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1 Classical fluids

1.1 The distribution function

Macroscopic equations of fluids can be obtained either from macroscopic principles or
from the Boltzmann microscopic approach. The first method is more direct and intui-
tive, but when the mathematical difficulties of the second were eventually overcome,
this acquired a higher theoretical interest, and even predicted unknown effects. For
astrophysical applications the microscopic approach is preferable, because we do not
possess an intuitive perception of many astrophysical fluid systems, with such extreme
values of thermodynamic parameters that are clearly beyond human concepts of orders
of magnitude. The microscopic approach has provided a powerful tool with which to
study many different cosmic problems using a unique and systematic technique.

As is usual, let us introduce the one-particle probability distribution function
S (7, p,t) (where 7 is the position vector, p the particle’s momentum and ¢ the time),
which when multiplied by the six-dimensional phase space volume element
dr =d, dr, = dx dy dz dp, dp, dp, gives the total number of particles contained in
this volume element.

Our objective is the determination of f. Once f is determined, any macroscopic
quantity or property of a fluid system will be easy to obtain.

1.1.1 Number density and mean quantities

Firstly, a one-component fluid, with all molecules having the same mass and properties,
will be considered. The number density of particles per spatial volume element can be
obtained by

n:deTp (L.1)
p
where

Jp - J:=—m J::—oo J::O:_oo (1.2)

The number density has an obvious macroscopic importance. If m is the mass of a
particle, the density is

p=mn (1.3)
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2 Classical fluids

Let G be a quantity defined for each particle, function of the mass, momentum, and
energy. The mean value of G is defined by
1
(G) :-J Gf dr, (1.4)
»

n

where (G), n, and any other macroscopic quantities are functions of 7 and 7, but not of
. A particular function of obvious macroscopic interest is the mean velocity; taking
G=V

‘70=<V>:%J i dr, (1.5)
i4

where ¥ is the velocity of a particle, equal to r’%.
The peculiar velocity of a particle is defined as

A (1.6)
so that the velocity of a particle ¥ can be decomposed into a mean velocity ¥, identical
for all particles in the volume element, plus a peculiar velocity V' characterizing the
random thermal motion of each particle. It is obvious that (J') = 0, and this can easily
be confirmed:

o 1{. ., . 1{ . 1{ . L1,
(VY= —J (V=) dr, = —J vf dr, ——J Vof d7, =V —=Von =0 (1.7)
n), nj, nj, n
The temperature is also of obvious macroscopic interest. Though the thermodynamic
definition of temperature is very restrictive and in particular requires thermodynamic
equilibrium, a kinetic temperature, representative of the magnitude of thermal motions,
is introduced here:

3 1
EkT:§m<V2> (1.8)

where k is Boltzmann’s constant. This definition is only valid for monatomic gases. If
the gas is diatomic, 3 must be replaced by 3, and so on. This definition of temperature

permits us to use this concept in a system which is not in thermodynamic equilibrium.

1.1.2  Transport fluxes

Let us assume a surface element 4 inside the fluid, through which molecules freely
flow. The number of molecules having a given ¥ passing through dS is calculated by
fdr, dr,, where dr, = (V dt) -dS. Therefore fv-dS dt dt, molecules with momentum
between p and j + dp will cross the surface element in dz. Let G again be a mechanical
quantity defined for each molecule. Then Gf7- ds di dr, is the magnitude of G trans-
ported through 4§, with a given momentum, in df. The magnitude of G transported
through dS in dr by any particle, with any 7, is

J Gfv-dS dt dr, = n(GV) - dS dt (1.9)
p
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—

and per surface and time element n(GV) - i, where # is the unitary vector with direction
dS. This is the projection of the vector n{GV) along . This vector is called the transport
flux ¢ of G:

B(G) = n{GV) (1.10)
and has the property that when projected along any direction, it yields the magnitude of
G transported per unit area per unit time in this direction.

