Index of Programs and Dependencies

The following table lists, in alphabetical order, all the routines in Numerical Recipes. When a routine requires subsidiary routines, either from this book or else user-supplied, the full dependency tree is shown: A routine calls directly all routines to which it is connected by a solid line in the column immediately to its right; it calls indirectly the connected routines in all columns to its right. Typographical conventions: Routines from this book are in typewriter font (e.g., eulsum, gammin). The smaller, slanted font is used for the second and subsequent occurrences of a routine in a single dependency tree. (When you are getting routines from the Numerical Recipes diskettes, or their archive files, you need only specify names in the larger, upright font.) User-supplied routines are indicated by the use of text font and square brackets, e.g., [funcv]. Consult the text for individual specifications of these routines. The right-hand side of the table lists section and page numbers for each program.

addint — interp §19.6 (p. 871)
airy — bessk §6.7 (p. 244)
bessjy — beschb — chebv
amebsa — ran1 §10.9 (p. 445)
amotsa — [funk]
[funk]
amoeba — amotry — [funk] §10.4 (p. 404)
[funk]
amotry — [funk] §10.4 (p. 405)
amotsa — [funk] §10.9 (p. 446)
ran1
anneal — ran3 §10.9 (p. 439)
— irbit1
— trimcst
— metrop — ran3
— trnspt
— revcst
— revers
anorm2 §19.6 (p. 879)
arcmak §20.5 (p. 904)
arcode — arcsum §20.5 (p. 904)
arcsum §20.5 (p. 906)
avvar . §14.2 (p. 611)
badluk — julday — filmoon
balanc . §11.5 (p. 477)
Index of Programs and Dependencies

