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1 Truss Structures

1.1 Introduction

A truss structure, also called a pin-jointed structure, is a structure consisting of straight,

slender members, known as bars, connected by frictionless spherical joints. The joints

allow each bar to swivel and twist, unless these motions are restricted by connections

to other bars. Joints of this kind are an abstraction, as real connections are usually

rigidly jointed, but in fact many rigidly jointed structures can be usefully modeled as

pin-jointed. Changing the end conditions of the bars in this way has little effect on

the overall response of the structure, provided that the pin-jointed version of the actual

structure is kinematically determinate. This concept will be explained in Section 1.2.

Consider a structure whose straight members are made from a high-modulus material

and are rigidly connected to one another. Imagine releasing all of the rotational degrees

of freedom at the connections. This change will have little effect on the overall response

of the structure if the stress distribution in the constrained rotation members is mainly

axial, and so the bending and shearing stresses are a “secondary,” rapidly decaying effect

near the joints. This will generally be the case for a kinematically determinate structure.

The stiffness of this structure is mainly derived from its axial mode of action, where its

members are either in uniform tension or uniform compression, as the stiffness provided

by the bending mode of action is several orders of magnitude smaller.

Thus, the global behavior of the structure is fully captured by the pin-jointed model

of the structure, whereas its local behavior – which is important to determine local

stress concentrations, and hence to check the safety of the structure against fracture

and failure – needs a detailed stress analysis of the connections.

Figure 1.1 shows three planar structures used for a static equilibrium experiment by

the engineering undergraduates at the University of Cambridge: the geometrical layout

of the three structures is the same, but their construction is different. The first structure is

made of thin-walled, square section steel tubes with welded connections; the second is

made of extruded aluminum-alloy profiles bolted to gusset plates; and the third is made

of thin-walled carbon-fiber-reinforced-plastic (CFRP) tubes (made by winding a carbon

filament coated with epoxy onto a mandrel and curing the epoxy in a furnace) bonded

to aluminum-alloy joint fittings that are connected by steel pins.

During the experiment, the students measure the axial forces in the members of the

trusses by comparing the strain in each member of a truss to the strain in the directly-

loaded, vertical link under the truss – of identical construction to the rest of the truss.
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2 Truss Structures

Figure 1.1 Photographs of three truss models in Structures Laboratory at University of

Cambridge.

Figure 1.2 Idealized, pin-jointed model of truss structures shown in Fig. 1.1.

They find that the axial forces in corresponding members are practically identical.1 They

also find that the values of the axial forces can be accurately estimated by analyzing the

truss shown in Fig. 1.2.

1.2 Rigidity Theory

The key question that we want to deal with is whether or not a given pin-jointed

framework is rigid.2 This straightforward question is a surprisingly difficult one to

1 Note that this experiment is concerned only with the linear-elastic behavior of the three structures. If the

loads were increased into the nonlinear range, and up to failure, the behavior of the three structures would

no longer be identical.
2 By rigid we mean a structure that does not deform at all if is assumed that the bars are inextensional, i.e.,

do not change their length.
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1.2 Rigidity Theory 3

answer. Indeed, in many cases it can be answered in full only by carrying out a detailed

analysis, or by testing a physical model of the structure.

In two dimensions, i.e., for the case of structures that lie in a plane, the easiest way

of constructing a rigid truss is by arranging the bars to form a sequence of triangles.

A triangle consisting of pin-jointed bars is the simplest two-dimensional rigid structure,

and two triangles with a side in common also form a rigid structure in two dimensions

(but not in three dimensions, as one of the triangles can move out of plane by rotating

about the common side).

To extend this approach to three dimensions, i.e., to structures in a three-dimensional

(Euclidean) space, one can use the simplest three-dimensional structure that is rigid,

the tetrahedron (there will be more on this later), or alternatively one can form a closed

surface that is completely triangulated. These approaches are often followed in the

design of practical structures, but there are also many rigid structures that are not

triangulated. Hence, it is of great importance to have a general way of telling whether or

not a general three-dimensional structure is rigid. A general method to find the answer

computationally will be given in Section 1.5.

A simpler question, that can be answered much more directly, is whether a pin-jointed

structure contains a sufficient number of members to be rigid. The answer is to count the

total number of degrees of freedom of its joints and to subtract the number of degrees of

freedom suppressed by applying kinematic constraints to the joints, and by connecting

pairs of joints by means of bars.