Let us give some examples of transport fluxes of quantities that can be transported. If
G 1s the mass of a particle, its flux is the vector

-

@ = n{my) = mn(V) = p¥, (1.11)
Even if there is no net mass flux, G can be transported:
$(G) = n(G¥) = n(G(¥y + V' )) = n¥y(G) +n(GV) (1.12)
If =0, then ¥y, = 0 and the first term is zero, but the second one, n(GI7), may be
non-vanishing.
¢ has been decomposed into two fluxes: a flux of the fluid carrying the mean value of
G and another flux of G which is present even if the fluid is at rest.

As a second important example let G be the momentum. When G is a scalar, 5 isa
vector. When G is a vector, the flux becomes a second-order tensor. The flux of p'is

R = n{pv) = p(W¥) (1.13)
Products such as pv or ¥V (without a point) are diadic or external products. Second-

order tensors will in general be represented by script capital letters. We now use the
relation V= ¥, + V' again:
R=p((Ho+V)F+V))

= pliofo) + (T V) + p{ Vi) + p(PT) (1.14)

= pVp¥y + p(V'V')
since ¥, is a macroscopic quantity, constant in the volume element and can be taken
outside the brackets, and (¥ ) = 0. The first term contains @ = p¥,, so that it represents
the momentum transport associated with mass flow. The second one represents an

internal momentum transport that is present even if the fluid is at rest. This important
tensor is called the pressure tensor:

P=pVV) (1.15)
which is, by definition, a symmetric second-order tensor.
To enhance familiarity with the pressure tensor, suppose that the fluid is in thermo-

dynamic equilibrium. Then no privileged direction exists; so we can write (1.15) in the
form

P =pb (1.16)
where P is triply degenerate, é is the Kroenecker tensor, and p the eigenvalue; p is called
the hydrostatic pressure. All off-diagonal components of P are zero because for any

molecule with V; ¥V, a molecule with —V; ¥, can always be found, so the mean of V;V,
is zero.
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4 Classical fluids

The use of ‘hydrostatic pressure’, a well-known concept, must be justified. We will do
this using two particularly simple examples.

First, suppose that a fluid is contained in a vessel. The walls are pushed perpendi-
cularly with a force per surface element of the wall, given by the momentum which
would have been transported through it in dt if the wall had been suppressed, that is,
P - ii, with i perpendicular to the wall. The component of this force along #, perpendi-
cular to the surface is (P -#)-#. But because of the threefold degeneracy of P in
equilibrium we have

(P-id) il = (p§-il) il =pii-ii=p (1.17)

Hence, under the equilibrium condition, p is the force per surface element perpendicular
to the wall.

Second, assume an ideal monatomic gas in equilibrium. The trace of P will be
Pi=3p= p(V2> and, recalling the definition (1.8) of the temperature of a monatomic
gas,

p=nkT (1.18)

which is the equation of state of an ideal gas.

Therefore, at least in equilibrium, the trace of the pressure tensor is three times the
hydrostatic pressure. In general, this is adopted as the definition of the hydrostatic
pressure.

Suppose, now, that G = %mvz, the kinetic energy of a molecule. If we restrict our-
selves to a monatomic gas we can obtain the energy flux

N 1 -
= —pV3o +=piy - (VV) (1.19)
2 2
1 .

S U S
+§P<V'V0V>+§P<V2>Vo+§P<V2V>

| P - 3 Lo
:§pv(2)v0 +P-vy+ <§kT>nv0 +q

where we have used some tensor properties (AB) - C = A(B - é) = AB - C for any three
vectors; the symmetry of P has also been used). The vector g, the conduction flux, is
defined as

L1 5 =

i=5p(V7) (1.20)
which is again present even if the fluid is at rest. The first term is the macroscopic
kinetic energy transported by the fluid. The third term is microscopic kinetic energy
transported by the fluid. P - ¥, is an interesting term which will be discussed later.
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1.1.3  Multicomponent fluids

