Biophysical labeling methods in molecular biology

Physical labels such as stable nitroxide radicals, luminescent and photochromic chromophores, so-called Mössbauer atoms, and electrondense assemblies of heavy atoms have proved to be effective tools in solving many problems at the molecular level in biological systems. These physical labels are used as "molecular rulers" to measure the distances between chosen groups and to measure the size, form, and microrelief of objects. By providing information about these factors, the label provides information that can help the scientist to understand the structures of membranes, nucleic acids, enzymes, and proteins and how they function.

This volume covers all aspects of this field: the theoretical bases, the experimental techniques, and how to interpret the resulting data. It also critically discusses some recent results obtained with these techniques and gives an analysis of likely developments in the future.

Cambridge University Press 978-0-521-43132-3 - Biophysical Labeling Methods in Molecular Biology Gertz I. Likhtenshtein Frontmatter More information Cambridge University Press 978-0-521-43132-3 - Biophysical Labeling Methods in Molecular Biology Gertz I. Likhtenshtein Frontmatter More information

Biophysical labeling methods in molecular biology

GERTZ I. LIKHTENSHTEIN

Department of Chemistry, Ben-Gurion University Institute of Chemical Physics, Russian Academy of Science

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CBØØRU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

© Cambridge University Press

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published

A catalogue record for this publication is available from the British Library

Library of Congress cataloguing in publication data Likhtenshtem, G. I. (Gerts Il'ich) Biophysical labeling methods in molecular biology / Gertz I. Likhtenshtein. p. cm. Includes bibliographical references and index. ISBN 🛛 – 🗰 – 🗰 – 🗰 – Konger – Technique. I. Sign S. – State – Konger – State – Konger – State – Konger – K

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information regarding prices, travel timetables, and other factual information given in this work is correct at the time of first printing but Cambridge University Press does not guarantee the accuracy of such information thereafter.

Contents

Preface	page ix
Abbreviations	xi
1. The mathed of min labeling	1
1. The method of spin labeling	1
1.1. Introduction	1 3
1.2. Structure of nitroxide labels and probes	
1.3. ESR signals of NRs: magnetic parameters	6
1.4. Methods of measurement of the ESR signal parameters	10
1.4.1. Stationary methods	10
1.4.2. Pulse methods	17
1.5. Rotational diffusion of nitroxides	21
1.5.1. General	21
1.5.2. Elements of the theory of the ESR spectra of	22
rotating nitroxides	22 24
1.5.3. Very slow rotation	24 29
1.5.4. Slow-motion regions	29 31
1.5.5. Fast-rotation regions	31
1.5.6. Rotations in different regions	34
1.5.7. High-frequncy low-amplitude dynamics	30 37
1.5.8. Superslow motion	37
1.6. Nitroxides as dielectric, pH, and redox probes	
1.7. Nitroxides in ESR tomography	41
1.8. Spin traps	43
2. Double-labeling techniques	46
2.1. General	46
2.2. Effects of spin-spin interactions on the parameters of	
ESR spectra	48
2.2.1. Principal effects	48
2.2.2. On the parameters of ESR signals of paramagnetic 2.2.3. Spin-spin interactions in biradicals and polyradical	
and paramagnetic complexes of metals with	C 2
nitroxide ligands	53

v

vi		Contents	
	2.3.	Determination of the distance between spins	57
		The spin label–spin probe method	62
		2.4.1. General	62
		2.4.2. Selection of spin probes	66
		2.4.3. Investigation of steric, electrostatic, and exchange	
		effects	67
		2.4.4. Determination of the immersion depth of a radical	
		center	70
		2.4.5. NRs in oxymetry	71
	2.5.	Nuclear magnetic resonance of paramagnetic systems	74
3.	Flue	prescent labeling methods	80
	3.1.	General	80
		3.1.1. Absorption spectra	80
		3.1.2. Fluorescence and phosphorescence	83
		Chemical properties of fluorescent labels and probes	85
	3.3.	Rotational diffusion of fluorescent chromophores	93
		3.3.1. Depolarization of fluorescence	93
		Fluorescence and molecular dynamics of the medium	96
	3.5.	Study of local acidity and electrostatic and polar	0.0
		properties of biological objects	99
		3.5.1. Measurement of pH	99
		3.5.2. Measurements of electric charge density,	100
		transmembrane potential, and ion concentration	100
		3.5.3. Measurement of polarity: on the dynamic polarity scale	102
	36		102
3.6. Inductive resonance energy transfer as a meth		investigating structures and dynamics of biological	
		objects	104
		3.6.1. Mechanism of inductive resonance energy transfer	104
		3.6.2. Estimation of the distance between donor and	101
		acceptor groups	106
		3.6.3. Orientation factor	107
	3.7.	Dynamic quenching of fluorescence as an approach to	
		the study of molecular dynamics	111
	3.8.	Charge transfer complexes, excimers, and exciplexes as	
		luminescent probes	112
	3.9.	Study of slow translational diffusion: photobleaching	
		and fluctuation techniques	114
4.	Trij	olet labeling methods	116
		Peculiarities of triplet excited states	116
	4.2.	Structures and chemical properties of triplet probes	118