In two dimensions, each joint has two degrees of freedom, corresponding to two

independent translation components, and hence for a structure with j joints the total

number of degrees of freedom is 2j . Denoting by k the total number of kinematic

constraints, where, for example, connecting a joint to a foundation counts as two because

it suppresses both translation components, and by b the total number of pin-jointed

bars – each bar counts one as it imposes a single “distance” constraint between the

joints it connects – we require that

2j − k − b ≤ 0 (1.1)

This is known as Maxwell’s equation (Maxwell, 1864). Consider, for example, the

structure shown in Fig. 1.3(a). It consists of four triangles, the first of which is

connected to a foundation, and hence it is obviously a rigid structure. Substituting

j = 6,k = 4,b = 8 (obviously, there is no need for a bar between the two foundation

joints) into Eq. 1.1 we obtain

2 × 6 − 4 − 8 = 0

Hence, we conclude that this structure has (just) enough bars to be rigid.

It is important to realize that a structure that has enough bars to be rigid may not

in fact be rigid, as its bars may be “incorrectly” placed. For example, if in Fig. 1.3(a)

we re-locate the bar bracing the left-hand square, so that the right-hand square is now

doubly-braced, as shown in Fig. 1.3(b), we obtain a structure that still satisfies Eq. 1.1

and yet is clearly not rigid. In this case we have a single-degree-of-freedom mechanism,

Fig. 1.4(a). A structure that admits no mechanisms is called kinematically determinate.
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4 Truss Structures

(a) (b)

Figure 1.3 Examples of two-dimensional pin-jointed structures that are (a) fully triangulated and

hence rigid, (b) a mechanism.
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Figure 1.4 Mechanism (exaggerated amplitude of a small-amplitude motion) and state of

self-stress of structure shown in Fig. 1.3(b).

Note that the doubly braced square on the right-hand side of the structure in

Fig. 1.3(b) admits a state of self-stress, i.e., there is a set of non-zero bar forces

that are in equilibrium with zero external forces, as shown in Fig. 1.4(b). A structure

that admits no states of self-stress is called statically determinate.

Denoting by m the number of independent mechanisms of a structure, and by s the

number of states of independent states of self-stress, for the structure of Fig. 1.3(a)

we have s = 0 and m = 0 (statically and kinematically determinate), whereas for

the structure of Fig. 1.3(b) we have s = 1 and m = 1 (statically and kinematically

indeterminate). Here, by independent we mean that if any mechanism is represented by

a vector, whose components correspond to the tangent motions of the joint, and any

state of self-stress by a vector whose components correspond to the bar forces, it is not

possible to obtain one of the vectors as a linear combination of the others.

So, Maxwell’s equation in the form of Eq. 1.1 is only a necessary condition for the

kinematic determinacy of pin-jointed structures, but not a sufficient condition. It will

be shown in Section 1.5 that the general, and most useful way, of writing Maxwell’s

equation is:

dj − b − k = m − s (1.2)
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1.2 Rigidity Theory 5

(a)

(b)

(c)

Figure 1.5 Examples of simple three-dimensional trusses (Pellegrino and Calladine, 1986).

where d = 2, or 3 depending on the dimensions of the (Euclidean) space in which the

structure is considered.

Consider the three-dimensional structures, d = 3, shown in Fig. 1.5. The tripod

structure in Fig. 1.5(a) has a single free joint plus three fully constrained joints; so j = 4

and k = 9. The unconstrained joint is connected by three non-coplanar bars, b = 3, to

the foundation joints. It has no states of self-stress, s = 0, as the condition for the joint

to be in equilibrium in three different directions without external forces requires that the

bar forces be zero. Substituting into Eq. 1.2 gives:

3 × 4 − 3 − 9 = 0 = m − 0 (1.3)

from which the number of mechanisms is m = 0.

Having established that s = 0 for the structure of Fig. 1.5(a), obviously s will remain

unchanged if a bar is removed, Fig. 1.5(b). Hence, for this structure j = 3, k = 6, and

b = 2. Substituting into Maxwell’s equation:

3 × 3 − 2 − 6 = m − 0 (1.4)

which gives m = 1. The mechanism involves a rotation of the two bars about an axis

passing through the two foundation joints, as shown in Fig. 1.5(b).

By an analogous argument, the structure of Fig. 1.5(c), which is obtained by adding

a bar to the structure of Fig. 1.5(a), has m = 0 and, from Maxwell’s equation, s = 1.