<table>
<thead>
<tr>
<th>Program</th>
<th>Dependencies</th>
<th>Page/Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>banbks</td>
<td></td>
<td>§2.4 (p. 46)</td>
</tr>
<tr>
<td>bandec</td>
<td></td>
<td>§2.4 (p. 45)</td>
</tr>
<tr>
<td>bammul</td>
<td></td>
<td>§2.4 (p. 44)</td>
</tr>
<tr>
<td>bcucof</td>
<td></td>
<td>§3.6 (p. 119)</td>
</tr>
<tr>
<td>bcuint</td>
<td>bcucof</td>
<td>§3.6 (p. 120)</td>
</tr>
<tr>
<td>bescb</td>
<td>chebev</td>
<td>§6.7 (p. 239)</td>
</tr>
<tr>
<td>bessi</td>
<td>bessi0</td>
<td>§6.6 (p. 233)</td>
</tr>
<tr>
<td>bessi0</td>
<td></td>
<td>§6.6 (p. 230)</td>
</tr>
<tr>
<td>bessi1</td>
<td></td>
<td>§6.6 (p. 231)</td>
</tr>
<tr>
<td>bessik</td>
<td>bescb</td>
<td>§6.7 (p. 241)</td>
</tr>
<tr>
<td>bessj</td>
<td>bessj0, bessj1</td>
<td>§6.5 (p. 228)</td>
</tr>
<tr>
<td>bessj0</td>
<td></td>
<td>§6.5 (p. 225)</td>
</tr>
<tr>
<td>bessj1</td>
<td></td>
<td>§6.5 (p. 226)</td>
</tr>
<tr>
<td>bessjy</td>
<td>bescb, chebev</td>
<td>§6.7 (p. 236)</td>
</tr>
<tr>
<td>bessk</td>
<td>bessk0, bessi0</td>
<td>§6.6 (p. 232)</td>
</tr>
<tr>
<td></td>
<td>bessk1, bessi1</td>
<td></td>
</tr>
<tr>
<td>bessk0</td>
<td>bessi0</td>
<td>§6.6 (p. 231)</td>
</tr>
<tr>
<td>bessk1</td>
<td>bessi1</td>
<td>§6.6 (p. 232)</td>
</tr>
<tr>
<td>bessy</td>
<td>bessy1, bessj1</td>
<td>§6.5 (p. 227)</td>
</tr>
<tr>
<td></td>
<td>bessy0, bessj0</td>
<td></td>
</tr>
<tr>
<td>bessy0</td>
<td>bessj0</td>
<td>§6.5 (p. 226)</td>
</tr>
<tr>
<td>bessy1</td>
<td>bessj1</td>
<td>§6.5 (p. 227)</td>
</tr>
<tr>
<td>beta</td>
<td>gammln</td>
<td>§6.1 (p. 209)</td>
</tr>
<tr>
<td>betacf</td>
<td></td>
<td>§6.4 (p. 221)</td>
</tr>
<tr>
<td>beta1</td>
<td>gammln</td>
<td>§6.4 (p. 220)</td>
</tr>
<tr>
<td>bico</td>
<td>factln, gammln</td>
<td>§6.1 (p. 208)</td>
</tr>
<tr>
<td>bksub</td>
<td></td>
<td>§17.3 (p. 761)</td>
</tr>
<tr>
<td>bnldev</td>
<td>ran1, gammln</td>
<td>§7.3 (p. 285)</td>
</tr>
<tr>
<td>brent</td>
<td>[func]</td>
<td>§10.2 (p. 397)</td>
</tr>
<tr>
<td>broydn</td>
<td>fmin, [funcv]</td>
<td>§9.7 (p. 383)</td>
</tr>
<tr>
<td></td>
<td>fdjac</td>
<td></td>
</tr>
<tr>
<td></td>
<td>qrdcmp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>qrupdt</td>
<td>rotate</td>
</tr>
<tr>
<td></td>
<td>rsolv</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lnsrch</td>
<td>fmin, [funcv]</td>
</tr>
<tr>
<td>bsstep</td>
<td>mmid, [derivs]</td>
<td>§16.4 (p. 722)</td>
</tr>
<tr>
<td></td>
<td>pzextr</td>
<td></td>
</tr>
<tr>
<td>caldat</td>
<td></td>
<td>§1.1 (p. 16)</td>
</tr>
<tr>
<td>Function</td>
<td>Index</td>
<td>Page</td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>chder</td>
<td>§5.9</td>
<td>(p. 189)</td>
</tr>
<tr>
<td>chebev</td>
<td>§5.8</td>
<td>(p. 187)</td>
</tr>
<tr>
<td>chebft</td>
<td>§5.8</td>
<td>(p. 186)</td>
</tr>
<tr>
<td>chebpc</td>
<td>§5.10</td>
<td>(p. 191)</td>
</tr>
<tr>
<td>chint</td>
<td>§5.9</td>
<td>(p. 189)</td>
</tr>
<tr>
<td>chixy</td>
<td>§15.3</td>
<td>(p. 663)</td>
</tr>
<tr>
<td>choldc</td>
<td>§2.9</td>
<td>(p. 90)</td>
</tr>
<tr>
<td>cholsi</td>
<td>§2.9</td>
<td>(p. 90)</td>
</tr>
<tr>
<td>chsone</td>
<td>§14.3</td>
<td>(p. 615)</td>
</tr>
<tr>
<td>chstwo</td>
<td>§14.3</td>
<td>(p. 616)</td>
</tr>
<tr>
<td>cisi</td>
<td>§6.9</td>
<td>(p. 251)</td>
</tr>
<tr>
<td>cntab1</td>
<td>§14.4</td>
<td>(p. 625)</td>
</tr>
<tr>
<td>cntab2</td>
<td>§14.4</td>
<td>(p. 629)</td>
</tr>
<tr>
<td>convlv</td>
<td>§13.1</td>
<td>(p. 536)</td>
</tr>
<tr>
<td>copy</td>
<td>§19.6</td>
<td>(p. 873)</td>
</tr>
<tr>
<td>correl</td>
<td>§13.2</td>
<td>(p. 539)</td>
</tr>
<tr>
<td>cosft1</td>
<td>§12.3</td>
<td>(p. 512)</td>
</tr>
<tr>
<td>cosft2</td>
<td>§12.3</td>
<td>(p. 514)</td>
</tr>
<tr>
<td>covsrt</td>
<td>§15.4</td>
<td>(p. 669)</td>
</tr>
<tr>
<td>crank</td>
<td>§14.6</td>
<td>(p. 636)</td>
</tr>
<tr>
<td>cyclic</td>
<td>§2.7</td>
<td>(p. 68)</td>
</tr>
<tr>
<td>daub4</td>
<td>§13.10</td>
<td>(p. 588)</td>
</tr>
<tr>
<td>dawson</td>
<td>§6.10</td>
<td>(p. 253)</td>
</tr>
<tr>
<td>dbrent</td>
<td>§10.3</td>
<td>(p. 400)</td>
</tr>
<tr>
<td>ddpoly</td>
<td>§5.3</td>
<td>(p. 168)</td>
</tr>
<tr>
<td>decchk</td>
<td>§20.3</td>
