Following the theoretical perspective of his earlier book, *Ceramic theory and cultural process* (1985), Dean Arnold’s ethnoarchaeological study explores the relationships of ceramic production to society and its environment in the Peruvian Andes. The book traces these contemporary linkages through the production, decoration and use of pottery and relates them to the analysis and interpretation of ancient ceramic production. Utilizing an ecological approach within a single community, Arnold expands the scope of previous ceramic theory by focusing on the population as the unit of analysis in production and decoration.
NEW STUDIES IN ARCHAEOLOGY

Ecology and ceramic production in an Andean community
NEW STUDIES IN ARCHAEOLOGY

Series editors
Colin Renfrew, University of Cambridge
Jeremy Sabloff, University of Pittsburgh

Other titles in the series
Ian Hodder and Clive Orton: Spatial analysis in archaeology
Keith Muckelroy: Maritime archaeology
R. Gould: Living archaeology
Stephen Plog: Stylistic variation in prehistoric ceramics
Patrick Vinton Kirch: Evolution of the Polynesian chiefdoms
Dean E. Arnold: Ceramic theory and cultural process
Geoffrey W. Conrad and Arthur A. Demarest: Religion and empire: the dynamics of Aztec and Inca expansionism
Graeme Barker: Prehistoric farming in Europe
Daniel Miller: Artefacts as categories
Rosalind Hunter-Anderson: Prehistoric adaptation in the American Southwest
Robin Torrence: Production and exchange of stone tools
Bo Gräslund: The birth of prehistoric chronology
Ian Morris: Burial and ancient society: the rise of the Greek City State
Joseph Tainter: The collapse of complex societies
John Fox: Maya postclassic state formation
Alasdair Whittle: Problems in Neolithic archaeology
Peter Bogucki: Forest farmers and stock herders
Olivier de Montmollin: The archaeology of political structure: settlement analysis in a classic Maya polity
Robert Chapman: Emerging complexity: the later prehistory of South-East Spain, Iberia and the West Mediterranean
Steven Mithen: Thoughtful foragers: a study of prehistoric decision making
Roger Cribb: Nomads in archaeology
James Whitley: Style and society in Dark Age Greece: the changing face of a pre-literate society 1100–700 BC
Philip Arnold: Domestic ceramic production and spatial organization
Julian Thomas: Rethinking the Neolithic
E. N. Chernykh: Ancient metallurgy in the USSR: the early Metal Age
Lynne Sebastian: The Chaco Anasazi: sociopolitical evolution in the prehistoric Southwest
Anna Maria Bietti Sestieri: The Iron Age community of Osteria dell'Osa: a study of socio-political development in central Tyrrhenian Italy
Christine A. Hastorf: Agriculture and the onset of political inequality before the Inka
Richard E. Blanton, Stephen A. Kowalewski, Gary Feinman and Jill Appel: Ancient Mesoamerica
Laura Finsen: Ancient Mesoamerica: a comparison of change in three regions
Richard Bradley and Mark Edmonds: Interpreting the axe trade: production and exchange in Neolithic Britain
DEAN E. ARNOLD Wheaton College, Wheaton, Illinois

Ecology and ceramic production in an Andean community
To my daughters,
Michelle and Andrea,
who with my wife are the loves of my life
CONTENTS

List of figures page xi
List of tables xvii
Acknowledgements xviii
Preface xxi

1 **Introduction** 1

 Conceptual approach of the book 2
 An ecological approach to ceramic production 4
 The unit of analysis 9
 The plan of the book 12
 Quinua and Andean pottery making 14

2 **The community: its physical environment and adaptation** 16

 Environment 16
 The spatial organization of the community 26

3 **The environment and culture history** 34

 The Middle Horizon 34
 The Chancas 40
 The Inca Conquest 41
 The Spanish Conquest 45
 The Battle of Ayacucho 46
 Conclusion 46

4 **Ecological interrelationships of the community of potters** 48

 The community of potters in Quinua 48
 Relationships of the population to the environment 51
 The ecological niche of Quinua potters 69
 Conclusion 70

5 **Ceramic production in Quinua** 72

 Selecting raw materials 73
 Fabricating pottery 80
 Decorating 95
 Firing 100
Contents

Making pottery at the artisan center 108
Implications for archaeology 112
Conclusion 115

6 Ceramic products and society 116
Channels of matter, energy and information flow 116
Distributing Quinua pottery 130
Conclusion 138

7 Design correlates of the community 140
The sample 140
The design analysis 143
Community patterns of design 165
A summary of design variability 175
Other pottery-making communities 177
Summary of the community patterns 183

8 Design and society 188
Models of style and Quinua ceramic design 188
Design models and variability 192
Summary 195

9 Archaeological implications: the Ayacucho Valley 197
Applying the present to the past 199
Processual analogies in ceramic production 200
Applying the processual analogies 204
Ceramic production in the Middle Horizon 209
Climate and ceramic specialization in the Peruvian Andes 217
Ceramic specialization on the coast of Peru 224
Ceramic specialization in the ancient Andes 226
Conclusion 231

10 Conclusion 233
The community of potters 233
Ceramic ecology: climate and paste 236
Ceramic design 237
Standardization 238
The present and the past 239

