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Chapter 0

Background

The purpose of this chapter and the next is to present the background
material that will be needed. The topics are standard and a more thor-
ough treatment can be found in many excellent sources, such as Stein
[2] and Stein and Weiss [1] for the first half and Hormander (7, Vol. 1]
for the second.

We start out by rapidly going over basic results from real analysis,
including standard theorems concerning the Fourier transform in R™
and Caldéron-Zygmund theory. We then apply this to prove the Hardy-
Littlewood-Sobolev inequality. This theorem on fractional integration
will be used throughout and we shall also present a simple argument
showing how the n-dimensional theorem follows from the original one-
dimensional inequality of Hardy and Littlewood. This type of argument
will be used again and again. Finally, in the last two sections we give
the definition of the wave front set of a distribution and compute the
wave front sets of distributions which are given by oscillatory integrals.
This will be our first encounter with the cotangent bundle and, as the
monograph progresses, this will play an increasingly important role.

0.1. Fourier Transform

Given f € L1(R™), we define its Fourier transform by setting

fe) = / 0 f(z) dz. (0.1.1)
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2 0. Background

Given h € R™, let (1,f)(z) = f(z + h). Notice that 7_pe "4 =
ei<h,€)e_i<';€> and SO

(mf)" (&) = ™9 f(8). (0.1.2)

In a moment, we shall see that we can invert (0.1.1) (for appropriate f)
and that we have the formula

fla) = m [ 0 f(e)ae (013)

Thus, the Fourier transform decomposes a function into a continuous
sum of characters (eigenfunctions for translations).

Before turning to Fourier’s inversion formula (0.1.3), let us record
some elementary facts concerning the Fourier transform of L! functions.

Theorem 0.1.1:

@) [flloo < Ifll1-

(2) If f € L1, then f is uniformly continuous.
Theorem 0.1.2 (Riemann-Lebesgue): If f € L (R™), then f(¢) — 0
as £ — oo, and, hence, f € Co(R™).

Theorem 0.1.1 follows directly from the definition (0.1.1). To prove
Theorem 0.1.2, one first notices from an explicit calculation that the
result holds when f is the characteristic function of a cube. From this
one derives Theorem 0.1.2 via a limiting argument.

Even though f is in Cp, the integral (0.1.3) will not converge for
general f € L!. However, for a dense subspace we shall see that the
integral converges absolutely and that (0.1.3) holds.

Definition 0.1.3: The set of Schwartz-class functions, S(R™), consists of
all ¢ € C°°(R") satisfying
sup |z78%¢(z)| < oo, (0.1.4)
T

for all multi-indices a, .

We give S the topology arising from the semi-norms (0.1.4). This
makes S a Fréchet space. Notice that the set of all compactly supported
C® functions, C§°(R™), is contained in S.

198 .

Let D; = 1 8z; Then we have:

Theorem 0.1.4: If ¢ € S, then the Fourier transform of D;¢ is 5]-(2)({).
Also, the Fourier transform of ;¢ is —D;¢.

! Here a = (a1,...,on),y = (71,---,vn) and ¥ = gM...gm §* =

(8/8z1)*1 -+ - (8/Bxn)%n.
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Proof: To prove the second assertion we differentiate (0.1.1) to obtain

D;3(e) = / @8 (_a;)§(z) da,

since the integral converges uniformly. If we integrate by parts, we see
that

660 = [~Dje @9 s(o)do = [ e D;8(0)
which is the first assertion. | |

Notice that Theorem 0.1.4 implies the formula
£2D7$(¢) = / e~ @) D ((—g) ¢(z)) da. (0.1.5)

If we set C = [(1 + |z|)~" "1 dz, then this leads to the estimate

sy@ﬂ%&sc@m+mwﬂm@%@n (0.1.6)

Inequality (0.1.6) of course implies that the Fourier transform maps
S into itself. However, much more is true:

Theorem 0.1.5: The Fourier transform ¢ — 43 is an isomorphism of S
into S whose inverse is given by Fourier’s inversion formula (0.1.3).