	Contents	vii
	4.3. Exchange interactions with participation of excited	
	triplet states: elements of theory	120
	4.4. Static exchange: experimental data	124
	4.5. Dynamic exchange processes	126
	4.5.1. Elements of theory	126
	4.5.2. Experimental data	127
	4.6. Photochrome probes	130
	4.7. The triplet probe-photochrome labeling method	133
5.	Mössbauer spectroscopy, electron scattering, and other	
	labeling methods	136
	5.1. Mössbauer labels	136
	5.1.1. Physical principles	136
	5.1.2. Dynamic effects in Mössbauer spectroscopy	139
	5.2. NMR probes	141
	5.3. Total tritium labeling technique	143
	5.4. Electron-scattering labels	144
	5.4.1. General	144
	5.4.2. Physical grounds	146
	5.4.3. Modification of biological objects by electron-	
	scattering labels	148
	5.4.4. Electron microscopy determination of shape and	
	size of electron-scattering particles	154
6.	Studies of proteins and enzymes: structure, dynamics, and	
	mechanism of action	158
	6.1. Active centers of enzymes	158
	6.1.1. Serine proteases	158
	6.1.2. Nitrogenase	161
	6.1.3. Dehydrogenases	166
	6.1.4. Cytochrome P-450	168
	6.1.5. Myosin and actin	170
	6.1.6. Other enzymes and proteins	171
	6.2. Conformational changes in proteins and enzymes	175
	6.2.1. Large-scale and allosteric conformational changes	175
	6.2.2. Transglobular conformational transition	177
	6.3. Molecular dynamic properties of proteins and enzymes	180
	6.3.1. General	180
	6.3.2. Experimental data	182
	6.3.3. Dynamics and functional activities of proteins	188
	6.4. Physical labeling as a tool for studying the electron transfer mechanism	195
	6.4.1. General	195

viii	Contents
VIII	Contents

		6.4.2.	Delocalization of spin density and local polarity	
			in proteins	196
		6.4.3.	Collisions between molecules: steric factor	197
		6.4.4.	Mechanisms of dynamic adaptation at electron	
			transfer	198
7	Sten	cture	and dynamics of membranes	201
7.			el membranes	201
	/.1.		Structure of model membranes: localization of	203
		1.1.1.	labels and probes	203
		712	Molecular dynamic properties and conformational	203
		1.1.2.	transitions in model membranes	209
		713	Mixed and protein-lipid model membranes	217
	72		gical membranes	221
	/ . <u></u> .		Erythrocyte membranes	221
			Sarcoplasmic reticulum	223
			Rhodopsin membranes	225
			Microsomes	226
			Acetylcholine receptor	228
			Membranes of chromatophores of photosynthetic	
			bacteria	229
		7.2.7.	Other membranes	231
8	Nuc	leic a	cids and other biological systems: biological assays	233
0.			eic acids	233
	0.1.		Modification of nucleic acids with physical labels	233
			Investigation of microstructure and	200
			conformational changes in nucleic acids	236
	8.2.	Polys	accharides	239
		-	Glycoproteins	240
			Cotton fibers and cellulose	241
	8.3.		labeled, physiologically active compounds	243
			tissues, organisms	248
			Distribution of labels: microcomponent	
			localization of cells	248
		8.4.2.	Redox properties of cells	250
	8.5.	Biolo	gical assays	252
	8.6.	Biolo	gical analyses	255
		8.6.1.	Biologically active ions and compounds	255
		8.6.2.	Immunological assays	259
С	onclu	ision		262
			266	
Ir				303

Preface

About 200 years ago the German poet and philosopher J. W. Goethe noted that Nature is not only a great artist but also a skillful master. The contemporary generation of scientists who work in the field of molecular biology can appreciate the external beauty of nature, the internal perfection of biological structures and physicochemical processes taking place in nature, and the enormous difficulty of studying them.