Figure 1.6 shows two examples of pin-jointed structures that are topologically iden-

tical to the structure in Fig. 1.5(a), i.e., they have the same numbers of joints, bars, and

constraints; but now the bars are coplanar. These structures admit a state of self-stress,

e.g., a tension in the two inclined members equilibrated by a compression in the vertical

member.
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6 Truss Structures

(a) (b)

Figure 1.6 Examples of pin-jointed structures that are both statically and kinematically

indeterminate. In (a) the three bars are coplanar and the three foundation joints are collinear

(Pellegrino and Calladine, 1986).

Since the left-hand side of Eq. 1.3 is unchanged, but now s = 1, here m = 1. In

both structures the mechanism is identical to that shown in Fig. 1.5(b), but whereas

Fig. 1.6(a) is a finite mechanism, in Fig. 1.6(b) only a small-amplitude motion of the

mechanism is possible. This is because the central foundation joint is aligned with the

other two in Fig. 1.6(a) but not in Fig. 1.6(b).

The truss structure in Fig. 1.6(b) is a simple example of an infinitesimal mechanism.

If a structure of this kind is made with infinitely rigid members and perfectly fitting

joints, it would admit only an infinitesimal motion of its mechanism. In practice, of

course, its members will be elastic and there will be some tolerance in the joints;

hence, the stiffness of the structure will be of a “lower order” than that of a normal,

kinematically determinate structure.

Note that in the mathematics literature on structural rigidity a rigid structure is any

structure that is either kinematically determinate or indeterminate but with mechanisms

that are only infinitesimal (Connelly, 1993). Engineers tend to use the definition of rigid

structures adopted here, which includes the smaller class that admit no mechanisms

at all.

The existence of structures with infinitesimal mechanisms was first discovered by

J. Clerk Maxwell (1864), but it was only more recently that it was realized that they

can be given a first-order (geometric) stiffness through a state of prestress (Calladine,

1986). This property has been successfully exploited in the design of prestressed cable

nets, see Section 3.2, and tensegrity structures, see Section 4.3.

1.2.1 Polyhedral Trusses

Figure 1.7 shows five trusses based on the five platonic polyhedra, more details of which

can be found in Appendix A.2.

The simplest of these structures is the tetrahedral truss; from Table A.1 j = 4,b = 6,

and k = 0. Hence, Maxwell’s equation gives:

3 × 4 − 6 − 0 = 6 = m − s (1.5)

Because there are only three noncoplanar bars meeting at each joint, for which three

equations of equilibrium can be written, the bar forces have to be equal zero if the
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1.2 Rigidity Theory 7

(a) Tetrahedral (b) Cubic

(c) Octahedral

(d) Dodecahedral
(e) Icosahedral

Figure 1.7 Regular polyhedral trusses.

external loads are zero. Therefore s = 0 and so, from Eq. 1.5, m = 6. Because the truss

has six rigid-body mechanisms as a free body in three-dimensional space, i.e., three

independent translations and three rotations, these are the only mechanisms of the truss.

Denoting by m′ the number of independent internal mechanisms, we have m′
= 0 for

the tetrahedral truss, i.e., it is internally rigid.

Next, consider the cubic truss, Fig. 1.7(b). From Table A.1, j = 8,b = 12, and k = 0;

Maxwell’s equation gives:

3 × 8 − 12 − 0 = 12 = m − s (1.6)

Because s = 0, which can be shown by the same argument as for the tetrahedral truss,

Eq. 1.6 gives:

m = 12
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8 Truss Structures

Table 1.1 Static and (internal) kinematic determinacy of polyhedral trusses.

Shape s m′

Tetrahedron 0 0

Cube 0 6

Octahedron 0 0

Dodecahedron 0 24

Icosahedron 0 0

of which six are rigid-body motions, as above, and the remaining six are internal

mechanisms. For example, six independent mechanisms are obtained by deforming

each square of the truss into a rhombus.

Repeating the same analysis for the remaining trusses it is found that m − s = 6

for the octahedral and icosahedral trusses, but m − s = 30 for the dodecahedral truss.

Then, since it can be shown that s = 0 for all of them – although the proof is not

straightforward for the octahedral and icosahedral trusses – it can be concluded that the

octahedral and icosahedral trusses are internally rigid, but not the dodecahedral truss.

These results are summarized in Table 1.1.

