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Introduction

A singularity, in the sense on which our later definitions will be
based, is an exceptional or peculiar point in a space. For example,
in global analysis a singularity in a smooth map from one mani-
fold to another is (the image of) the places where the rank of the
derivative is not a maximum - as contrasted with the “normal”
situation of maximum rank. Or, to take a case closer to relativ-
ity, a singularity in a real-valued function which is everywhere
else defined and continuous is an “exceptional” point at which
the function cannot be given any value that makes it continuous
throughout a neighbourhood of that point. As an example of this
case, the electrostatic field of that hypothetical nineteenth century
entity the “point charge”

E = const. x r/|r[]?

is singular, or “has a singularity”, at r = 0.

In general relativity the term ‘singularity’ has undergone a suc-
cession of changes of meaning, which I shall sketch in historical
sequence, introducing some of the basic definitions as we proceed.

1.1 The classical period

(T use the term ‘classical’ in its modern sense of ‘before the author
started doing research’).

The first meaning follows the pattern of the case just described,
of singularities in real-valued functions. If a metric is given in
terms of components on a part of IR*, then the singularities are
the points of IR* at which one of the g;; or ¢'/ cannot be con-
tinuously defined. One of the earliest known solutions to the vac-
uum Einstein equations contained singularities in this sense: the
Schwarzschild metric in coordinates z,y, z,¢ on IR*, having the
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2 Introduction

form (after rewriting so as to display these Cartesian coordinates)

2ZMN 20 2, 52, 42 2M 2
_(1_ - )dt +do? b dy? 44 b2 (eda 4 ydy + 2ds)

(1)
(where r = +1/22 + y2 + 22.)
This is singular on the 3-surface = 2M and on the 2-surface
T = 0, in the sense that some components of g;; cannot be defined
there so as to give continuous functions.
Subsequently, singularities in this sense were found in the de
Sitter metric

—dr? — R%sin?(r/R) [d02 + sin? 0d¢2] + cos?(r/R) 2dt* (2)

as it was given in 1917, and in the Friedmann metric (discovered
in 1922, but given here in its modern form):

~dt? + a (t)? [dr? + f(r) (d6® + sin? 6dg?)] (3)

where f(r) = sin?r, r2 or sinh?r and a(t) — 0 as t — 0. For

both of these det(g;;) tends to zero on a 3-surface: for de Sitter,
the surface r = mR/2, for Friedmann the surface ¢ = 0. So on
these surfaces some component of ¢g'/ cannot be defined, giving a
singularity in the sense at present under discussion.

From the start, however, there was dissatisfaction felt with the
this notion of singularity, because it clearly depended on a par-
ticular choice of coordinates. Consequently, the assertion that a
metric was singular, in this sense, might not correspond to any-
thing physically measurable in the spacetime represented by the
metric in question.

This was stressed by Einstein (1918) in his discussion of the de
Sitter metric, where he pointed out that two conditions had to be
fulfilled for a singularity to be real. First, the singularity had to be
accessible, in the sense that there was a timelike curve leading from
a regular point to the singularity and having a finite proper-time.
Secondly, it must not be possible to find a new coordinate system
with respect to which the metric becomes regular at the singularity
and capable of being continued past it. These two conditions will
be expanded in the next two sections and will form the basis for
our definition of a singular space-time. The first condition was
actually ill-expressed by Einstein when he required merely that
the singularity be reachable in a finite proper time. For the finite

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521437962
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-43796-7 - The Analysis of Space-Time Singularities
C. J. S. Clarke

Excerpt

More information

1.2 The idea of incompleteness 3

time condition is actually no restriction at all: if it is possible to
draw any timelike curve to the singularity, then, by wiggling the
curve to make its speed close to the speed of light, it is possible
to draw a curve of finite proper time. In the next section we shall
see how to modify this condition so as to single out singularities
at a “finite distance”.

1.2 The idea of incompleteness

As a simple example consider the metric
~ (1/82) dt® + dz? + dy? + d2* (4)

which is singular (g;; being undefined) on the plane ¢t = 0 (in the
IR covered by the coordinates t,z,y,z). If an observer starting
in the region t > 0 tries to reach the surface ¢ = 0 by traveling,
say, along the world-line z = y = z = const. (which is clearly a
geodesic), he will not reach ¢t = 0 in any finite time — the surface is
infinitely far into the future. Moreover, the fact that the singularity
is not physically real can be seen by putting ¢/ = log(—t) int < 0
when the metric becomes

—dt'? + dz? + dy? + d2? (5)

with —00 < t/ < 0. In other words, the lower part of the space
(and also the upper part) is just Minkowski space in disguise, and
there is no singularity.

