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CHAPTER 1

Diophantine approximation and manifolds

1.1. Introduction

Diophantine approximation is a more quantitative and general study of the den-
sity of the rationals Q in the reals R while a smooth manifold is locally diffeomor-
phic to Euclidean space. In this chapter, those parts of Diophantine approximation
and differential geometry needed are set out. The former is concerned mainly with
the inequality

<k,

_r
-

where £ is a real number and € is a small positive number depending on the
rational p/q, and its higher dimensional versions. In the metric theory, solution
sets of Diophantine inequalities are considered in terms of Lebesgue measure (a
knowledge of this is assumed). Because an exceptional set for which a result
is false can be of measure zero, this can lead to theorems, such as Khintchine’s
theorem below, having a strikingly simple yet general character. Moreover the
exceptional sets can in turn be analysed in terms of Hausdorff dimension. The
analysis becomes much more difficult when considering points on a manifold in
Euclidean space, as the coordinates are functionally related and so dependent.

Much of the material in this book is a further development of Sprindzuk’s mono-
graph [210] which, starting with a thorough discussion of Khintchine’s theorem
and its generalisations, goes on to a systematic account of the emergent theory
of metric Diophantine approximation on manifolds. J. W. S. Cassels’ tract [59]
contains a concise but comprehensive introduction to Diophantine approximation
and G. Harman’s recent book Metric number theory [115] has a wider scope which
includes brief accounts of Diophantine approximation on manifolds (Chapter 9)
and Hausdorff dimension (Chapter 10).

1.2. Diophantine approximation in one dimension

Dirichlet’s theorem is fundamental to the theory of Diophantine approximation.
The one dimensional form of the theorem states that for each real number £ and any
positive integer N, there exists a rational p/q with positive denominator ¢ < N,
such that

_p_1
‘{ q|<qN'

1
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2 1. DIOPHANTINE APPROXIMATION AND MANIFOLDS

Since ¢ < N, it immediately follows that

1
}5 - 17; <& (1.1)

If p and ¢ are not restricted to being coprime, then there are infinitely many
solutions, otherwise there are only finitely many solutions when & € Q (for further
details see [59], [114], [201]).

It is convenient to introduce some notation. As usual, N will denote the positive
integers 1,2, ..., Z will denote the integers, the integer part of the real number &
is the greatest integer at most £ and will be denoted by [£]. The fractional part
& —[€] of £ is non-negative and is written {£{}. A standard and simplifying notation
which places the denominator ¢ in the foreground is to write

€]l = min{|§ ~ r|: r € Z} = min{{¢}, {1 - £}},

so that (1.1) becomes ||g¢]] < 1/q. Note that || + ¢'|| < ||€]| + ||€']| and that
[I7€ll < |r|||€]| when r € Z. The symmetrised fractional part of £ defined by

A3, when 0 < {£} <1/2,
€ = {{5} —1 otherwise,

lies in (—1/2,1/2] and satisfies ||| = |(£)|- Given positive real numbers a, b, the
Vinogradov notation

ak<bor b>a

is used for a = O(b), i.e., when a < Kb for some positive constant K. If a < b
and a > b, a and b are said to be comparable, denoted by a < b.

1.2.1. Approximation functions. More generally, let 1/: N — R* be a pos-
itive function (R* = {z € R: z > 0}) where ¥(¢) — 0 as ¢ — oco. Let X C R.
We will write ¢ (X; 1) for the set of £ € X such that the more general inequality

llg€ll < ¥(q) (12)

holds for infinitely many positive integers g, i.e.,
X (X;9) ={€ € X: ||¢€]| < ¥(g) for infinitely many q € N}

first studied by A. I. Khintchine [134]. Points in J¢(X;%) will be called -
approzimable. When the set X is clear from the context, we will usually omit
reference to it and write simply ¢ (¢). The function 9 will be called an approz-
tmation function and will often be taken to be monotonically decreasing (we will
usually omit the term monotonically) as well. Note that ¥(q) < 1/2 when q is
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1.2. DIOPHANTINE APPROXIMATION IN ONE DIMENSION 3

sufficiently large. We will make much use of the observation that the set ¢ (X;)
and its generalisations are ‘lim-sup’ sets as

H(X;¢) ={€ € X: § € Byy(q) for infinitely many g € N}

N U Bug(a) = h;]njoliPBw(N)(N),

N=1qg=N

where Bs(q) = {£ € X: ||¢€]| < é6}. In particular they are Borel sets [100].