Notes 241
References 250
Index 265
FIGURES

2.1 The central portion of the Ayacucho Valley showing the location of the village of Quinua 17
2.2 Aerial photograph of the Quinua area showing its highly eroded character 18
2.3 Rainfall in Ayacucho showing the mean amount of rainfall from 1961–70, and days with rainfall from 1962–70 19
2.4 The maximum, average and minimum temperatures in Ayacucho from 1962–69 19
2.5 The yearly variation of relative humidity in Ayacucho from 1965–66 20
2.6 The estimated ranges of minimum, average and maximum temperatures in Quinua based on the temperatures in Ayacucho (from 1962–66) corrected for elevation 20
2.7 View of the eastern side of valley looking southeast from Ayacucho showing rainfall in the mountains on the eastern edge of the valley 21
2.8 The Quinua area, showing the relationship of the principal towns in the central portion of the Ayacucho Valley, and the location of the ecological zones 23
2.9 Percent of houses and population in each ecological zone in the District of Quinua from the census of 1961 24
2.10 A high mountain valley in the montane prairie above Quinua 24
2.11 A settlement in the montane prairie above Quinua 25
2.12 View of the Quinua area from above looking southwest towards the city of Ayacucho 29
2.13(a) Schematic diagram of the irrigation system of Quinua showing how the flow of water through the major canals defines the barrio of Lurinsayuyu into socio-political sub-units 30
2.13(b) Schematic diagram of the irrigation system of Quinua showing the pattern of the major canals in the barrio of Hanansayuyu 31
2.14 The rural hamlet of Anaqata below the village of Quinua in the lower montane savannah 32
2.15 A polychrome vessel of the Robles Moqo style that was probably made in the ancient city of Huari during the Middle Horizon (A.D. 600–800) 35
2.16 A polychrome ceramic llama of the Robles Moqo style probably made in the ancient city of Huari during the Middle Horizon (A.D. 600–800) 37
2.17 The carvings on the Gateway of the Sun at Bolivian site of Tiahuanaco south of Lake Titicaca 38
List of figures

3.4 Map of the Ayacucho area showing the relationship of some of the major archaeological sites and the modern cities and towns 39
3.5 Drawing from Guamán Poma showing “Acos Inca” who was administrator of the bridges standing in front of the bridge at Guambo 43
3.6 A view of the village of Acos in the Department of Cuzco from which Inca Pachecuti exiled inhabitants to the Quinua area during the Inca conquest of the Ayacucho area 45
4.1 Bar graph showing the percent of non-farm workers in Quinua between 1955 and 1985 from birth and marriage records 53
4.2 Part of the eroded portion of the barrio of Lurinsayuq below the village of Quinua 57
4.3 Year to year fluctuations of rainfall in Ayacucho during the months of September through November from 1961 to 1970 58
4.4 The year to year fluctuations of the number of days with rainfall in Ayacucho during the months of September through November from 1962 to 1970 59
4.5 Bar graph comparing the average number of days with rain with the number of days of labor required for maize cultivation in the upper savannah 61
4.6 Bar graph comparing the number of days with rain with those required for maize cultivation in the lower savannah 62
4.7 A thick bed of volcanic tuff exposed by erosion in the hamlet of Utchuchuku below the village of Quinua in the barrio of Lurinsayuq 63
4.8 A thick bed of volcanic ash in the hamlet of Utchuchuku showing the openings created by mining the ash for pottery temper 64
4.9 Map of the Quinua area showing agricultural and non-agricultural land, the locations of potters’ households and the source locations of raw materials 65
5.1 Bar graph of relative quantities of clay minerals in samples of clays for non-cooking pottery 74
5.2 Bar graph of relative quantities of non-clay minerals in samples of clays for non-cooking pottery 75
5.3 Bar graph of relative quantities of non-clay minerals found in cooking pottery from analyses of one sample of clay and four sherds 75
5.4 Bar graph of the relative quantities of clay minerals found in temper samples 76
5.5 Bar graph of the relative quantities of non-clay minerals in temper samples 77
5.6 Line graph showing the percent of non-plastics (by weight) found in the clays and tempers in Quinua 79
5.7 The three-part forming apparatus used to make pottery in the Quinua area 81
5.8 Profiles of the four vessels of cooking pottery made with the untempered clay in Quinua 82
5.9 Comparison of the ratios of mouth diameter and greatest diameter of cooking pottery 83
5.10 The plato shape 84
5.11 The tachu shape 85
5.12 The yuhupuyu shape 86
5.13 The puyu shape 87
List of figures

5.14 Comparison of the means and ranges of the heights of the plato and aysaku shapes 88
5.15 Comparison of the means and ranges of the greatest diameter of the plato and aysaku shapes 88
5.16 Comparison of ranges and means of mouth diameter of the plato and the aysaku shapes 89
5.17 Comparison of the means and ranges of neck diameter of the aysaku shapes 89
5.18 Comparison of the means and ranges of ratios of mouth diameter to greatest diameter for the aysaku shapes 90
5.19 Comparison of the means and ranges of ratios of neck diameter to greatest diameter of the aysaku shapes 90
5.20 A hypothetical fabrication grammar for producing the plato and the aysaku shapes 91
5.21 A tinaqa decorated with the black-and-white-on-buff painting scheme 92
5.22 A ceramic church which is decorated in the black-and-red-on-white painting scheme 93
5.23 A chunchu decorated in the white-on-red painting scheme 94
5.24 An uhumari (legendary half-human/half-bear) painted with the white-on-red-painting scheme 95
5.25 A double pot which is painted with the black-and-red-on-white painting scheme 96
5.26 A potter using a mold to produce a face for a small modeled chunchu that will be placed on a candelabra 97
5.27 Diagram of utilitarian and service vessels showing the sequence of painting, polishing, and slipping used to produce the four ceramic styles of the community 99
5.28 Painting a design on Quinua pottery using a small feather 101
5.29 A puynu (pitcher) painted in the black-and-white-on-buff painting scheme 103
5.30 Pottery spread out on skins and straw mats to dry prior to painting and firing 104
5.31 The Quinua kiln during firing 105
5.32 Loading the kiln prior to firing 107
5.33 The series of vessels used for soaking and filtering clay at the artisan center 109
5.34 An innovative candelabra first made by a potter in 1967 111
6.1 A boy carrying a load of sticks using muscles of the upper arms, shoulders and chest along a highway near Quinua 123
6.2 One of the carrying patterns used to carry water jars in Yucatan before piped water eliminated the demand for these vessels 124
6.3 A woman carrying a water vessel near the hamlet of Coya, in the municipio of San Miguel Acatán in northwestern Guatemala 125
6.4 Andean peasants dressed as jungle indians (chunchus) during the Feast of the Crosses in Luricocha 127
6.5 A ceramic church on the roof of a house in Quinua 128
6.6 A ceramic version of a sheep placed on the new and rebuilt roofs of houses in the Quinua area 129
List of figures