<td>(p. 895)</td>
</tr>
<tr>
<td>df1dim</td>
<td>§10.6</td>
<td>(p. 417)</td>
</tr>
</tbody>
</table>
| dfour1 | DOUBLE PRECISION version of four1, q.v.
<p>| dfpmin | §10.7 | (p. 421) |
| dfidr | §5.7 | (p. 182) |
| dftcor | §13.9 | (p. 580) |</p>
<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>dftint</td>
<td>[func]</td>
<td>§13.9 (p. 581)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>reallt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fourl</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>polint</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dftcor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>difeq</td>
<td></td>
<td>§17.4 (p. 769)</td>
<td></td>
</tr>
<tr>
<td>dpythag</td>
<td></td>
<td></td>
<td>DOUBLE PRECISION version of pythag, q.v.</td>
</tr>
<tr>
<td>dreallt</td>
<td></td>
<td></td>
<td>DOUBLE PRECISION version of reallt, q.v.</td>
</tr>
<tr>
<td>dsprsax</td>
<td></td>
<td></td>
<td>DOUBLE PRECISION version of sprsax, q.v.</td>
</tr>
<tr>
<td>dsprstx</td>
<td></td>
<td></td>
<td>DOUBLE PRECISION version of sprstx, q.v.</td>
</tr>
<tr>
<td>dsvbksp</td>
<td></td>
<td></td>
<td>DOUBLE PRECISION version of svbksp, q.v.</td>
</tr>
<tr>
<td>dsvdcmp</td>
<td></td>
<td></td>
<td>DOUBLE PRECISION version of svdcmp, q.v.</td>
</tr>
<tr>
<td>eclass</td>
<td></td>
<td>§8.6 (p. 338)</td>
<td></td>
</tr>
<tr>
<td>eclazz</td>
<td>[equiv]</td>
<td></td>
<td>§8.6 (p. 339)</td>
</tr>
<tr>
<td>ei</td>
<td></td>
<td>§6.3 (p. 218)</td>
<td></td>
</tr>
<tr>
<td>eigrt</td>
<td></td>
<td>§11.1 (p. 462)</td>
<td></td>
</tr>
<tr>
<td>elle</td>
<td>rf</td>
<td>§6.11 (p. 261)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ellf</td>
<td>rf</td>
<td>§6.11 (p. 260)</td>
<td></td>
</tr>
<tr>
<td>ellpi</td>
<td>rf</td>
<td>§6.11 (p. 261)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rj</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rc</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>rf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>elmhes</td>
<td></td>
<td>§11.5 (p. 479)</td>
<td></td>
</tr>
<tr>
<td>erf</td>
<td>gampp</td>
<td>§6.2 (p. 213)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gser</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gcf</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gammln</td>
<td></td>
<td></td>
</tr>
<tr>
<td>erfc</td>
<td>gampp</td>
<td>§6.2 (p. 214)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gser</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gcf</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gammln</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gammq</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gser</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gcf</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>gammln</td>
<td></td>
<td></td>
</tr>
<tr>
<td>erfcc</td>
<td></td>
<td>§6.2 (p. 214)</td>
<td></td>
</tr>
<tr>
<td>eulsum</td>
<td></td>
<td>§5.1 (p. 161)</td>
<td></td>
</tr>
<tr>
<td>evlmem</td>
<td></td>
<td>§13.7 (p. 567)</td>
<td></td>
</tr>
<tr>
<td>expdev</td>
<td>ran1</td>
<td>§7.2 (p. 278)</td>
<td></td>
</tr>
<tr>
<td>expint</td>
<td></td>
<td>§6.3 (p. 217)</td>
<td></td>
</tr>
<tr>
<td>fdidim</td>
<td>[func]</td>
<td>§10.5 (p. 413)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>factln</td>
<td>§6.1 (p. 208)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gammln</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>factrl</td>
<td>§6.1 (p. 207)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gammln</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fasper</td>
<td>avevar</td>
<td>§13.8 (p. 575)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>spread</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>realft</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fourl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fdjac</td>
<td>[funcv]</td>
<td>§9.7 (p. 381)</td>
<td></td>
</tr>
<tr>
<td>fgauss</td>
<td></td>
<td>§15.5 (p. 683)</td>
<td></td>
</tr>
<tr>
<td>fill0</td>
<td></td>
<td>§19.6 (p. 873)</td>
<td></td>
</tr>
</tbody>
</table>
Index of Programs and Dependencies