In his paper on the de Sitter metric just referred to, Einstein
decided that the singularity was accessible (correctly), and that it
was not possible to make the metric regular by a change of coor-
dinates (incorrectly). He therefore deduced that there was a real
singularity and, interestingly, he promptly rejected the solution
as a consequence. The situation is the same with the singularity
at 7 = 2M in the Schwarzschild solution (1): it is accessible, but
there is a change of coordinates for which it becomes regular.

In order to make Einstein’s criterion for accessibility work, we
can simply demand that there should be a timelike geodesic which
reaches the singularity in a finite proper-time. Such a geodesic will
have an endpoint on the singularity, in whatever coordinates are
being used to describe the situation, but it will not have any end-
point in the regular part of the space-time. A space-time like this,
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containing a timelike geodesic which (when maximally extended)
has no endpoint in the regular space-time and which has finite
proper length, is called timelike geodesically incomplete. Clearly
this property of incompleteness, which now has no reference in it
to a particular coordinate system, is independent of what coordi-
nates we use to describe the space-time.

It would certainly be convenient to be able to use arbitrary
curves to decide whether or not a singularity is accessible. Indeed,
this seems to be physically reasonable, because if any fairly well-
behaved observer (i.e. having bounded acceleration) can reach the
singularity in a finite proper time, then the singularity should
still count as physically accessible, even if no geodesic observer
can reach it. We can capture this idea mathematically by using
a different parameter on curves, in place of proper-time, so as to
achieve a definition that includes the world lines of observers with
bounded acceleration. This new parameter is called the generalised
affine parameter.

1.2.1 Formalism

In the next sections we shall develop some of the mathematical
machinery for dealing with these ideas. The notation will broadly
follow Hawking and Ellis (1973). Briefly, the space-time manifold
is denoted by M, its metric by g (regarded as a bilinear function
from pairs of vectors at the same point to the reals). Boldface
letters will be used for arrays of any sort. We suppose that all our
curves are described by maps from an interval into the space-time
that are differentiable almost everywhere and rectifiable. Then we
make the following formulation

Definition. The generalised affine parameter length of a curve
v :[0,a) — M with respect to a frame

E=(E:a=0,...,3)

at ¥(0) is given by

= (So (5 {;@))2)1/2 ds ©)

1=0
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1.2 The idea of incompleteness 5

where ¥ denotes the tangent vector dy/ds and E(s) is defined by
parallel propagation along the curve, starting with an initial value
E(0): that is, we impose

V.‘YE(S) = 0
E(0) = E

(We abbreviate this to g.a.p. length.)

Definition. A curve v : [0,a) — M is incomplete if it has finite
g.a.p. length with respect to some frame E at v(0). If {g(y) < oo,
then if we take any other frame E’ at v(0) we have that {g/(y) <
0o. This is because the corresponding parallely propagated frames
satisfy

E'=LJE

i J

for a constant Lorentz matrix L, and hence

lg < ||L|l¢e

where ||L|| denotes the mapping norm:

I}l = sup (Z (zix?) 2) 172 (7)
Jj

(with the supremum over all X with |X| = 1 and |X]| denotes the
Euclidean norm of the components).

Definition. A curve :[0,a) — M is termed ineztendible if there
is no curve 4’ : [0,b) — M with b > a such that 4’|[0,e) = 4. This
is equivalent to saying that there is no point p in M such that
v(s) — p as s — a; i.e. that 4 has no endpoint in M.

Definition. A space-time is incomplete if it contains an incom-
plete inextendible curve.

Discussion. We have now established definitions of geodesic in-
completeness (which can be qualified by restricting to various sorts
of geodesics) and incompleteness in the sense just defined. Clearly
one can formulate many other possible definitions by restricting
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6 Introduction

the sort of curve used in the definition of incompleteness. For ex-
ample, a space-time is called timelike incomplete if it contains an
incomplete timelike inextendible curve. The definitions of geodesic
incompleteness and incompleteness are concordant because, since
the components g(¥,E) of the tangent vector to a geodesic are
constant, the affine length is proportional to the generalised affine
parameter length. So a geodesic is incomplete with respect to its
affine parameter if, and only if, it is incomplete in the sense defined
above.