6.7 Diagram showing how the hierarchical political structure of the Ayacucho Valley pottery-making communities corresponds to the movement of pottery 133
7.1 The plato or low open bowl 141
7.2 The tachu is a wide-necked globular bottle with a circular mouth 142
7.3 The yukupynu is a narrow-necked jar with a small circular mouth 143
7.4 A yukupynu painted with different designs from figure 7.3 144
7.5 The pyynu is a narrow-necked jar with a mouth modeled into a pouring spout 145
7.6 The two layout types which organize design space on the yukupynu and their frequency in the sample 146
7.7 The two layout types which organize design space on the pyynu and their frequency in the sample 148
7.8 The organization of the three design panels in zone A on the pyynu 149
7.9 The three layout types which organize design space on the tachu and their frequency in the sample 150
7.10 The five layout types which organize design space on the plato and their frequency in the sample 152
7.11 Frequencies of the interior slip color of the platos 153
7.12 The fundamental motions of symmetry analysis using one of the fundamental units of the Quinua designs 155
7.13 The use of the fundamental motions of repetition to produce band patterns (or one dimensional patterns) using one of the fundamental units in the Quinua painted styles 156
7.14 The use of the fundamental unit of the Quinua style to form a two dimensional (or “all over”) pattern 157
7.15(a)–(c) The repertoire of all of the designs used on the pyynu, yukupynu, and plato shapes in the sample showing an analysis of the repetitive motions (symmetry) of the motif and band patterns 160–163
7.16 Summary of motif symmetry in the sample showing the percent of each motif symmetry type found in the total repertoire of motifs 164
7.17 Summary of motif symmetry in the sample showing the percent of each motif symmetry type found in the total sample of motifs 164
7.18 Summary of band symmetry in the sample showing the percent of each type of band symmetry found in the total repertoire of bands 165
7.19 Summary of band symmetry in the sample showing percent of each type of band symmetry found in the total sample of bands 165
7.20 Frequency (in percent) of motif symmetry classes on the pyynu for layout type A 168
7.21 Frequency (in percent) of motif symmetry classes on the yukupynu for layout type A 168
7.22 Frequency of motif symmetry types on the plato based on the total number of motifs 169
7.23 Frequency of motif symmetry classes by vessel shape based on the total sample of all motifs 169
7.24 Frequency (in percent) of band symmetry types by vessel shape 170
List of figures

7.25 Frequency of types of band symmetry on the puynu (all layout types) based on the total percent of bands used on the vessel 170
7.26 Frequency of types of band symmetry on the yukupuynu (both layout types) based on the total number of bands used on this vessel in the sample 171
7.27 Frequency of types of band symmetry on the tachu for all layout types based on the total number of bands used on this vessel in the sample 171
7.28 Frequency of band symmetry types on the plato for all layout types based on the total number of bands used on this vessel in the sample 171
7.29 Bar graph showing the most frequent types of single motions of band symmetry patterns 172
7.30 Frequency of motif symmetry on the plato by layout types based on the percent of total motifs used on this vessel 173
7.31 Frequency (in percent) of band symmetry classes by layout types on the yukupuynu based on the number of bands used on that vessel 173
7.32 Frequency (in percent) of band symmetry classes by layout types on the puynu based on the total number of bands used on that vessel 174
7.33 Frequency (in percent) of band symmetry classes by layout types on the plato based on the total numbers of bands used on that vessel 174
7.34 Frequency (in percent) of band symmetry classes by layout types on the tachu based on the total number of bands used on that vessel 175
7.35 The number of different designs (bands/motifs/lines) in the obligatory zones on each vessel shape compared with those in the optional zones 176
7.36 The number of types of motif symmetry in the obligatory zones on each vessel shape compared with those in the optional zones 176
7.37 The number of types of band symmetry in the obligatory zones of each vessel shape compared with those in the optional zones 177
7.38 Ticillas pottery being sold in the Ayacucho market 179
7.39 A tinaga made in the hamlet of Pampay near the village of Luricocha northwest of Quinua 180
7.40 A Huayhuas canasta in the Ayacucho market 181
7.41 A Huayhuas flower pot (floresca) being sold in the Ayacucho market 181
7.42 Repertoire of white designs painted on Huayhuas vessels being sold in the Ayacucho market 184
7.43 The frequencies of motif symmetry used on four shapes of Huayhuas pottery 185
7.44 Frequencies of band symmetry used on four shapes of pottery made in Huayhuas 185
7.45 Frequencies of vessels painted with each motif symmetry type in a sample of Huayhuas pottery 187
7.46 Frequencies of vessels painted with each band symmetry type in a sample of Huayhuas pottery 187
9.1 Graph showing the percent of the sample of distances to clay sources in the ethnographic literature plotted on a log scale of those distances 201
9.2 Graph showing the percent of the sample of distances to temper sources in the ethnographic literature plotted on a log scale of those distances 203
List of figures

9.3 The distribution of relative dryness and wetness in the highland region of Peru by the percent of reporting stations 219
9.4 The distribution of relative dryness and wetness for inland cities on the south coast of Peru by the percent of reporting stations 224
9.5 The distribution of relative dryness and wetness in the yearly precipitation in the south and central Peruvian coast by the percent of reporting stations 225
9.6 The distribution of relative dryness and wetness in yearly precipitation on the north coast of Peru by the percent of reporting stations 227
9.7 Location and distribution of the driest ecological zones in highland Peru 229
TABLES

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Major ecological zones in the District of Quinua, Peru</td>
<td>22</td>
</tr>
<tr>
<td>4.1</td>
<td>Location of potters’ residences in Quinua in 1967 according to quality of</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>agricultural land</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Toxins in plants grown in Quinua destroyed by the use of ceramics</td>
<td>118</td>
</tr>
<tr>
<td>6.2</td>
<td>Sources of vessel shapes in the Ayacucho market, February–June, 1967</td>
<td>134</td>
</tr>
<tr>
<td>7.1</td>
<td>Summary of predominant design patterns in Quinua (the design correlates of</td>
<td>166</td>
</tr>
<tr>
<td></td>
<td>the community)</td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>The threshold distances to clay sources and the cumulative percent of the</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>sample occurring at those distances</td>
<td></td>
</tr>
<tr>
<td>9.2</td>
<td>The threshold distances to temper sources and the cumulative percent of the</td>
<td>202</td>
</tr>
<tr>
<td></td>
<td>sample occurring at those distances</td>
<td></td>
</tr>
<tr>
<td>9.3</td>
<td>The time of the year when pottery is made in some central Andean communities</td>
<td>220</td>
</tr>
<tr>
<td>9.4</td>
<td>The ecological zones of some Andean pottery-making communities</td>
<td>222</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