The expression ||£|| is invariant under translation by integers so that given any
integer r, £ + r satisfies (1.2) if and only if £ does. Thus J#([0,1] + r;¢) =
A([0,1];¢) + 7 and

H(Ryv) = (H([0,1];9) +7).
reZ

When considering the measure of the set of ¥-approximable real numbers, there
is of course no loss in generality in considering points in any (proper) interval.

In the important special case when ¢(q) = ¢7%, we write %, (X) for £ (X;);
thus

Ho(X) ={ € X: ||g€]| < ¢~ for infinitely many ¢ € N}.
Dirichlet’s theorem implies that ¢ (R) = R. Points in J,(R) are called v-

approximable; there should be no confusion with -approximable points. If a
point lies in %, (R) for some v > 1, it is called very well approzimable [201]. Thus
the set of very well approximable points is the union of v-approximable points for
v > 1. The related set K, (X) is defined as follows. For each £ € R, let
w(§) = sup{w € R: £ € A,(R)}
(w(&) = 1 by Dirichlet’s theorem). For any set X C R and v € R, write
Ku(X) = {€ € X: w(€) > v}, (13)

It is readily verified that #,(X) C K,(X) C J#,_.(X) for any € > 0. The nature
of the approximation function in K,(X) enables one to analyse K, (X)), the set of
€ with w(€) = v (see §3.5.6).

1.2.2. Badly approximable numbers. A number ¢ is badly approzimable if
there exists a positive constant K = K (§) such that

g€l > K/q

for all ¢ € N, 4.e.,if ||g€]] > 1/q (but see the Notes and [210, p. 67]). The set
of badly approximable numbers will be denoted by 9. By Hurwitz’ theorem, for
each £ € R the inequality
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4 1. DIOPHANTINE APPROXIMATION AND MANIFOLDS

holds for infinitely many positive integers g. However, the constant 1/4/5 can-
not be reduced for numbers ¢ equivalent to the golden ratio (v/5 — 1)/2. These
numbers are thus badly approximable (see [59],[114] for further details). Badly
approximable numbers are important in applications, particularly in stability ques-
tions for certain dynamical systems (see Chapter 7), but they are amply covered
in [201] and so will not be discussed in any detail.

1.2.3. Khintchine’s theorem. The behaviour of the sum 22, 9/(q) gives an
almost complete answer to the solubility of the inequality (1. 2) First we need
some terminology. A set of Lebesgue measure 0 will usually be called null; the
complement of a null set is of full measure and will usually be called full. As usual
we will say that almost no points belong to a set if it is null while if a set is full
we say that it contains almost all points. The Lebesgue measure of a set X will
be denoted by |X]|.

THEOREM (KHINTCHINE). Lety : N — R* be a function. If the sum Y02, 1(q)
converges, then ¢ (R ;) is null, while if the sum diverges and ¢ is decreasmg,

K (R; ) is full.

Proofs can be found in [59, Chapter VII], [115, Chapter 2] and [210]. In the case
of convergence, the result essentially follows from the Borel-Cantelli lemma. Since
Cantelli pointed out that the total independence of the events was not needed for
convergence (64, p. 507], we will refer for brevity to the convergence part of the
lemma as Cantelli’s lemma. This will now be stated and proved as it will be used
repeatedly throughout.

LeEMMA 1.1 (CANTELLI). Let (2, ) be a measure space with u(S2) finite and let
A;, j €N, be a family of measurable sets. Let

o = {w € Q: w € Aj for infinitely many j € N}
and suppose the sum Y52, p(A;) < 0o. Then pu(Ax) = 0.

PROOF. It is readily verified that A can be written in ‘lim-sup’ form as

s
. L8

1j

It follows that for each N =1,2,..., the family {A;: j > N} is a cover for the set
Aco, 50 that A C U2y Aj, whence

H(Aw) < i u(A;).

But the sum 352, u1(A;) converges whence the tail 332 v pu(A;) of the series can
be made arbitrarily small and so p(Ax) =0. O
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1.3. APPROXIMATION IN HIGHER DIMENSIONS 5

For each N =1,2,..., the family {A;: j > N} will be called the natural cover for
Ao

To deduce Khintchine’s theorem in the case of convergence, we recall that with-
out loss of generality we can restrict ourselves to the set [0,1]. Take = [0,1]
and 4 to be Lebesgue measure. Any point in the set J¢([0,1] ;%) lies in infinitely
many sets Byg)(q), where

Bite) = (€ € 011 faell <0} = U (2= 2.2+ S o

and the family {Byg)(q): ¢ € N} is a natural cover for #'([0,1];v). Each Bs(q)
is a union of ¢ + 1 open intervals. By adding up the lengths of the intervals it
can be seen that |Bs(q)| < 26 (with equality when § < 1/2). Hence the sum
Yq |Byg)(@)] < 23,%(q) converges and the result follows from Cantelli’s lemma.
The case of divergence is harder and a monotonicity condition on the approxima-
tion function ¢ is required (more details are in [59], [115], [210]); a brief discussion
of the more general theorem is in §1.3.4 below.