fit ——
 ——
gammq gser
gcf gamln

fitexy ——
 ——
avevar

——
fit ——
gammq gser
gcf gamln

——
chixy

——
mnbrak

——
brent

——
gammq gser
gcf gamln

——
chixy

fixrts ——
 ——
zroots laguer

fleg

f1moon

fmin ——[funcv]

four1

fourw

fourfs ——fourw

fourn

fpol

fred2 ——
gauleg

 ——
ak

 ——
g

 ——
ludcmp

 ——
lubksb

fredex ——
quadmex wwgts kermom

 ——
ludcmp

 ——
lubksb

fredin ——

 ——
ak

 ——
g

frenel

frpran ——[func]

 ——
dfunc

 ——
mnbrak

 ——
brent

 ——
fidim

 ——
[func]

ftest ——
 ——
avevar

 ——
betai

 ——
gamln

 ——
method

 ——
gamln

 ——
method

 ——
gamm

 ——
gcf

 ——
gamln

§15.2 (p. 659)
§15.3 (p. 662)
§13.6 (p. 562)
§15.4 (p. 674)
§1.0 (p. 1)
§9.7 (p. 381)
§12.2 (p. 501)
§12.6 (p. 528)
§12.6 (p. 525)
§12.4 (p. 518)
§15.4 (p. 674)
§18.1 (p. 784)
§18.3 (p. 793)
§18.1 (p. 784)
§6.9 (p. 249)
§10.6 (p. 416)
§14.2 (p. 613)
§7.3 (p. 283)
§6.1 (p. 207)
§6.2 (p. 211)
Index of Programs and Dependencies