In a fluid with more than one component, the ith component will have its own dis-
tribution function f;, so that f; dr, d7, will give the number of molecules of type i
contained in the volume element d7, d7, at 7 and p in six-dimensional phase space. Then

f= Z fi (1.21)
There is a number density #; for each type of molecule:
n; = J fidm, (1.22)
»

and
n= Zni (1.23)

and a partial density
pi = m;n; (1.24)
The density of the mixture is

p=)_n (1.25)

The equivalent mass of the mixture is defined as
P

m=" (1.26)

which is a weighted average of m;, taking n; as the weighting factor. For different
reasons, not all mean quantities are defined with the same weight for the calculation
of the average. The mean velocity ¥ of the mixture is defined with the partial mass

density as the weighting factor. If ; = £

m;®
5y = i) (1.27)
2 min;
where, obviously,
S 1 -
(i) = —J Jiv; dm, (1.28)
n; P
is the mean velocity of the ith component. The peculiar velocity of a particle is again
defined as
V=7 —7, (1.29)

but now the mean value of I7i for the ith component may be non-vanishing, even where
the mean value for the fluid as a whole is zero:

lj £V dr, = (%) — ¥, (1.30)
n; P

(V)=
This quantity is macroscopically interesting and is called the diffusion velocity of the ith
component. The different diffusion velocities must compensate one another; to be

precise:
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Zmini<l7i> = Zmini<‘7} — V)
= Zmini<‘7i> - (Z m;n;) Vo (1.31)
= (Z mn;) Vo — (Z min;)vo = 0

There is a physical reason for defining v, as in (1.27) instead of adopting »; as a
weighting factor. If we used »n; we would deduce ¥, = 0, when the fluid is in fact flowing.
Suppose, for instance, a massive component such as uranium is moving to the right
with the same speed as a second lighter component such as hydrogen is moving to the
left, the numbers of particles of both components being equal. If the weighting factor
were n; we would infer that the fluid was at rest, which would be true for numbers of
particles, but not for the mass of the fluid as a whole.

The microscopic velocity v; of a particle can now be written as
=V +{(V)+ V] (1.32)
¥, and (V;) are macroscopic. ¥ now represents the individual chaotic thermal velo-
cities. It can easily be found that (V) = 0 for each component. In general, (¥;) is much
lower than typical values of ¥ and will be considered negligible when compared with
the chaotic velocities.

The pressure tensor of an individual component is

Pi = pi{ViVi) (1.33)
To define the temperature of the mixture, an average with the number density as a
weighting factor is needed. For monatomic gases:

Vi

3 1 ’2
and
1
- _ T. )
T nzl.:”” (1.35)

The physical reason for defining T as in (1.35) is that, under equilibrium conditions,
all molecules, irrespective of their mass, have the same energy.
The total flux of the mixture is defined as the sum of the ith fluxes. In particular,

@ZZQiZZni(VO‘F(Vi)) (1.36)
P=>"P;=> plViV) (1.37)
p=Zp,-:%ZZP,,, (1.38)
7= 0 =3 ViV (1.39)

where the definitions of &;, P;, p;, §; are obvious generalizations.
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1.1.4 Boltzmann’s equation

The objective now is to deduce the differential equations for f; and integrate them. Once
each f; is known, all functions of macroscopic interest may be calculated from their
defining integrals. In particular, we will be able to calculate n;, n, ¥, (I7l->, T;,and T.

Let us first assume a one-component fluid. Let F be the force acting on a particle,
excluding the short-range particle-particle interaction force in a collision. To clarify
this concept, we can take a self-gravitating fluid. F will be the gravitational force arising
from the whole ensemble of particles, but not the gravitational force induced on a
particle by a single neighbour particle. F can be an external force or it can be produced
by the fluid itself.