The theorem corresponds to our intuition since if the approximation function
is large then there is a better chance of the inequality being satisfied. Since the
sum Y22, 7~ converges for v > 1 and diverges otherwise, Khintchine’s theorem
implies that the sets J,([0,1]) and K,([0, 1]) are null or full according as v > 1
or v < 1 respectively (in the latter case they are both the real line by Dirichlet’s
theorem). Less obviously, the theorem shows the Lebesgue measure of the set of
& € [0,1] such that (1.2) has infinitely many solutions is 1 when 1(q) = 1/(qlogq)
and 0 when ¥(q) = 1/(g(log q)}*¢) for any positive . This ‘zero-one’ property is
a feature of the metric theory and reflects the links with probability and ergodic
theory.

The theorem also implies that the set B of badly approximable numbers is null.
For given any K > 0, the sum 3" (K/q) diverges and so by Khintchine’s theorem
the set of real numbers ¢ satisfying ||g€|| < K/q for infinitely many ¢ € N is full.
Thus the complementary set V(K) of £ such that ||g€|| > K/q for all but finitely
many q is null and evidently increases as K decreases. From its definition,

Bc | V(K) =

K>0

V(1/N),

1

TCs

a countable union of null sets, whence B is null.

1.3. Approximation in higher dimensions

The inequality (1.2) can be generalised to higher dimensions. To describe these
generalisations concisely, we set down some notation. Throughout, m,n and N
will be positive integers, k, p, g will be integers and ¢q will usually be taken to be
positive. Integer vectors in Euclidean space will always be written with a bold
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6 1. DIOPHANTINE APPROXIMATION AND MANIFOLDS

font, thus q € Z*. The height or supremum norm |€|,, of the vector £ € R™ will
be denoted by |£], so that

€] = max{[&,,. ., [€al}-

To some extent in number theory the height replaces the usual Euclidean norm
which will be written |€],. The inner or scalar product of two vectors ¢ and ¢ will
be written £ - (. The symmetrised fractional part of a vector & = (£;,...,&,) in R®
is defined by

(€ = (&), (€n)) € (-1/2,1/2]" (1.4)

and should not be confused with the inner product. Note that there is a unique
ke € Z" such that £ — ke = (§).
The system

&y + -+ Emamj, 1< j<n,

of n real linear forms in m variables i, ..., &,, will be written more concisely in
matrix form as £ A, where £ € R™ and where by juxtaposing the m rows, the
m x n real matrix A = (a;;) is regarded as a point in R™, i.e., the space of m x n
real matrices is identified with R™". The inequality (1.2) can be generalised to the
system of inequalities

Hqraij + -+ + Gmamg)| = lq1ay; + -+ - + gman; || <¥(la]), 1<j<n

Using the notation above, this system can be expressed as

KaA)| < ¥(lal). (1.5)

Matrices satisfying this inequality for infinitely many integer vectors q are called
Y-approzimable [127]. The extension of Dirichlet’s theorem to higher dimensions
as a system of simultaneous inequalities involving linear forms is now stated.

THEOREM 1.2. Let A = (a,-j) be an m x n real matriz. For each real N > 1,
there exists an integer vector q € Z™ with 1 < |q| < N such that

[{qd)| < N7/,

Proofs using Minkowski’s linear forms theorem are in [59, p. 13, Theorem VIJ;
similar results using box arguments are in [114], [201].

1.3.1. Khintchine’s transference principle. Simultaneous and dual Dio-
phantine approximation are related by a ‘transference’ principle in which a solution
in one form is related to a solution in the other form (or more accurately, the form
associated with the transpose of the matrix of coefficients). This principle enables
information about linear form inequalities and simultaneous Diophantine approx-
imation to be interchanged to a certain extent. In particular it links simultaneous
Diophantine approximation on the rational normal curve

V=M~ (") te 1) (1.6)
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1.3. APPROXIMATION IN HIGHER DIMENSIONS 7

over the interval I with the dual form and so with the distribution of small values
of integral polynomials P(t) = ap + a1t + - -+ + ant™, ag,...,an € Z for t € I
(see §1.4.4).