<table>
<thead>
<tr>
<th>Program</th>
<th>Dependencies</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>gammq</td>
<td>gser, gammln</td>
<td>§6.2 (p. 211)</td>
</tr>
<tr>
<td>gasdev</td>
<td>ran1</td>
<td>§7.2 (p. 280)</td>
</tr>
<tr>
<td>gaucof</td>
<td>tqli, pythag</td>
<td>§4.5 (p. 151)</td>
</tr>
<tr>
<td>gauher</td>
<td></td>
<td>§4.5 (p. 147)</td>
</tr>
<tr>
<td>gaujac</td>
<td>gammln</td>
<td>§4.5 (p. 148)</td>
</tr>
<tr>
<td>gaulag</td>
<td>gammln</td>
<td>§4.5 (p. 146)</td>
</tr>
<tr>
<td>gauleg</td>
<td></td>
<td>§4.5 (p. 145)</td>
</tr>
<tr>
<td>gaussj</td>
<td></td>
<td>§2.1 (p. 30)</td>
</tr>
<tr>
<td>gcf</td>
<td>gammln</td>
<td>§6.2 (p. 212)</td>
</tr>
<tr>
<td>golden</td>
<td>[func]</td>
<td>§10.1 (p. 394)</td>
</tr>
<tr>
<td>gser</td>
<td>gammln</td>
<td>§6.2 (p. 212)</td>
</tr>
<tr>
<td>hpsel</td>
<td>sort</td>
<td>§8.5 (p. 336)</td>
</tr>
<tr>
<td>hpsort</td>
<td></td>
<td>§8.3 (p. 329)</td>
</tr>
<tr>
<td>hqr</td>
<td></td>
<td>§11.6 (p. 484)</td>
</tr>
<tr>
<td>hufapp</td>
<td></td>
<td>§20.4 (p. 899)</td>
</tr>
<tr>
<td>hufdec</td>
<td></td>
<td>§20.4 (p. 900)</td>
</tr>
<tr>
<td>hufenc</td>
<td></td>
<td>§20.4 (p. 900)</td>
</tr>
<tr>
<td>hufmak</td>
<td>hufapp</td>
<td>§20.4 (p. 898)</td>
</tr>
<tr>
<td>hunt</td>
<td></td>
<td>§3.4 (p. 112)</td>
</tr>
<tr>
<td>hypdrv</td>
<td></td>
<td>§6.12 (p. 265)</td>
</tr>
<tr>
<td>hypgeo</td>
<td>hypser, odeint, bsstep, mmid, pzextr, hypdrv</td>
<td>§6.12 (p. 264)</td>
</tr>
<tr>
<td>hypser</td>
<td></td>
<td>§6.12 (p. 264)</td>
</tr>
<tr>
<td>icrc</td>
<td>icrc1</td>
<td>§20.3 (p. 893)</td>
</tr>
<tr>
<td>icrc1</td>
<td></td>
<td>§20.3 (p. 892)</td>
</tr>
<tr>
<td>igray</td>
<td></td>
<td>§20.2 (p. 888)</td>
</tr>
<tr>
<td>iindexx</td>
<td>INTEGER version of indexx, q.v.</td>
<td>§8.4 (p. 330)</td>
</tr>
<tr>
<td>indexx</td>
<td></td>
<td>§19.6 (p. 871)</td>
</tr>
<tr>
<td>interp</td>
<td></td>
<td>§7.4 (p. 288)</td>
</tr>
<tr>
<td>irbit1</td>
<td></td>
<td>§7.4 (p. 290)</td>
</tr>
<tr>
<td>irbit2</td>
<td></td>
<td>§11.1 (p. 460)</td>
</tr>
<tr>
<td>jacob2</td>
<td></td>
<td>§16.6 (p. 734)</td>
</tr>
<tr>
<td>julday</td>
<td></td>
<td>§1.1 (p. 13)</td>
</tr>
<tr>
<td>kend11</td>
<td>erfcc</td>
<td>§14.6 (p. 638)</td>
</tr>
<tr>
<td>kend12</td>
<td>erfcc</td>
<td>§14.6 (p. 639)</td>
</tr>
<tr>
<td>kermom</td>
<td></td>
<td>§18.3 (p. 792)</td>
</tr>
</tbody>
</table>
Index of Programs and Dependencies