The Friedmann “big bang” models (3) are geodesically incom-
plete (and hence incomplete) because the curve defined by

y(s)’=a-s

v (8)' = constant (i=1,2,3) (8)
is a geodesic which is incomplete, having no endpoint in M as
8 — a. Minkowski space is not incomplete (a result which is not
trivial (Schmidt 1973)). The region » > 2M in the Schwarzshild
metric (1) is incomplete, while the region » > 0 in (1) is not a
space-time, since g is not defined at r = 2M,

Finally, we note that many writers use “singular” as synony-
mous with “incomplete”; although as we have seen incompleteness
is only one of the criteria which must be fulfilled for there to be a
true singularity. Incompleteness corresponds to Einstein’s accessi-
bility criterion for a singularity. We must now consider the other
requirement, needed to rule out an apparent singularity (“singu-
larity” in the sense we were considering in 1.2) arising merely from
a bad choice of coordinates.

1.3 Extendibility

In 1924 Eddington showed that there was an isometry between the
space-time M defined by the regions r > 2m in the Schwarzschild
metric (1) and part of a larger space-time M’. Incomplete curves
in M on which r — 2m were mapped by this isometry into curves
that were extensible in M': the singularity at r = 2m was no longer
present. So if we identify the Schwarzschild space-time with the
part of the Eddington space-time M’ with which it is isometric, we
see that it is not just incomplete in the formal sense defined above:
it actually had a piece missing from it, a piece that is restored in
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1.3 Extendibility 7

M'. The singularity at r = 2m is thus a mathematical artifact, a
consequence of the fact that the procedure used to solve the field
equations had fortuitously produced only a part of the complete
space.

We note that, despite this, there are still some authors who re-
gard the Schwarzschild “singularity” at » = 2m as genuine; but
this is only justified if (as done by Rosen (1974)) one uses a non-
standard physical theory in which there is some additional struc-
ture (such as a background metric) which itself becomes singular
under the isometry of the metric into M’, so that one structure,
the metric or the background, is always singular at r = 2m.

The situation in Schwarzschild clearly contrasts with that of
the Friedmann metrics (3). For these, on any of the incomplete
curves (8) the Ricci scalar tends to infinity. For the smooth space-
times that we are considering at the moment this is impossible
on a curve which has an endpoint in the space-time, and so there
can in this case be no isometric M’ in which these curves have an
endpoint. (Later we shall consider space-times in which the metric
is not necessarily smooth, for which this does not hold.)

The singularity at r = 2M in the Schwarzschild solution came
to be called a “coordinate singularity”, a term denoting any singu-
larity in the sense of 1.2 which either did not give rise to incomplete
curves, or which was such that incomplete curves tending to the
singularity could be extended in some enlarged space-time. This
larger space-time was constructed by applying a transformation to
the coordinates specifying the original space-time, and extending
the new coordinates (in modern terminology: by applying a dif-
feomorphism into a larger manifold). The Friedmann singularity,
on the other hand, was termed a “physical” one, because a physi-
cally measurable quantity — the Ricci scalar -~ was unbounded on
incomplete curves. On the whole I shall avoid the terms “coordi-
nate” and “physical”, since, while they convey important ideas,
it is hard to give them precise definitions. Instead, I shall use
the mathematical concept of extension to distinguish between the
two types, the Schwarzschild space-time being extendible but the
Friedmann one not so.

Definitions. An eztension of a space-time (M, g) is an isometric
embedding 0 : M — M’, where (M', ¢') is a space-time and @ is
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8 Introduction

onto a proper subset of M’.

A space-time is termed eztendible if it has an extension.

The relation between extendibility and incompleteness is then
expressed by the following result, showing that extendible space-
times are timelike incomplete.

Proposition 1.3.1
If M has an extension 0 : M — M’ then there is an incomplete
timelike geodesic vy in M such that 0 o v is eztendible.

Proof

Let z € 006M C M’ and let N be a convex normal neighbour-
hood of z in M’.

Case 1. Suppose there exists a point y in M n (I+(z)UT-(z))N
N. Then let 4/ be the closed geodesic segment in N with 4/ : [0,1]
— N, 4'(0) = y, 9/(1) = z. Let I be a connected component of
the set {s|y'(s) € M} and let v = -1 o 4/|I. Then 1 is relatively
open, non-empty and connected in [0,1] and 1 € I. Hence either
I = (a,b) or I = [0,b), and so 6 o vy can be extended to b, as
required.