Modern molecular biology faces extremely complicated experimental problems. Proteins, biological membranes, nucleic acids, polysaccharides, and other ingredients of a biological cell interact, form sophisticated structures, and accomplish numerous catalytic, regulatory, and other functions. Many of the specific problems to be solved arise in the study of these systems.

In investigations of biological systems, one uses a broad arsenal of physical and chemical methods. Of particular importance in this arsenal is the approach of selective modification of biological objects with various labels capable of providing information on their structure, molecular dynamics, and mechanisms of actions. The necessity of such an approach is caused by the specificity of biological systems. Rather than seek complete information, a researcher usually aims to learn the main structural and dynamic properties important in the functional activity of a system.

These days the method of physical labeling is used to solve many structural problems in biophysical and biochemical laboratories all over the world. The most popular methods use spin and fluorescent labels and probes. The achievements in this field in the 1970s have been summarized in a number of monographs and reviews. However, since then considerable progress has been made; in addition to the scientific areas that seem relatively conventional by now, new ones have appeared. In particular, methods of triplet, photochromic, electron scattering, and Mössbauer labeling have been put forward and developed in the author's laboratory at the Institute of Chemical Physics (Chernogolovka). A method of total labeling of protein and other object surfaces originated at the same institute.

It has proven to be particularly effective to combine various types of

ix

x Preface

labels. Consistent use of this approach has led to the solution of a number of complicated problems such as deciphering the active centers of enzymes (nitrogenase, cytochrome P-450, photosynthetic reaction centers) and elucidating the structure and molecular dynamics of proteins, membranes, and nucleic acids.

In the author's opinion, methods developed in various laboratories to solve specific problems are of general importance and may prove to be useful for studying a wide range of biological objects.

In the first five chapters of the present monograph, the general experimental and theoretical grounds are expounded for various methods using physical labels and probes (spin, fluorescent, triplet, photochromic, Mössbauer, and electron scattering), as well as the technique of total labeling. Also elucidated therein are the main principles of chemically modifying the objects under study to accommodate or contain the labels. The concluding chapters consider the principal results in the field of enzymatic catalysis, molecular biology, and biophysics obtained by means of the method of physical labeling.

The author believes that the effort involved in writing this monograph will have been worthwhile if it arouses interest in biophysical labeling and makes it easier for chemists, biochemists, and biophysicists to understand the principles of this method to such an extent that they will use it creatively to solve their own scientific problems.

The author has used a three-level approach to describe some of the topics, taking into account the variations in the educational training of his readers:

- 1. a qualitative consideration of the phenomenon on which the method is based,
- 2. presentation of formulas, figures, and schemes in their simplest and most suitable form for practical application,
- 3. a more rigorous physical and mathematical substantiation.

Greater attention has been paid to the first two levels.

The author is very grateful to his colleagues Drs. A. V. Kulikov, A. I. Kotelnikov, L. A. Levchenko, L. A. Syrtsova, O. V. Belonogova, A. P. Sadkov, V. I. Fogel, V. M. Mekler, S. A. Marakushev, V. R. Bogatyrenko, S. I. Druzhinin, and E. S. Cherepanova, who have shared the bad and good times over many years in investigations of biological objects by the method of physical labeling. Finally, the author is deeply indebted to T. V. Kamenskaya and L. V. Vorobiev for their constant help in the preparation of the manuscript.

Abbreviations

ANS	1,2,4-triaminonaphtholsulfonic acid
ATP	adenine triphosphate
BSA	bovine serum albumin
DAF	delayed annihilation fluorescence
DHSPC	dihydrostearylphosphatidylcholine
2D-ELDOR	two-dimensional ELDOR
DMPE	dimyristoylphosphatidylethanolamine
DMPG	dimyristoylphosphatidylglycerol
DMPC	dimyristoylphosphatidylcholine
DPPC	dipalmitoylphosphatidylcholine
ELDOR	electron-electron double resonance
ENDOR	electron-nuclear double resonance
ESEM	electron spin-echo method
ESE MT	electron spin echo with magnetization transfer
EXAFS	extended X-ray absorption fine structure
FL	fluorescent label
FP	fluorescent probe
FRAP	fluorescence recovery after photobleaching
FRAT	free-radical assay technique
HF	high frequency
HFI	hyperfine interaction
HSA	human serum albumin
Ig	immunoglobulin
IR	ion-relaxator
MESL	mercarbide electron-scattering label
MW	microwave
NMR	nuclear magnetic resonance
NMME	nuclear magnetic modulation effect
NQI	nuclear quadrupole interaction
NR	nitroxide radical
PCMB	<i>p</i> -chloromercuribenzoate
PE	phosphatidylethanolamine
PI	phosphatidylinositol
	·