Field work in Quinua was supported by an NDFL Title VI Fellowship and the Department of Anthropology of the University of Illinois, Urbana. I am grateful to the United States Office of Education for permitting me to use the Fellowship in Peru even though it was not normally awarded for research abroad. Mamerto Sanchez C. provided gracious hospitality in Quinua. To him and other Quinua potters (such as Victor Sanchez and Juan Rojas), I express my appreciation for their cooperation and kindness. William P. Mitchell generously shared his facilities with me in Quinua and has been especially helpful and generous with data that have made this book possible. B. F. Bohor of the Illinois State Geological Survey ran the X-ray diffraction analyses of the ceramic raw materials and interpreted the results of these analyses. I am also grateful to R. T. Zuidema and especially the late D. W. Lathrap for their guidance, encouragement and support which made the field work possible. Rich Nickel, Michael Anderson, Delores Ralph Yaccino, and Dawn Stultz produced many of the drawings. Melinda Korell, Pauline Roelofs and Delores Ralph Yaccino provided typing and editing assistance, and Alva Steffler and Rose Graham made some of the high contrast photostats used for publication. My research assistants over the years, Prudence Rice, Ruth Ann O'Connell, Laura Montgomery, Dan Gross, Delores Ralph Yaccino, Lori Hughey and Charles Shrack, worked on some of the data at various stages of the analysis and provided bibliographic assistance. The late Gary Vescelius lent an aerial photograph produced by Fotoserivicio Aereofotografico Nacional, Lima. Margaret Hardin, Dorothy Washburn and James Vreeland provided encouragement for the development of the design portion of this work. Michael O. Dillon of the Field Museum provided botanical names for some of the wild plants used to fire pottery by narrowing the list of botanical names found in Towle (1961) and Soukup (1970).

The Research Office of the College of Liberal Arts of the Pennsylvania State University provided funds for preparing some of the illustrations for publication. The Department of Sociology and Anthropology of Wheaton College, the Wheaton College Faculty Development Fund, the Wheaton College Aldeen Fund and the Wheaton College Alumni Association all provided support for the preparation of the present manuscript. I also wish to express my appreciation to the Governing Body of Clare Hall, Cambridge, for a Visiting Fellowship there during the first six months of 1985 in order to continue work on this manuscript. Ian Hodder and the Department of Archaeology in Cambridge provided much intellectual stimulation and a quiet place to work. A return to Cambridge in 1992 brought this work to
Acknowledgements

conclusion and I am grateful to the Governing Body of Clare Hall, Sander Van der Leeuw, Ian Hodder and Paul Mellars for their hospitality. Warren DeBoer, David Browman, Brian Bauer, William P. Mitchell, Charles C. Kolb, Tim Murray, Sander Van der Leeuw, Bill Sillar and two anonymous reviewers provided helpful criticism that improved the final form of this work considerably. My parents, Mr. and Mrs. Eldon E. Arnold, have provided constant concern, support and encouragement for me. Finally, my wife, more than anyone, has provided editorial assistance and helped me see this project to its completion.

I also thank the Anthropos Institut, the Institute of Archaeology of UCLA and the editor of Current Anthropology for permission to reproduce previously copyrighted material. Figures 5.27 and 2.14 were originally published as figure 2, p. 863, and as plate f between pp. 864–865 in “Native pottery making in Quinua, Peru” by Dean E. Arnold, Anthropos, 67 (1972). Figures 7.15(a)–(c) were originally published as figure 6, pp. 151–153 in “Social interaction and ceramic design: community-wide correlates in Quinua, Peru” by Dean E. Arnold in Prudence Rice (ed.), Pots and Potters: Current approaches in ceramic archaeology, pp. 133–161, Monograph XXIV, Institute of Archaeology, University of California, Los Angeles, 1984. Figures 2.7, 2.8, and 4.2 were originally published as figure 3, p. 185, figure 4, p. 186 and figure 6, p. 189 in “Ceramic Ecology in the Ayacucho Basin, Peru: implications for prehistory” by Dean E. Arnold in Current Anthropology, 16: 2 (1975). R. T. Zuidema provided photocopies of two historical documents about Quinua which are found in the National Archives of Peru.

Ann Kraft, Michelle Shannon, Sara Czarnecki, Lori Hughey, Charles Shrack, Pat Popuvac, Tracy Smith and Amy Jo Inniger helped prepare the index.
PREFACE

The field work for this book occurred between February and July, 1967 when I lived in the village of Quinua, Department of Ayacucho, Peru. I went to Peru to work with Dr. R. T. Zuidema who had been newly appointed to the faculty of the Department of Anthropology at the University of Illinois, Urbana. Dr. Zuidema was then teaching at the University of Huamanga in Ayacucho and supervised graduate students who were doing research in the Ayacucho area during his last semester there. Several graduate students were involved in this program, but each had his/her own research project in cultural anthropology and/or archaeology.

My original purpose in going to Ayacucho was to obtain comparative data for my ethnographic research in Yucatan which I had carried out in 1965 and 1966. Just before I left for Peru, I had completed a master's thesis relating the selection and use of ceramic raw materials in Mexico to Maya Blue, a unique blue pigment used by the ancient Maya. Blue was the color of sacrifice for the ancient Maya and was used on figurines and ceramic offering vessels. Human sacrificial victims were also painted blue before their beating hearts were ripped out on the sacrificial altar at the Temple of the Warriors at Chichén Itzá. The composition of this blue pigment had been a mystery until the late 1960s when it was identified as a clay-organic complex of indigo and the rare clay mineral attapulgite (now called palygorskite). Attapulgite had been identified from Yucatan, but in 1965, my ethnographic work revealed that Ticul potters were using attapulgite and were aware of its unique properties. Ultimately, I was able to suggest two ancient sites where the Maya may have obtained this rare clay mineral for use in Maya Blue.¹

