s oscillations (finite motion), in the case of H>wj, to the
pendulum’s rotation (infinite motion). Trajectories with H =w} are

separatrices. The solution on a separatrix can be obtained if we substitute
H=H.,=w} (1.4.3)

in the equation (1.4.1). This gives us the following equation:
X =+2w, cos(x/2). (1.4.4)

Having supplied the initial condition: ¢t =0, x =0, we get the solution in
the form:

x =4 arctan exp(twqt) — 7. (1.4.5)

Two whiskers of a separatrix (one entering the saddle and another leaving
it) correspond to the different signs of ¢ With the help of (1.4.4) we can
obtain from (1.4.5)

2w,

=X=f———. 1.4.6
v=x cosh wgt ( )

The solution of this form is called a soliton.
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