THEOREM (KHINTCHINE’S TRANSFERENCE PRINCIPLE). Suppose the coordin-
ates of &€ = (&,...,&) € R™ are irrational and let w(€) = 0, W'(§) > 0 be the
respective least upper bounds of the real numbers w, w' for which the inequalities

lgrés + - - + gnénll < (max |g;])™"7,

= —(1+w')/n
max llg&ll = (e€) < ¢

have infinitely many integer solutions. Then

w(§)
n2 4+ (n — 1)w(§)

with the obvious interpretation if w(§) or W'(§) is infinite.

<W'(§) Sw(§)

For a proof, see [59, Chapter 5, Theorem IV]. This transference principle implies
that given any ¢ > 0, if £ = (&4,...,&,) satisfies |[{q-&)| < |q|™ ¢ for infinitely
many q € Z", then for some ¢’ comparable to ¢, |(g€)| < ¢~1*¢)/" for infinitely
many q € Z, and vice versa. Note that the smaller the modulus of w,w’, the more
complete is the interchange of information.

1.3.2. Two forms of Diophantine approximation. We will be concerned
mainly with the two special cases of the general inequality (1.5), namely when A
is a 1 x n real matrix or a n x 1 real matrix (in both cases we regard A as a vector
in R™). A natural question is whether in higher dimensions, subsets such as curves
or surfaces, enjoy arithmetic approximation properties corresponding to those for
real numbers and R".

Let £ € R™ and suppose ¥(q) < 1/2 for all sufficiently large ¢ € N. First, a
point ¢ satisfying the system of simultaneous inequalities

[(g€)| = max{|lg&il], .. ., lgéall} < ¥(a) (L.7)
lies within (in the sup metric) (q)/q of the point p/q, i.e.,

§e{zeR": |z—p/q <¥(q)/q},

where p € ¢€ + (—¥(q),%(g))™ and is unique when ¥(g) < 1/2. Given a set X in
R™ (later X will be taken to be a manifold), the set of z € X satisfying (1.7) for
infinitely many positive integers ¢ will be denoted by

L(X;¢) ={€ € X: |{g€)] < ¥(q) for infinitely many g € N}. (1.8)

Points in . (X;) will be called simultaneously v-approzimable.
Secondly we consider the ‘transposed’ or ‘dual’ inequality

Ha-&L=lla-&ll = g + - + g&all < %(lal), (1.9)
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8 1. DIOPHANTINE APPROXIMATION AND MANIFOLDS

involving the linear form |q-¢||. Here the point £ is within (in the Euclidean
metric) ¥(]ql)/|qlz of the hyperplane

{z e R": q-z=p},

where p € q- £+ (—¢(]a]), ¥(]ql)) is unique when ¥(|q|) < 1/2. The set of £ € X
satisfying (1.9) for infinitely many integer vectors q will be denoted by £ (X; ),

LX) ={ € X: [{q-&] < ¥(q]) for infinitely many q € Z"}. (1.10)

Simultaneous Diophantine approximation has a historical priority and it is conve-
nient to refer to the last inequality as the dual inequality. Thus points in £ (X; ¢)
will be called dually -approzimable. When there is no risk of confusion, we will
refer just to ¥-approximable points. Note that .%(X;v) and £ (X ;) are lim-sup
sets and that when X C R, S (X;¢) = Z(X;¢) = H (X;¢).

In the important case when ¥(r) = r7, we write #,(X) for Z(X;v) for
L(X;). The sets .#,(X) and .%,(X) decrease as v increases and when X = R"
are null for v > 1/n and v > n respectively [59, Chapter 1]. A point in .%,(X)
will be called simultaneously v-approzimable and a point in %, (X) will be called
dually v-approximable. By Khintchine’s transference principle, if a point in R” is
simultaneously v-approximable for v > 1/n, then it is dually v’-approximable for
some v’ > n, and vice versa. When v is close to 1/n, v/ is close to n but, as v gets
larger, v gets much further from n and indeed

U X)) = U % (X). (1.11)

v>1/n v>n

Points in this set are called very well approzimable and the set of such points in
X is a countable union of the sets 7 41/ (X) 08 Lgryr(X), 7 =1,2,....

Dirichlet’s theorem in higher dimensions specialises to simultaneous Diophantine
approximation and to the ‘dual’ linear form.