The connection between my research and Maya Blue had been stimulated by the discovery that the contemporary potters of Ticul possessed a sophisticated knowledge of their raw materials. The linguistic categories of these materials denoted certain contrasting attributes. Furthermore, raw material selection and use indicated that potters' practical knowledge was based upon characteristics which corresponded to the physical properties of the minerals present in these substances. This correspondence led me to suspect that if Maya categories of ceramic raw materials could be related to physical and/or mineralogical characteristics in a living community, it might be possible to identify communities of potters in ancient ceramics based on the study of paste. Comparative ethnographic data from the Andes would provide cross-cultural support for such an hypothesis and hopefully would show its validity outside of Yucatan. To operationalize this hypothesis in
Preface

Peru, I had planned to survey the pottery-making communities in the Ayacucho Valley and collect samples of ceramic raw materials, analyze them using X-ray diffraction, and ascertain whether different communities used mineralogically different materials. If successful, this research would be an important ethnographic test for identifying the source communities of ancient ceramics.

After I arrived in Ayacucho, however, I was not able to implement my original research design. First, I learned that ceramic production in the community of Quinua was so complex and distinct from that of other communities that it merited its own intensive study. Quinua potters utilized a variety of decorative techniques to produce a diversity of vessel shapes which were used for utilitarian and ritual purposes. Other pottery-making communities in the Ayacucho Valley produced only utility wares which were most often undecorated. The unusual character of Quinua pottery was underscored by the fact that it was exported all over the world as an ethnic or third world craft. This market was graphically illustrated to me soon after I arrived in Peru when I remembered having seen a display of Quinua pottery in a department store (Carson, Pirie, Scott and Company) in downtown Chicago a year-and-a-half earlier.

A second factor that influenced the decision to change my research design was the unique character of the culture history of the region. Besides having such unusual and complex ceramics, the village of Quinua was only a few kilometers from the ancient site of Huari, a massive urban settlement which was the capital of one of the largest pre-Inca states in ancient Peru. Huari had been the source of several polychrome styles which were among the most complex in the central Andes and some of the modern Quinua potters live directly across a canyon from the site. The uniqueness of Quinua pottery in the Ayacucho Valley and the closeness of its potters to Huari suggested that there may be an important link between the modern potters of Quinua and the ancient potters of Huari that was not shared by other potters in the valley.

A final reason for changing my original research design was more practical. Another anthropologist (William P. Mitchell) was working in Quinua on a very different project and he offered me a corner of his room to put my sleeping bag. Mitchell ate his meals with a local family headed by a potter and he suggested that I might be able to eat with them as well. The prospect of having my need for food, shelter and informants met so easily was too good to refuse.

With my research site and research topic radically changed, I set about studying pottery production in Quinua. Basic description seemed like a good place to begin, but much to my frustration, I soon discovered that most, if not all, potters were not making pottery. I had arrived in the midst of the rainy season (mid-February). Travel was difficult because of the rain and mud. Rain fell almost every day turning streets into a sea of mud which stuck to my boots like glue and made walking along narrow mountain paths an experience comparable only to mud wrestling. Slipping and sliding my way through the community was a frustrating experience. There was little sunshine; fog and mist often blanketed the area during the day making the climate depressing. The rain also caused frequent landslides, cutting Quinua off
Preface

from bus and truck traffic to and from the city of Ayacucho and complicating trips to obtain supplies and mail.

I took some comfort from the fact that the Spanish conquerors had also found the rainy season miserable in Quinua. After founding the first Spanish settlement in the valley on or near the present site of Quinua in January of 1539 (Rivera Serna 1966), they abandoned it in favor of a lower and warmer location across the valley, citing the disagreeable climate as a reason.

Fortunately, Mitchell’s host and principal informant at the time was a potter. Unlike most potters who were also agriculturalists and made pots only in the dry season, Mitchell’s informant worked in the government-run artisan center for most of the year, but during the summer vacation (the rainy season of January–March), he made pottery in order to make extra money. He was not able to make much pottery during this time. But, even with the pottery he did produce, he still had to wait until April to completely dry and fire his vessels. Visits to households of other active potters during this time did not yield much data until late March and early April and even then, few potters were practicing their craft. Furthermore, most Quinua potters were also peasant farmers and needed to work in the fields during the rainy season. Most did not begin making pottery until the harvest was completed in late June which was just before I was scheduled to leave the field.

The early part of my research in Quinua was thus a time of great frustration. Few observations of pottery making were made. For years afterward I felt that much of my field work was a failure because of my inability to gather abundant data on pottery manufacture. These lingering frustrations and disappointments are one of the reasons for the long delay in the publication of this research.

Years after my field work in Quinua I began to evaluate my experiences more objectively. I was preparing some material for publication (Arnold 1972a, 1972b, 1975a, 1975b) and began to reflect on my data and the frustrating experiences of trying to observe pottery making during the rainy season. I began to realize that my research in Quinua had been colored by my field work two years earlier in Mexico which had also occurred during the rainy season. In Yucatan, the mornings were most often bright and sunny with rain falling almost every afternoon. Potters took great precautions to avoid drying and firing their pottery during rainfall. When it rained during firing (and it did frequently), potters also employed safeguards to keep their fuel dry and their kiln hot. Pottery production was thus still possible during the rainy season. Rainy weather did not prevent production, but just complicated it by delaying and/or extending the period necessary for drying and firing.

Pottery production in Quinua, however, was different. While heavy rains only prevented pottery production for relatively brief periods in Yucatan, fog and cool temperatures were the factors which precluded pottery production in Quinua. It was not the amount nor the intensity of the rainfall that was important, but rather the number of daylight hours with rain, cool temperatures and fog. The moisture from fog and rainfall drove the relative humidity so high that pottery and clay could not dry adequately. Cloudiness prevented the radiant energy from the sun from drying the pottery. Pottery that was made during the rainy season risked damage from leaky
Preface

roofs and prolonged drying. The climate thus made pottery making extremely difficult, if not impossible, and few ceramics were made during the rainy season. Any vessels that were made could not be fired.