Particles in the six-dimensional phase space cell [7, p] (i.e. having their position vector
¥ and their momentum 7' in a given volume element dr, d7,) would travel after d to the
cell [F+ v dt, f+ F di] if there were no collisions. The number of particles in each cell, in
the absence of collisions, would then be invariant:

f(F+Vd,p+F dt,t + di)dr, dr, = f (7, ¥,1) dr, dT, (1.40)
Using a series expansion on the left-hand side:
g—f+V-Vf+ﬁ~Vﬂf=0 (1.41)

where the momentum-gradient V,, of f is the vector gf Some collisions will have the
effect of propelling particles into the cell [F+vVdt,p+ F dt] which were not previously
contained in [7, p]. Others will have the effect of removing particles that were in [¥, ],
preventing them from reaching [F+ Vdt, 5 + F dt]. Equation (1.41) must be modified by
a term that takes into account the effect of collisions. This term is conventionally called
I" and the result is Boltzmann’s equation;

o)

8];+ Vf+F- Vf =T (1.42)
For a multicomponent fluid we have

0

af—kv, Vfi+ F; Vfi=T; (1.43)

This equation was first derived by Boltzmann in 1872, but the integration was not
performed until 1916 by Chapman and Enskog (independently), and even then not
for the most general case (only for a dilute monatomic gas not very far from thermo-
dynamic equilibrium). In the absence of collisions and under specified conditions, it was
later integrated by Tonks and Langmuir in 1929, Chandrasekhar in 1942 for the fluid
comprising galactic stars, Landau in 1946, and others.

Of course, in order to integrate Boltzmann’s equation, we should write I explicitly as
a function of our independent variables 7, p, and ¢, and of the distribution function /.
However, no attempt to describe the integration of this equation in detail will be made
here, as it would take up too much space. The reader is referred to classical texts such as
those by Chapman and Cowling (1970) or Hirschfelder, Curtiss and Bird (1954).
Instead, macroscopic equations consequences of Boltzmann’s equation will be derived,
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8 Classical fluids

which do not require an explicit knowledge of the collision term. These macroscopic
equations are the fluid dynamic equations. They provide less information than (1.42),
as they do not provide (171«), P, and ¢, and to overcome this problem and complete the
set of differential equations, some indirect arguments will be invoked in each case,
bearing in mind that a formal integration underpins our conclusions.

1.2 Macroscopic implications

In order to obtain macroscopic equations in which the collision term is not present, the
following procedure may be adopted:

ZJ (Boltzmann's equation),G; dr, (1.44)
i Jp

Now G, is a function defined for each particle which has the property of collisional
invariance, such as mass, momentum, energy, and any combination of these quantities.
Then the collision term gives

ZJ [,G;dr, =0 (1.45)
i
because it represents the change in G in a given time element due to collisions between
molecules in a space volume element, with any momentum and belonging to any con-
stituent. It is necessary to perform the operation ), because the momentum (for
instance) gained by one type of particle will be lost by another type.

In this way, three macroscopic equations can be obtained, corresponding to the
conservation of mass, momentum, and energy.

1.2.1 Continuity equations

Let us consider mass as the collisional invariant. In this exceptional case, the final sum

over all constituents in (1.44) is not necessary because not only is the mass of the whole

mixture conserved, but the mass of each individual constituent must also be conserved.
From the first term of Boltzmann’s equation, applying (1.44),

of; 0 o
L—m,- dr, = m Y Lf,- dr, =m; 5 (1.46)

Note that in this six-dimensional phase space ¢, ¥, and p’ are independent variables
and can have any value assigned by the observer. (For instance, p' = mi‘;—f cannot be

written; ¥ and ¢ are independent; and Z—f would be zero.} Due to this fact % is taken
outside the integral. The second term in Boltzmann’s equation gives

J mv; - Vf; d1, = m;V - J fivi dt, = mV - (n; (Vi) (1.47)
P P
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and the third term gives

J miﬁi . V,,f, dTp = m,-F,-l J
p

ofi
PrYp2Yps

g (1.48)