The proof is based on a couple of lemmas. The first is the multiplica-
tion formula for the Fourier transform:

Lemma 0.1.6: If f,g € L! then
fg dz = fgdz.
R* R®
The next is a formula for the Fourier transform of Gaussians:
Lemma 0.1.7: [, e~#@&) e=el2l*/2 4z = (277/6)n/2 e~IEI*/2¢

The first lemma is easy to prove. If we apply (0.1.1} and Fubini’s
theorem, we see that the left side equals

J{[ s avlowyaz = [{ [ eHesgtwyan} sty ay
~ [aray.
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4 0. Background

It is also clear that Lemma 0.1.7 must follow from the special case
where n = 1. But

0o )
/ e——t2/2e—it7’dt - 6—12/2/ e—%(t+ir)2dt
—o0 —oo

T2 /°° o t2/24y
— 00

= 2re~ /2,

In the second step we have used Cauchy’s theorem. If we make the change
of variables £1/2s = ¢t in the last integral, we get the desired result.

Proof of Theorem 0.1.5: We must prove that when ¢ € S,
8(@) = (2m) ™ [ =03e) de.
By the dominated convergence theorem, the right side equals
lim(em) ™ [ = 0(e)ele 2 g,
If we recall (0.1.2), then we see that this equals

hm(27rs "/2/¢x+y) —lv? /2€ gy,

E—?

Finally, since (27)~"%/2 [ e~ 1W*/2 gy = 1, it is easy to check that the last
limit is ¢(z). | ]

If for f,g € L' we define convolution by
(Fx9)(@) = [ 1z =g,
then another fundamental result is:

Theorem 0.1.8: If ¢, € S then

@m)" / P de = / $de, (0.1.7)
(@ *9)" (&) = (E)P(®), (0.1.8)
(6v)" (&) = (2m) ™™ ($  $) (¢). (0.1.9)

To prove (0.1.7), set x = (2%)”"5. Then the Fourier inversion formula
implies that ¥ = %. Consequently, (0.1.7) follows from Lemma 0.1.6. We
leave the other two formulas as exercises.
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We shall now discuss the Fourier transform of more general functions.
First, we make a definition.

Definition 0.1.9: The dual space of S is §’. We call S’ the space of
tempered distributions.

Definition 0.1.10: If u € S’, we define its Fourier transform @& € &’ by
setting, for all ¢ € S,

(@) = ule). (0.1.10)

Notice how Lemma 0.1.6 says that when u € L!, Definition 0.1.10
agrees with our previous definition of @. Using Fourier’s inversion formula
for S, one can check that u — 4 is an isomorphism of S’. If u € L! and

@ € L', we conclude that the inversion formula (0.1.3) must hold for
almost all z.

Theorem 0.1.11: If u € L2 then @ € L? and
a3 = 27)™|ul3 (Plancherel’s theorem). (0.1.11)

Furthermore, Parseval’s formula holds whenever ¢, € L?:
/ ¢ dz = (2r)"™ / &9 dz. (0.1.12)

Proof: Choose u; € S satisfying u; — u in L2. Then, by (0.1.7),
llij — k3 = (27)"luy — wgl|3 — O

Thus, 4; converges to a function v in L?. But the continuity of the
Fourier transform in &’ forces v = 4. This gives (0.1.11), since (0.1.11)
is valid for each u;. Since we have just shown that the Fourier transform
is continuous on L?, (0.1.12) follows from the fact that we have already
seen that it holds when ¢ and 1 belong to the dense subspace S. |

Since, for 1 < p < 2, f € LP can be written as f = fi + fo with
f1 € LY, fo € L?, it follows from Theorem 0.1.1 and Theorem 0.1.11
that f € LIro' A much better result is:

Theorem 0.1.12 (Hausdorff-Young): Let 1 < p < 2 and define o by
1/p+1/p' = 1. Then, if f € LP it follows that f € LP and

1l < @m)™ ) fllp-

Since we have already seen that this result holds for p =1 and p = 2,
this follows from:
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Theorem 0.1.13 (M. Riesz interpolation theorem): Let T be a
linear map from LPo N LPt to LI N LY satisfying
ITfllg, < M;lfllp,, 5=0,1, (0.1.13)
with 1 < pj,q; < oo. Then, if for 0 < t < 1, 1/py = (1 —t)/po +
t/p1,1/ae = (1 —t)/q0 +t/q1,
ITfllg. < (M) ™" (M1)" [ fllpe,  f € LPo N IP. (0.1.14)

Proof: If p; = oo the result follows from Holder’s inequality since then
po = p1 = 00. So we shall assume that p; < 0.
By polarization it then suffices to show that

|[Tr9ds] < M3 M0 71 gl (0.1.15)

when f and g vanish outside of a set of finite measure and take on a
finite number of values, that is, f = E;”Zl ajXE; 9= E{Ll bk X F, , With
E;NEjy =@ and FrNFp =0 if j # j and k # K and |Ej|,|Fy| <
oo for all j and k. We may also assume |f|p,,[lgll; # O and so, if
we divide both sides by the norms, it suffices to prove (0.1.15) when