Much to my surprise, I discovered that my inability to observe pottery production during the rainy season in Quinua was itself a very important observation. Weather and climate had a significant effect on pottery production. Further, the scheduling of subsistence activities (like agriculture) could preclude ceramic production among part-time household potters who were also farmers. Weather and climate patterns were thus important limiting factors which prevented the development of full-time ceramic specialization in Quinua and were probably important variables in limiting production in areas with a heavy rainy season elsewhere in the Andes as well. These insights changed my view of ceramic production as I saw that what was important was not just production itself, but rather how it was tied to the environment and subsistence. These reflections and the events that stimulated them were pivotal in my thinking at the time and were one of the most significant factors that led to the development of *Ceramic theory and cultural process* (Arnold 1985).

My experience with the unpleasant rainy weather during the first two months of my field work in Quinua was confirmed by data from the weather station in the city of Ayacucho some 15 kilometers to the southwest (Rivera 1971). Ayacucho is lower in altitude and drier than Quinua, but the Ayacucho weather data do provide some indication of the precipitation patterns in Quinua. My perception that it rained almost every day during the first two months of my stay in Quinua was borne out by the meteorological data. During each of the months of February and March of 1967, there were only two days without rain in the lower and drier valley to the west (Rivera 1971: 41).

In retrospect, the rainy weather of February and March, 1967 proved to be atypically high for the nine-year period 1962–70 (Rivera 1971). Precipitation for these months was also atypically high for the ten-year period 1961–70. Again, these data came from the city of Ayacucho which was lower and drier than Quinua, but they did reveal an abnormally wet period *even in Ayacucho* during February and March, 1967! My experience with pottery production in Quinua thus could not be generalized to every year, but it was clear that weather and climate did affect ceramic production depending on the days with cloudiness, rain, fog, and high humidity.

The significance of the limiting effect of weather and climate on pottery production was reinforced even more during field work in Yucatan during the summer and fall of 1984. During the rainy season (June–September), potters dried their vessels in the sun in the morning. As the sky clouded up in the early afternoon, however, and the first drops hit the roof of the potter’s house, family members quickly removed green pots and drying clay from outside the house. Sometimes they arrived too late and pots were destroyed by the rain. At other times, vessels were damaged by movement in and out of the house.

As the rains tapered off in the fall, another problem loomed: hurricanes. During the late summer and fall of every year, low pressure areas arise out of the Caribbean and western Atlantic and head west and north. Few of these ever bring severely
Preface

destructive winds and rains to Yucatan like those which occurred with Hurricane Gilbert in September, 1988, but these low pressure cells include massive cyclonic bands of heavy clouds which are hundreds of miles in diameter. These cloud bands often extend over the northern Yucatan Peninsula bringing cool temperatures and heavy cloudiness. One may not see the sun for days on end. Often this cloud cover may be accompanied by constant rainfall over a period of several days.

These weather patterns completely disrupt the pottery-making process and eliminate a week or more of production time. In the fall of 1984, Yucatan experienced a week of cool, rainy weather associated with the periphery of a tropical low pressure area. Household pottery production in Ticul largely stopped during this time. If this weather pattern strikes at an inopportune time in the production sequence, the potter can lose two to three weeks of economically productive time. Normally, potters are on a two-week cycle from the time they obtain the clay until they receive payment for their fired vessels. If these massive tropical depressions occur when the potter needs clay, he must first wait until miners can dig the clay. Since clay is extracted in deep subterranean mines which are subject to the collapse of overburden, clay mining is dangerous during unpredictably rainy weather, and occurs only after the persistent rainy weather passes. The potter must wait until the miners make their weekly clay delivery. He must then dry his clay in the sun for two days even before he can begin making pots. Finally, he faces the problem of drying newly formed vessels in the sun.

For those household potters of Ticul who depend on their craft to make a living, adverse weather is a factor contributing to their poverty. For those on a regular salary who are only inconvenienced by bad weather, it is hard to understand the devastating effect of such delays on a household that requires regular ceramic production to maintain the minimum subsistence level. When potters live on the edge of poverty with no accumulated capital for such low periods, the loss of two weeks of economically productive time can be crippling to a family with several mouths to feed. This problem can only be mitigated by the investment in larger houses, workshops and drying sheds or by being hired as a wage laborer in a workshop that has these facilities.

In Quinua, the weather and climate thus radically affected my research strategy for describing ceramic production. The frustration with the climate in Quinua and the relative dearth of production data collected in the early weeks of my field work led me away from a focus on ceramic production. Early in my research it became clear that Quinua pottery was unique in the valley primarily because it was elaborately decorated. Observation revealed that it was painted in three different decorative schemes and was used locally to celebrate local rituals and to store and carry food, water and other liquids.

In the late 1960s, the archaeological community in the United States had been excited by the work of Longacre (1964) and Deetz (1965) who had tried to demonstrate that designs on ancient pottery could reveal ancient patterns of social organization. Realizing that the link between design and social organization needed to be tested ethnographically, I began to collect design data on every vessel that I
saw in use in Quinoa. During the early weeks of my field work, Mitchell told me that land tended to be inherited patrilineally and post-nuptial residence patterns tended to be virilocal. Furthermore, men were potters and learned to make their designs from their father (Mitchell 1991a: 62). Both men and women, however, painted the pottery, but men controlled the content of the designs painted by their wives. Since potters could recognize the author of a pot by its painted style, my residence in Quinoa provided a natural opportunity to test the hypothesis that patterns of learning and post-nuptial residence were expressed in the design of the pottery. To adequately test this hypothesis, however, it was necessary to collect provenance information on the potter who made the vessel, how he learned the craft and the location of his residence as well as data on the pottery design itself. Although some of this type of data were collected, it was impossible to collect the same kind of data for every vessel observed. Some vessels were in use and their producer was unknown. Furthermore, given the limitations of climate on ceramic production and the subsequent scheduling conflicts of pottery making with agriculture, the sample size for well-provenanced vessels was too small for analysis. My lack of facility in Quechua further complicated these problems. Informants had said on occasion that each subsection of the community had its own ceramic style, but I was never able to obtain enough design data from known potters in these different subsections to verify such statements empirically.