xii Abbre	eviations
РМ	paramagnetic metal
PS	phosphatidylserine
RC	reaction center
SL	spin label
SP	spin probe
SR	sarcoplasmic reticulum
SR ESR	saturation recovery ESR
ST ESR	saturation transfer ESR
TCTA	2,4,6-trichloro-1,3,5-triazine
ТЕМРО	2,2,6,6-tetramethylpiperidine-1-oxyl
TEMPOLE	4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl
TEMPONE	4-oxo-2,2,6,6-tetramethylpiperidine-1-oxyl
TL	triplet label
TP	triplet probe
TTLT	total tritium labeling technique
A_{iso}	isotropic HFI constant
$A_{x,y,z}$	anisotropic HFI constant
$a_{\rm B}$	Bohr radius
α _e	electrostatic factor
α _{e,g}	polarizability
β_{e}	electron Bohr magneton
β_n	nuclear Bohr magneton
D	Debye unit
$D_{\mathrm{R},\perp,\parallel}$	rotational diffusion coefficient
D _{tr}	translational diffusion coefficient
Δ	line width of ESR spectrum
ΔF_0	standard free energy
ΔF^{\neq}	free energy of activation
$\Delta F_{\rm r}$	reorganization energy
ΔH_{pp}	peak-to-peak line width
$\Delta H_{\frac{1}{2}}$	line width between the points of maximum slope
$\Delta H_{\rm L}$	Lorentzian line width
$\Delta H_{\rm G}$	Gaussian line width
$\Delta v_{\rm max}$	spectral shift
$\Delta \varphi_{ m m}$	transmembrane potential
δ	chemical shift
Ε	electric field strength
ε ₀	dielectric constant
3	extinction coefficient
$f_{\rm g}$	geometric steric factor
g	<i>g</i> -factor
g_{e}	g-factor of a free electron
γ _e	electron gyromagnetic ratio

Abbreviations

γ_n	nuclear gyromagnetic ratio
Н	Hamiltonian
H_{m}	modulation amplitude
H_1	MW amplitude
H_z	strength of a magnetic field
h	Planck constant
η	viscosity
Ι	spectral line intensity
I _f	fluorescence intensity
I _n	magnetic quantum number of nucleus
I _{ph}	phosphorescence intensity
J	exchange integral
$j(\omega)$	correlation function
K _Q	Stern-Volmer constant
K_{q}^{\vee}	quenching rate constant
k _{el}	collision rate constant
k _e	spin exchange rate constant
k _{tr}	electron transfer rate constant
æ	nonadiabaticity coefficient
$\mathfrak{X}_{D,A}$	spin wave function
λ	line width
λ'	spin-orbital coupling constant
$ar{M}$	transition dipole moment
M _r	molecular mass
т	magnetic quantum number
m_i	quantum number
μ	ionic strength
μ_{e}	magnetic moment of an electron
μ_{el}	electron dipole moment
$N_{\mathbf{A}}$	Avogadro number
n	refraction index
vc	correlation frequency
vL	Larmor frequency
v _m	modulation frequency
v _r	resonance frequency
Р	degree of polarization
р	<i>p</i> -orbital
Q	quadrupole moment
ho	spin density
S	order parameter
S_i	excited singlet state
S_{jj}	overlap integral
s	s-orbital

xiii

xiv	Abbreviations
σ	charge density
T_c	transition temperature
T_i	excited triplet state
T_{1e}	electron spin-lattice relaxation time
T_{2e}	electron transverse relaxation time
T_{1n}	nuclear spin-lattice relaxation time
T_{2n}	nuclear transverse relaxation time
$T_{\rm p}$	passage time
$\tau_{\rm D}$	Debye relaxation time
$\tau_{\rm c}$	correlation time
$\tau_{\rm ch}$	characteristic time
τ_{col}	collision time
$\tau_{\rm f}^*$	fluorescence lifetime
τ_M	chemical exchange time
τ_{ph}^*	phosphorescence lifetime
τ_r	electric dipole relaxation time
$\tau_{\mathbf{R}}$	rotation diffusion time
τ_{rs}	residence time
V	voltage
V'	resonance integral
V'_2	absorption ESR spectrum with a 90° phase shift
φ	electric potential
φ_0	quantum yield
$\varphi_{D,A}$	wave function
$\omega_{\rm L}$	Larmor frequency