1 £llp, = lgll; = 1. |
Next, if a; = e la;| and by, = e®¥*|by|, then, assuming g; > 1, we set

m
fz = Z la’jla(Z)/a(t)eierEjy
j=1

N
g = Z Ibk|(1_ﬁ(z))/(1_ﬁ(t))ew’°ka,

k=1
where a(2) = (1 - 2)/po + 2/p1 and B(z) = (1~ 2)/g0 + =/qr. If g¢ = 1
then we modify the definition by taking g, = g. It then follows that
F(z) = [Tf.g.dz is entire and bounded in the strip 0 < Re (z) < 1.
Also, F(t) equals the left side of (0.1.15). Consequently, by the three-
lines lemma,? we would be done if we could prove

|[F(2)] < Mo, Re(z)=0,

|F(2)] < M1, Re(z)=1
To prove the first inequality, notice that for y € R, a(iy) = 1/py +
iy(1/p1 — 1/pg). Consequently,

| figlPo = Ieiarg F o prv/p=1/po) . If‘pz/po(l’o = | f[P-.

2 See, for example, Stein and Weiss [1, p. 180].

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521434645
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521434645 - Fourier Integrals in Classical Analysis - Christopher D. Sogge
Excerpt

More information
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Similar considerations show that lgiqué = |g|qi. Applying Hélder’s in-
equality and (0.1.13) gives

()] < 1T fiylan il
< Mo|| fiyllpo lgiyllgy = M0||f||£:/p° IIQHZE/% = M.

Since a similar argument gives the other inequality, we are done. [ |

Later on it will be important to know how the Fourier transform
behaves under linear changes of variables. If T : R® — R” is a linear
bijection and u € S'(R™) N C(R™), we can define its pullback under T
by

T*yu=uoT.

Note that a change of variables gives

(T*0)(9) = / w(T2)d(z) do

= /u(y) |det T | $(Ty) dy = u(|det T~ H(T71-)),

so, for general u € S'(R™), we define the pullback using the left and
right sides of this equality.

Theorem 0.1.14: With the above notation
(T*uw)" = |det T| L (*T1) . (0.1.16)
We leave the proof as an exercise. As a consequence we have:

Corollary 0.1.15: If u € S'(R") is homogeneous of degree o, then i is
homogeneous of degree —n — o.

Proof: u being homogeneous of degree ¢ means that if Myz = tx, then
My = t%u. So, by Theorem 0.1.14, t°4 = (Mt*u)/\ = t""Mi"/tﬁ. If we
replace t by 1/t this means that M4 = ¢t~ " 74. [ |
Remark. Notice that if Re ¢ < —n, then 4 is continuous. Using this
and Theorem 0.1.4, the reader can check that if » is homogeneous and
in C*°(R™\ 0), then so is @.

Let us conclude this section by presenting the Poisson summation
formula. If ¢ is a function on R™, then we shall say that g is periodic
(with period 27) if g(z + 2mm) = g(z) for all m € Z™. Given, say,
¢ € S(R™), there are two ways that one can construct a periodic function
out of ¢. First, one could set g = >, -y #(x + 27m); or one could
take g = (27)7" 3 con d(m)e{®™) | Notice that both series converge
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8 0. Background

uniformly to a periodic C* function in view of the rapid decrease of
¢ and ¢. The Poisson summation formula says that the two periodic
extensions are the same.

Theorem 0.1.16: If ¢ € S(R™) then
Z oz + 2rm) = 27)™™ Z qg(m)e“z’m).
mezZr mezn

In particular, we have the Poisson summation formula:

> d2rm) = 2m)™ Y d(m). (0.1.17)

mezn mezn

To prove this result, let T? = 27r(R" /Z") Then, if we set Q =
[~m, 7], it is clear that the series Y ;. ¢(z + 2rm) = g converges
uniformly in the L'(Q) norm. Thus, for k € Z", its Fourier coefficients
are given by

Q

mezZn

Z/ z<f”‘k>¢>av+27rm dr = Z/ e 4ok ¢(2) dz

mezr mezr Y Q- 27"”
=/ e—i<m’k>¢(x)dx=d;(k).