Nevertheless, the Deetz/Longacre hypothesis was far more complex than just the learning of specific designs by potters who followed a particular inheritance and post-nuptial residence pattern. The Quinoa design data indicated that ceramic design was more complex than simple counts of design elements (Longacre 1970; Hill 1970). Moreover, decoration was not limited to a single design zone on a pot (e.g. Deetz 1965). While the pioneering efforts of Deetz, Longacre and Hill have enlarged the horizons of the kinds of inferences that could be made from ceramic analyses, the assumptions about the nature of ceramic design in these works were still untested in 1967. The organization of the Quinoa designs revealed that the design structure on ceramic vessels was complex and required attention to a greater variety of variables (like vessel shape, design fields, design zones and symmetry patterns) than just the design elements. When the analysis took these variables into account, important ethnographic insights emerged about the relationship of the designs to the community.

During my research in Quinoa, there were about forty households of potters in the community. This number was compiled from my own list of potters, Mitchell’s list and from a survey of pottery-making households in the community conducted by the Quinoa artisan center. I visited nineteen of these households and my research consisted primarily of questioning potters and observing their work. Most of the interviews and observations took place in the rural pagos of Llamahuilca and Lurinsayuq. Few households were visited in the pago of Muya. Some observations of pottery making were also made at the artisan center in the village of Quinoa. Since the potters at the center utilize several innovations not shared by other Quinoa
Preface

potters, this book describes the technology of the artisan center potters separately from that of the rest of the potters in the community. Besides observations of pottery production, I collected samples of raw materials from potters. Sources of clay, temper, and paint were also visited and samples were collected from these locations. Many visits were made to the Quinua and Ayacucho markets, observing especially the kinds of pottery present and the nature of the transactions used for selling pottery. I also visited the markets in Huanta and Huamanguilla for the same purpose and these visits (as well as those to the Quinua and Ayacucho markets) enabled me to observe those vessels fabricated and marketed exclusively for local consumption. These observations helped me to see which shapes were actually the most useful and popular with the local populations, and to ascertain the designs that potters used on these vessels. This approach aided me in limiting the focus of my analysis largely to the decorated utilitarian pottery made in Quinua rather than describing all of the pottery produced there. I also visited the pottery-making areas near Luricocha, the pottery-making barrio in the city of Ayacucho and collected as much information as I could about pottery-making communities outside of Quinua.

I also recorded the designs of many of the vessels which were being sold in the local stores of Quinua. Most of this pottery did not include the shapes described in this work, but some shapes in these stores were identical to those sold in markets elsewhere in the valley. Hence, vessels from these stores provided information on design supplementary to information obtained from potters or from pottery observed in the local markets.

When I returned to Urbana in 1967, I submitted my samples of ceramic raw materials to Dr. B. F. Bohor of the Illinois Geological Survey (now at the United States Geological Survey in Denver) for analysis by X-ray diffraction. This technique had been used on the ceramic raw materials I collected in Yucatan and had confirmed a relationship between the potter’s knowledge of his raw materials and their mineralogical composition. Since the samples from Quinua were collected by potters using their own selection criteria, I was interested to see if the Quinua potter’s knowledge of his raw materials corresponded to the mineralogy of these substances. In addition to the X-ray diffraction studies, I also separated plastics from non-plastic materials physically by using a 44 micron screen and then examined the larger fraction using a binocular microscope.

An incomplete analysis of the design data served as the basis for my dissertation (Arnold 1970), which contains the raw data. A more thorough analysis began around 1975, was largely completed in 1979 and then reanalyzed in the 1980s. The raw data used for the design analysis in this work can thus be found in my dissertation (Arnold 1970).

It was always tempting to postulate a cultural historical relationship between the modern and ancient potters of the valley. The close proximity of Quinua to Huari and the unique character of Quinua ceramics seemed to make historical continuity between the two communities probable. It was equally tempting to relate the modern pattern of ceramic technology to the Inca conquest of the region. During my research in Quinua, I learned that Tom Zuidema had discovered that the Incas
Preface

had placed colonists in the Quinua region from the town of Acos located southeast of the Inca capital of Cuzco. Since none of the other pottery-making communities in the Valley were known to be colonists from Acos, Zuidema thought that the Acos Indians may have brought knowledge of pottery production with them to Quinua. Thinking that the modern Quinua ceramic production may thus have its origin in Acos rather than the ancient site of Huari, I decided, upon the urging of Dr. Zuidema, to visit Acos. I wanted to find out if the people of Acos made pottery and, if so, whether there was any similarity of the Acos pottery to the contemporary pottery of Quinua. Could the origin of Quinua ceramic production be found in Acos?

The journey to Acos was a great lesson in Andean ecology and the difficulties that the Incas must have faced in moving their colonists over some of the world’s most difficult terrain. Even with modern transportation, the 250 km from Quinua to Acos was an arduous five-day journey. I traveled overland to Andahuaylas (thirteen hours), then to Abancay (about six more hours), and finally to Cuzco (six additional hours). Another day was required to travel from Cuzco to Acomayo and part of another day from Acomayo to Acos. During the first leg of the trip to Andahuaylas, the bus zigzagged up and down mountains from snowstorms to subtropical river valleys with xerophytic vegetation and groves of bananas and oranges. During the next leg of the trip from Andahuaylas to Abancay, the lights of Abancay twinkled in the valley below hours before we arrived by road. The only part of the journey which was not characterized by up and down travel was the relatively short hour-long trip across the flat Plain of Anta and through the Urubamba/Vilcanota Valley near Cuzco. Not included in the difficulties of such a lengthy trip were the problems with the accoutrements of industrial civilization: a punctured gas tank, an overheated radiator and two flat tires (one with no spare).

After a difficult five-day trip from Ayacucho, I arrived in Acos one afternoon in early June, 1967. Unfortunately, there were no potters in Acos nor in the surrounding area, but there were several archaeological sites nearby. So, I spent three days in the community doing a brief archaeological reconnaissance and collected small surface samples of ceramics.

I have abandoned the possibility of ever finding a direct culture historical link between Quinua potters, on the one hand, and Acos and/or Huari potters, on the other. Nevertheless, the close proximity of Quinua and Huari suggest that much could be learned about the ancient ceramic production of the Valley by means of a detailed study of the modern ceramics of Quinua.