Case 2. Suppose M N (I*(z)UI-(z))N N = @. Then we can
choose y € M N N\(I*(z) U I-(z)) and z' € (I*(y) U I-(y))Nn
(I*(z) U I-(z))N N. Thus =’ € M. Let 7' join y to z', with
4'(0) = y and 4’(1) = z’. Then define I as before and continue as
in Case 1.

a

1.4 The maximality assumption

The forgoing result has shown that if M is extendible then there is
some timelike curve (actually a geodesic) - i.e. a possible worldline
of a particle — which could continue in some extension of M but
which in M itself simply stops. This seems unreasonable: why
should M be cut short in this way? It seems natural to demand
that “if a space-time can continue then it will”; in other words to
demand that any reasonable space-time should be inextendible.
This is an assumption imposed upon space-time in addition to
the field equations of Einstein.
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1.5 Singularities 9

It can easily be shown that any space-time can in fact be ex-
tended until no further extension is possible. At this point the
space-time is called maximal, and so we are led to the idea that
we need only consider maximal space-times. But this idea is not
really as innocuous as it might seem, because of the problem that
an extension of a space-time, when it exists, cannot usually be
determined uniquely. In special cases there are unique extensions:
an analytic space-time has (subject to some conditions) a unique
maximal analytic extension; similarly a globally hyperbolic solu-
tion of the field equations (with a specified level of differentiability)
is contained in a unique maximal solution. In both these cases a
sort of “principle of sufficient reason” demands that the maximal
solution be taken. But suppose one has a non-analytic space-time
where Einstein’s field equations fail to predict a unique extension
(either because there is a Cauchy horizon or because there is some
sort of failure of the differentiability needed for the existence of
unique solutions). Or suppose a situation arises in which there is
a set of incomplete curves, each one of which can be extended in
some extension of the space-time, but where there is no extension
in which they can all be extended. (There exist, admittedly arti-
ficial, examples of this (Misner, 1967).) In cases such as these the
same principle of sufficient reason would not allow one extension
to exist at the expense of another. Perhaps the space-time, like
Buridan’s ass between two bales of hay, unable to decide which
way to go, brings the whole of history to a halt.

Any solution to these problems can only come through a greater
understanding of the physics of situations which might give rise to
non-uniqueness. In the absence of strong enough physical theories
to enable us to decide, we can only note here that maximality,
while a useful instrumental principle that seems very likely, is far
from being absolutely certain. Nonetheless, we shall usually adopt
the principle.

1.5 Singularities

We are now in a position to give a definition of a singular space-
time, that incorporates the ideas we have just described. This will
supersede the more primitive idea of a singularity with which we
started in 1.2.
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10 Introduction

Definition. A space-time is singular if it contains an incomplete
curve v : [0,a) — M such that there is no extension 8 : M — M’
for which @ o v is extendible.

According to this definition, the region r > 2m in the Schwarz-
schild solution (1) is not singular, merely incomplete. To say that
a space-time is singular means that there is some positive obstacle
that prevents an incomplete curve continuing: it is not just that
the space-time is smaller than it might be. Note also that we
have not yet defined “a singularity”, only “singular”. This will
be rectified in the next chapter, when it will appear that any
singular space-time contains a singularity, and so in a maximal
space-time all incomplete inextendible curves end at a singularity.
For the time being, I shall occasionally refer to a “singularity”,
when speaking loosely, in anticipation of its definition later.

1.5.1 Singularity theorems

It turns out that most physically reasonable known exact solu-
tions, when maximally extended, are singular, in the sense of the
definition just given. Of those mentioned so far, only the de Sitter
metric (the maximal analytic extension of (2)) is not singular, but
this is an exceptional case among isotropic cosmologies.

When it was realised that most cosmological solutions were sin-
gular, reactions varied. It would appear that at first Einstein and
Hermann Weyl took the view that a singularity in the metric could
be interpreted as the presence of a singular matter-source and
should be rejected on the grounds that one should only be in-
terested in regular matter-sources; though later they turned this
argument on its head and regarded particles of matter as being
non other than singularities. Others felt that, though singularities
were inevitable in any description of cosmology and astrophysics
by means of very symmetrical metrics, they were an artifact of
the high symmetry — on the analogy with Newtonian gravitational
theory where a singularity (in the sense of 1.1) is obtained when
a cloud of particles collapses from an initially spherical state, but
there is no singularity when a general initial state is assumed.
There would be little point in devoting one’s energy to the study
of singularities if the only singular space-times were unrealistically
symmetric.
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