On the other hand, if we set (27) ™", .7 $(m)e!®™ = G, then the
series also converges uniformly in L(Q). Its Fourier coefficients are

G = /Q @R (2m) ™ 37 Jm)eilem

mezr
Z ¢ / i(z,m—k) dz
mezr A
N B(m) - (2m) G = ().
mezr

Thus, since g and g have the same Fourier coefficients, we would be done
if we could prove:

Lemma 0.1.17: If pu is a Borel measure on T" satisfying
Jon e~ 4@k du(z) = 0 for all k € Z™, then nw=0.

To prove this, we first notice that, by the Stone-Weierstrass theo-
rem, trigonometric polynomials are dense in C(T"), since they form
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an algebra which separates points and is closed under complex conju-
gation. Our hypothesis implies that [r.. P(z)du(z) = 0 whenever P is
a trigonometric polynomial. The approximation property then implies
that fi. f(z)du(z) = 0 for any f € C(T"). By the Riesz representation
theorem p = 0.

Using the Poisson summation theorem one can recover basic facts
about Fourier series. For instance:

Theorem 0.1.18: If g € L2(T") then (2r)~™ > kezn gLe’ @k converges
to g in the L? norm and we have Parseval’s formula

[ lode = ny ¥ ol

kezr

Conversely, if 3" |gi|? < oo, then (2m)™™ > kezn gre“®k) converges to
an L? function with Fourier coefficients gy.

Proof: If g € C*°(T") then the Poisson summation formula implies
that, if we identify T™ and @ as above, then for z € Q,

(2m)™" Z gret®k) = Z g(z + 27k).
kezr kezn
Hence, if g € C°°(T"™), its Fourier series converges to g uniformly, since
one can check by integration by parts that g = O(|k|~") for any N.
Consequently,

/]l‘n lg|? dz = (2m) %" /Tn > ggwe @R dz = (2m) Y (g2,

Thus, the map sending g € L?(T™) to its Fourier coefficients gj, € £2(Z™)
is an isometry. It is also unitary since the range contains the dense
subspace £1(Z"). [}

0.2. Basic Real Variable Theory

In this section we shall study two basic topics in real variable theory:
the boundedness of the Hardy-Littlewood maximal function and the
boundedness of certain Fourier-multiplier operators. Since the Hardy-
Littlewood maximal theorem is simpler and since a step in its proof will
be used in the proof of the multiplier theorem, we shall start with it.
If wy, denotes the volume of the unit ball B in R”, then, given f € L}

loc?
we define the Hardy-Littlewood maximal function associated to f by

Mf(z) = sup / fla—ty) 2. (0.2.1)
t>0JB Wn,
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10 0. Background

If B(x,t) denotes the ball of radius ¢ centered at z then of course

1
/ A E B@ 0] Joe f(y) dy, (0.2.2)

so in (0.2.1) we are taking the supremum of the mean values of | f| over all
balls centered at z. We have used the notation in (0.2.1) to be consistent
with some generalizations to follow.

Theorem 0.2.1 (Hardy-Littlewood maximal theorem): If1 < p <

oo then
IMfllLr@n) < Cp I fllLen)- (0.2.3)
Furthermore, M is not bounded on L!; however,
{o: Mf(z) > a}] < Ca™ |fll s o) (024)

As a consequence, we obtain Lebesgue’s differentiation theorem:

Corollary 0.2.2: If f € Lloc’ then for almost every x

lim / f(:z:—ty - f(a). (0.2.5)

Before proving the Hardy-thtlewood maximal theorem, let us give the
simple argument showing how it implies the corollary. First, it is clear
that, in order to prove (0.2.5), it suffices to consider only compactly
supported f. Hence, we may assume f € L(R™) and that f is real
valued.

Next, let us set

f*(z) = |limsup M; f(z) — liminf M, f(z)|.
t—0 t—=0

For g € L!, g*(z) < 2Mg(z). Consequently, (0.2.4) gives
{z : g*(z) > a}| <2Ca™ ! ||g|| 1.

To finish matters, we use the fact that, given ¢ > 0 any f € L! can be
written as f = g+ h with h € C(R™) and ||g|z1 < e. Clearly &* = 0,
and so

Hz: f*(x) > o} = {z : g*(z) > a}| < 2Ca"le.
Since ¢ is arbitrary, we conclude that f* = 0 almost everywhere, which
of course gives (0.2.5).
Turning to the theorem, we leave it as an exercise for the reader that

if f = xp then ||Mflifx = 4o00. On the other hand, to prove the
substitute, (0.2.4), we shall require:
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