I returned to Quinua for a very brief visit in June, 1978 and in April, 1979. I had always wanted to return to Quinua and obtain the provenance data for decorated vessels along with kinship diagrams and residence information that were necessary to adequately test the Deetz/Longacre hypothesis. After the analysis of my 1967 data, the prospect of obtaining adequate data to accomplish this task looked very promising. The aim of the 1978 trip was to briefly assess the situation in Quinua and lay the groundwork to return in the future and collect the data necessary to test the relationship of ceramic design to patterns of learning, residence and descent.
Preface

Unfortunately, about a year after my 1979 visit, the political situation deteriorated in the Department of Ayacucho because of the activity by the “Shining Path” guerrilla movement (the Sendero Luminoso). A number of attacks were made on villages in the Ayacucho region killing peasants and village officials. These attacks continued for the next several years. Mitchell reported that Quinua itself had been attacked once and a policeman killed. In August of 1984, there was a news report of a mass grave discovered in the town of Huanta 10 km from Quinua (France Presse 1984). Missionary reports listed other massacres not covered by the secular press. Ayacucho has been under a state of emergency for much of this time and further visits to Ayacucho have been very dangerous. Serious ethnographic work has been out of the question. Since this writing project began (about 1982), the situation in Ayacucho (as well as in Peru) has deteriorated and does not look as if it will improve in the near future. Any return to Quinua to complete the work begun in 1967 is extremely unlikely. Therefore, I consider my research in Quinua finished and provide this work as a general summary of my results.

There is a bit of irony for me in the recent guerrilla activity in the Ayacucho area. In early May, 1967, I visited the market in the village of Huamanguilla, about a two-hour walk from the village of Quinua. I had wanted to go to Huamanguilla to observe the pottery sold there and learn about the possible locations of other pottery-making areas outside of Quinua. I had only spent a few minutes in the market and had just begun my observations when a member of Guardia Civil (the police force in these rural areas) told me that the commander of the police post wanted to see me. I complied and he escorted me to the police station. Inside, the commander promptly asked me why I was in Huamanguilla. I explained my work, but unfortunately I had forgotten to bring my passport and my letter of introduction from the Casa de la Cultura in Lima which introduced me as a student researcher under the supervision of Professor Zuidema at the University in nearby Ayacucho. Because guerrilla activity had occurred in the region two years previously, the commander was concerned that I might be a guerrilla. After emptying my pockets and camera bag at his request, he asked one of his officers whether a jail cell was ready. He deliberated with another subordinate about telegraphing the police in Quinua to verify my claims, but after questioning me further and forbidding me to take photographs, he allowed me to leave. I suspect the absence of automatic weapons in my camera bag and hand grenades in my pockets were the most convincing evidence that I was not a guerrilla, but I shall never forget the lesson I learned: always carry some identification and letters of introduction with you when doing field work in an area where you are not known and then check with the local authorities before proceeding.

This incident has a double irony for me because it is now well documented that the “Shining Path” guerrilla movement had its beginning at the University of Huamanga in Ayacucho. Since I often interacted with University students there, I have occasionally wondered whether any of the students and faculty I knew are now members of the infamous terrorist group. The cautious acts of the Huamanga police were perhaps understandable, if not prophetic. The frightening potential
of this situation for foreign ethnographers is borne out by the detention and imprisonment of a North American anthropologist, Cynthia McNamara, in Ayacucho in 1987 (Lopez 1988).

The field research for this monograph was thus done in the pioneering years of ethnoarchaeology before many of the works cited in this volume were published. In 1967, there was a need for ethnographic studies of pottery production since very little of this kind of work had been done. This was before the word “ethnoarchaeology” had been rediscovered and before the current popularity of the subject. The great irony of this work is that although the research was done in 1967, it is more relevant today than it was twenty-five years ago. There is far more interest in ceramic ethnoarchaeology now than there was then. Nevertheless, if I were to study Quinua ceramic production today, I would approach it differently.

It was a struggle to find how best to represent the native words in an ethnography of which the readers may know neither the language nor the culture. In this work, I could have used a Spanish orthography which represents the dominant colonial culture of the Andes. Rather, I have chosen (with a few minor exceptions) to use an orthography that expresses the integrity of the highland people of Peru, the Andean Quechua. The orthography utilized for Quechua words in this work thus corresponds to published orthographies of Ayacucho Quechua that use three vowels rather than the five vowels used in Spanish (Parker 1965; Soto 1976). The “ll” used in Soto’s orthography, however, replaces Parker’s lambda for simplicity of transcription. When Spanish loan words are used, however, the text uses a Spanish orthography.

The field research upon which this book was based was my first experience in the Andes, and like many ethnographic experiences, it changed my life and left unforgettable memories. Through it, I learned much about the Andes and even more about anthropology. There was no greater teacher of Andean ecology than the experience of being there. I shall never forget the azure skies and emerald green fields that I could see from the balcony of my house after the end of the rainy season. Exhausting hikes in the high altitude (sometimes as high as 4,000 meters) and countless vistas of staggeringly beautiful Andean scenery remain a vivid memory. Visits to countless colorful Andean markets and rubbing my body down with DDT powder to keep off the fleas will be etched in my memory forever. The diurnal oscillation of temperature was no more graphically portrayed than when, after waking early one morning to wash and shave, I discovered that the water left outside the night before was frozen solid. And, then, three hours later, I wore only a sweater as I trekked along Andean roads and trails.

Most of all, my experience in Quinua taught me about the holism of anthropology. I learned the importance of refusing to be satisfied with reductionistic and narrow interpretations. Understanding another culture (even though that understanding may be very incomplete) best comes from immersion in a culture through the time-honored and classic ethnographic technique known as participant-observation. This kind of experience combined with an understanding of the environment, history and prehistory of an area provide a holistic perspective.
Preface

that is unique in the social sciences and creates special insight into human behavior.

Finally, this work represents a slice of life in Quinua that no longer exists. Cultural evolution, guerrilla activities, population growth, migration, religious change and a cash economy have changed Quinua irreversibly (Mitchell 1991a). Nevertheless, this work has much to say about the relationship of ceramics to environment and society which has relevance beyond Quinua, Ayacucho or Peru.