Note that the five trusses based on the platonic polyhedra can all be regarded as

tessellations of triangles, squares and pentagons on a sphere. Also note that only

the tessellations of triangles have turned out to be rigid; the cube and the dodecahe-

dron – consisting of tessellations of squares and pentagons, respectively – have many

mechanisms. This result was to be expected, in light of the earlier comment, in

Section 1.1, on the rigidity of triangulated surfaces.

1.2.2 Cauchy’s Theorem

The rigidity of a truss consisting of a tessellation of triangles that lie on a sphere follows

from a theorem proved by Cauchy, together with several other theorems for polygons

and polyhedra. Theorem 13 of Cauchy (1813) states that:

In a convex polyhedron with invariable faces the angles at the edges are also invari-

able, so that with the same faces one can build only a polyhedron symmetrical to the

first one.

Thus, every convex polyhedron with rigid faces will be rigid and, since the simplest

way of forming a rigid face with pin-jointed bars is to use a triangle, Cauchy’s theorem

can also be stated in the specialized form:

Every convex polyhedral surface is rigid if all of its faces are triangles.

An example of a truss whose rigidity follows from Cauchy’s theorem is shown in

Fig. 1.8. This structure has been obtained by considering arcs of great circles that join

the vertices of an icosahedron – which by definition lie on a sphere – and by locating

an additional joint at the mid-point of each arc. Then, each joint has been connected

www.cambridge.org/9780521432740
www.cambridge.org


Cambridge University Press
978-0-521-43274-0 — Forms and Concepts for Lightweight Structures
Koryo Miura , Sergio Pellegrino 
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press

1.2 Rigidity Theory 9

Figure 1.8 Truss structure obtained by adding a series of mid-arc nodes to an icosahedron. The

nodes of the original icosahedron are at the center of the pentagons.

with a bar to all of its neighbors. The resulting truss structure has j = 42, as 12 joints

coincide with the vertices of the icosahedron, plus there are 30 joints at the mid-points

of the great circle arcs. The number of bars is equal to twice the number of edges of

the icosahedron, E, plus three times the number of faces, F , whose values are given in

Table A.1. Hence b = 2E + 3F = 120. Maxwell’s equation gives m − s = 6 and, since

s = 0, the only mechanisms are the six rigid motions.

Despite the restriction in Cauchy’s theorem, that the surface should be convex,

mathematicians had conjectured for over 150 years that in fact all surfaces consisting

of triangles are rigid, even those surfaces that are not convex3. This was known as

the “rigidity conjecture,” which was finally proven to be wrong by a counter-example

devised by Connelly (1978).

Since it took so long to find a counter-example, we can safely state that “almost all”

triangulated surfaces are rigid. This means that one is very unlikely to ever encounter a

simply connected triangulated surface of any shape that is not rigid.

1.2.3 Flexible “Sphere”

Several examples of concave triangulated structures that admit an infinitesimal motion

were found over the years, but none whose motion was finite. Connelly’s discovery of a

counter-example to the “rigidity conjecture,” which he called a flexible sphere, led to the

subsequent discovery of several such structures by other authors. One of these examples

is shown next.

Figure 1.9 shows a model, made from the cutting pattern in Fig. 1.10: the pattern is

meant to be scaled up on a photocopying machine so that the edge numbers should be

lengths in centimeters. This gives a size that is easy to work with. On the pattern, curved

3 Note that the surfaces that we are considering here are simply connected, i.e., topologically identical to a

sphere. Toroidal surfaces, for example, are excluded.
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10 Truss Structures

Motion

Figure 1.9 Perspective view of Connelly–Steffen “flexible sphere” made from cutting pattern in

Fig. 1.10 (Dewdney, 1991).

6

8.5

5

5.5
2.5

2.5

2.5

2.5
6

6

5

5 5

6

1 cm
Fold up

Fold down

Join edges

6

6 6

6

6 6

2.5

2.5

2.5

2.5

5
5

5 5

5.5

Figure 1.10 Cutting pattern for Connelly–Steffen “flexible sphere” (Dewdney, 1991).

arrows indicate pairs of edges that should be attached, e.g., by leaving a tab on one side

and gluing it under the other side.

After making your own model, try rotating the upper triangle relative to the lower one

(not shown in Fig. 1.9): it will move without any resistance until two internal triangles

come into contact. Note that while the structure moves, there is no sign of it stiffening
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