=m,-F,-1j j I dpy dps + . .. =0
2 JP3

because f;(c0), as well as f;(—o0), must vanish, as in any distribution function; other-
wise # would be infinite. Another assumption used in obtaining (1.48) is that F; is
assumed to be independent of p (i.e. independent of V), as is true for most types of
force. This is not always the case and the most important exception is the Lorentz force.
This force acts on charged particles; electromagnetic forces and plasmas are considered
later in Chapter 4. F; will now be considered independently of 7 and the results obtained
will be revised when this is required.
Finally, we obtain

on,
TV () =0 (1.49)
ot

which form the continuity equations for each constituent i. They are usually written as
%) _,
Sh+ V- (g + (V1)) = 0 (1.50)

A continuity equation for the mixture is obtained when these equations are multi-
plied by m; and added together, taking (1.31) into account:

dp
o,V (pTo) =0 (1.51)

Note that #and ¢ are independent variables. We are normally interested in knowing the
density at a position chosen by us, and at a time chosen by us; there is no sense in
calculatmg . The meaning of - is obviously the time variation observed i 1n the density,
at a fixed pomt without any spa‘ual displacement. If the total derlvatlve * were calcu-
lated, as ‘?I' = 0 we would obtain ‘;f = ‘g‘,’ However, there 1s another tlme derivative,
called the convective derivative, which can be denoted by £ without any risk of con-
fusion. In general, dp/dt will be given by
dp 0Op Opdx Opdy Opdz
@ "o oxd oy ozl

Now, we accept that there will be spatial displacements in df, and that these will
actually be taking place macroscopically in the fluid, that is, we accept % = v,,, and
so on. Then we write, as a definition of the new symbol %,

dp _0Op

dr - ot
To calculate 22 = we follow the fluid motion 7 = ¥jy¢: therefore % is the time derivative that
would be measured by an observer travelling with the fluid. This observer, who has a
velocity (7, ) at each point, will be called the ‘wet’ observer, in contrast with the
inertial observer — the ‘dry’ observer — who measures time variations at a fixed point.

(1.52)

+ v 0 V,o (153)
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10 Classical fluids

Equation (1.53) is valid not only for the density, but also for any other quantity, so that
the relation between operators can be written as
d_ 0

—=—+4+7"V 1.54
7 TR (1:54)
It can also be applied to vectors, and even to ¥, itself:
dvy vy -
7;):8—;)+V0'VV0 (155)
The use of the dry observer’s derivative is preferable for integrating the equations,

but the calculation of %, the wet observer’s time derivative, or convective derivative,

sometimes provides interesting interpretative insights. This is true, for example, for the
Milky Way star fluid or for the Universe as a whole, in which we are wet observers.
Another possible expression of the continuity equation might be
9 oV 5= 0 (1.56)
which is in fact of less practical interest than (1.51).
The continuity equation is the macroscopic, fluid dynamic form of mass conserva-
tion.

1.2.2  The equation of motion

Now G; = p, and the operations implied in (1.44) will be carried out. However, ), will
be delayed until the end of this section (1.67). Let us define

A, = J IL.pdr, (1.57)
We know, ofpcourse, that

d 4=0 (1.58)
From thle first term of Boltzmann’s equation we obtain

Lﬁ% dr, = mi% (ni(VO + (ﬁ))) (1.59)

From the second term we obtain
j 55 V) dr, = m,-J W V) dr, = V- (7))
P p

=V (p{(Fo+ (V) + V) o + (V) + V1))
~ V- (P; + pivovo)
neglecting (V;) compared to the mean values of V;, and noting that (V) =0.
Remember that the divergence of a second-order tensor 7 is the vector
(V-1),= 5%(7}-,-), that is, the contraction of its gradient.
It will be assumed not only that f; goes to zero at infinity, but that the distribution
moments [/;p*]% = 0 for any value of « (1, 2, 3, . . .). We will now therefore assume

(1.60)
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