COROLLARY 1.3. For each & = (&1,...,&,) € R™ there exist
(a) an integer ¢ with 1 < ¢ < N and a vector p € Z" such that

g€ —p| < N7V" (1.12)
and there are infinitely many positive integers q such that
a&)l <q V",
(b) an integer vector q € Z"™ with 1 < |q] < N and an integer p such that
lg-§{—pl<NT"
and there are infinitely many q € Z"™ such that

la-&lf < lal ™
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1.3. APPROXIMATION IN HIGHER DIMENSIONS 9

Hence any point in R™ is simultaneously (1/n)-approximable and dually n-approx-
imable, so that for any X C R", & /,(X) = £, (X) = X.

The notion of a badly approximable number can also be extended to Euclidean
space. The point £ € R™ is badly approximable if there exists a positive number K
such that

(g€)| = Kq~'/m

for all ¢ € N; or equivalently by Khintchine’s transference principle if there exists
a K’ > 0 such that

la-&ll = K'lal™

for all non-zero q € Z™. The set of badly approximable points in Euclidean space
is null [59, Chapter 1].

The Diophantine approximation considered so far has been homogeneous. The
rather different inhomogeneous approximation where for example given o € R,
one considers the inequality |¢§¢ — p — a| < ¥(g), will not be covered but some
further details and references are in the Notes at the end of this chapter and of
Chapter 3.

1.3.3. Order and exponents of approximation. A real number ¢ which
for some K > 0 satisfies the inequality
K
e-2l<=
q q"
for infinitely many rationals p/q is called (rationally) approzimable to order n [114,
411.2]. Thus if £ is rationally approximable to order r + 1, the inequality

lle€ll < Kq™"

holds for infinitely many positive integers q. By Dirichlet’s theorem every real
number can be approximated to order 2. This definition extends naturally to any
real exponent and to simultaneous Diophantine approximation and the dual form.

Information about points with exponent of approximation v can be obtained
when the approximation function 1(q) is a power of the form ¢Y. Given a subset
X of R™ and a point £ € X let

we(§) =sup{w € R: € € F,(X)} (1.13)

p

we(€) =sup{w e R: £ € £, (X)}. (1.14)

Note that if X = R", then by Dirichlet’s theorem, w(£) > 1/n and we(§) = n.
When X C R™ and each real v, the set

S.(X)={¢€e X:ws(f) > v}

LX) {&e Xtwe () v}
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10 1. DIOPHANTINE APPROXIMATION AND MANIFOLDS

The sets S, (X) where wy () = v and we(£) = v respectively in the definitions
above, are higher dimensional versions of K.
Also 81/n(X) = L,(X) = X and it can be verified readily that for any € > 0,

Fo(X) € 8y(X) € Fpe(X) and Z,(X) C L(X) € Z-o(X).  (1.15)
When n =1, §,(R) = L,(R) = K, (R).
In order to have the same definition for both types of approximation, we say

that a point £ € R" is simultaneously approzimable to exponent v if there exists a
constant K such that

(g&) < Kq™
for infinitely many positive integers ¢; and is dually approzimable to exponent v if
there exists a K’ such that
la-&ll < K'lal™
for infinitely many q € Z".
It follows from Khintchine’s Transference Principle that for any X C R™,

1L /1= (1)) (X)] < [So(X)] < [Laan)—1 (X))
The order of approximation can be made more precise. The set
Sy(X) ={§ € S(X): we(§) = v}, (1.16)

where w g (z) is given by (1.13), is the set of points in X which can be approximated
simultaneously with exact exponent v (but order v+ 1). Similarly, for each v € R,
let

L,(X) ={§ € L(X): we(§) = v}, (1.17)

where w«(z) is given by (1.14). Then £ (X) is the set of points in X which can be
approximated dually with exact exponent v. The relationship between .#,, S, and
S, and between .%,, £, and L will be treated further in Chapter 3. The nature
of the sets S/ (X) and £ (X) allows their Hausdorff dimension to be determined
exactly (this is discussed in §3.5.6).

1.3.4. The Khintchine-Groshev theorem. A very general form of Khint-
chine’s theorem was obtained by A. V. Groshev (see [210, Chapter 1,85]). As in
the one dimensional case, this result gives precise information about the Lebesgue
measure of the set W(X; ) of ¥-approximable points in the set X when X is Eu-
clidean space or a hypercube (when X is clear, we write simply W (v)). Further
details are given in [83], [210].

THEOREM (GROSHEV). Let ¥ be a function from N — R*. Suppose the sum
> o ()" (1.18)
r=1

converges. Then almost no points A € R™ satisfy

aA)| < v (lal) (1.19)
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