<table>
<thead>
<tr>
<th>Program</th>
<th>Dependencies</th>
<th>Page Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ks2dis</td>
<td>quadct</td>
<td>§14.7 (p. 642)</td>
</tr>
<tr>
<td></td>
<td>quadvl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pearsn</td>
<td>beta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gammln</td>
</tr>
<tr>
<td></td>
<td></td>
<td>betacf</td>
</tr>
<tr>
<td></td>
<td>probks</td>
<td></td>
</tr>
<tr>
<td>ks2d2s</td>
<td>quadct</td>
<td>§14.7 (p. 643)</td>
</tr>
<tr>
<td></td>
<td>pearsn</td>
<td>beta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gammln</td>
</tr>
<tr>
<td></td>
<td></td>
<td>betacf</td>
</tr>
<tr>
<td></td>
<td>probks</td>
<td></td>
</tr>
<tr>
<td>kson</td>
<td>sort</td>
<td>§14.3 (p. 619)</td>
</tr>
<tr>
<td></td>
<td>[func]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>probks</td>
<td></td>
</tr>
<tr>
<td>ksto</td>
<td>sort</td>
<td>§14.3 (p. 619)</td>
</tr>
<tr>
<td></td>
<td>probks</td>
<td></td>
</tr>
<tr>
<td>lager</td>
<td></td>
<td>§9.5 (p. 366)</td>
</tr>
<tr>
<td>lfit</td>
<td>[func]</td>
<td>§15.4 (p. 668)</td>
</tr>
<tr>
<td></td>
<td>gaussj</td>
<td></td>
</tr>
<tr>
<td></td>
<td>coovrt</td>
<td></td>
</tr>
<tr>
<td>linbcg</td>
<td>atimes</td>
<td>§2.7 (p. 79)</td>
</tr>
<tr>
<td></td>
<td>snrm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>asolve</td>
<td></td>
</tr>
<tr>
<td>linmin</td>
<td>mnbrak</td>
<td>§10.5 (p. 412)</td>
</tr>
<tr>
<td></td>
<td>brent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>f1dim</td>
<td>[func]</td>
</tr>
<tr>
<td>lnrch</td>
<td>[func]</td>
<td>§9.7 (p. 378)</td>
</tr>
<tr>
<td>locate</td>
<td></td>
<td>§3.4 (p. 111)</td>
</tr>
<tr>
<td>lop</td>
<td></td>
<td>§19.6 (p. 879)</td>
</tr>
<tr>
<td>lubksb</td>
<td></td>
<td>§2.3 (p. 39)</td>
</tr>
<tr>
<td>ludcmp</td>
<td></td>
<td>§2.3 (p. 38)</td>
</tr>
<tr>
<td>machar</td>
<td></td>
<td>§20.1 (p. 884)</td>
</tr>
<tr>
<td>maloc</td>
<td></td>
<td>§19.6 (p. 873)</td>
</tr>
<tr>
<td>matadd</td>
<td></td>
<td>§19.6 (p. 879)</td>
</tr>
<tr>
<td>matsub</td>
<td></td>
<td>§19.6 (p. 879)</td>
</tr>
<tr>
<td>medfit</td>
<td>rofunc</td>
<td>§15.7 (p. 699)</td>
</tr>
<tr>
<td></td>
<td>select</td>
<td></td>
</tr>
<tr>
<td>memcof</td>
<td></td>
<td>§13.6 (p. 561)</td>
</tr>
<tr>
<td>metrop</td>
<td>ran3</td>
<td>§10.9 (p. 443)</td>
</tr>
<tr>
<td>mfgas</td>
<td>maloc</td>
<td>§19.6 (p. 877)</td>
</tr>
<tr>
<td></td>
<td>rstrct</td>
<td></td>
</tr>
<tr>
<td></td>
<td>slvsm2</td>
<td>fill0</td>
</tr>
<tr>
<td></td>
<td>interp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>copy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>relax2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lop</td>
<td></td>
</tr>
<tr>
<td></td>
<td>matsub</td>
<td></td>
</tr>
</tbody>
</table>
Index of Programs and Dependencies

- anorm2
- matadd
- mglm
 - maloc
 - rstrct
 - slvsml
 - fill0
 - interp
 - copy
 - relax
 - resid
 - fill0
 - addint
- midinf
 - [func]
 - §4.4 (p. 138)
- midptn
 - [func]
 - §4.4 (p. 136)
- miser
 - ranpt
 - ran1
 - [func]
 - §7.8 (p. 316)
- mmid
 - [derivs]
 - §16.3 (p. 717)
- mnbrak
 - [func]
 - §10.1 (p. 393)
- mnewt
 - [usrfunc]
 - §9.6 (p. 374)
- ludecmp
- lubksb
- moment
 - §14.1 (p. 607)
- mp2df
 - mps
 - §20.6 (p. 913)
- mpdiv
 - mpinv
 - mpmul
 - drealft
 - dfourl
 - mps
 - §20.6 (p. 911)
- mpinv
 - mpmul
 - drealft
 - dfourl
 - mps
 - §20.6 (p. 911)
- mpmul
 - drealft
 - dfourl
 - mps
 - §20.6 (p. 910)
- mps
 - §20.6 (p. 907)
- mppi
 - mpsqrt
 - mpmul
 - drealft
 - dfourl
 - mps
 - §20.6 (p. 913)
 - mpmul
 - drealft
 - dfourl
 - mp2df
 - mps
 - §2.5 (p. 48)
- mprove
 - lubksb
 - §20.6 (p. 912)
- mpsqrt
 - mpmul
 - drealft
 - dfourl
 - mps
 - §20.6 (p. 912)
- mrqcof
 - [func]
 - §15.5 (p. 681)
- mrqmin
 - mrqcof
 - [func]
 - gaussj
 - covsrt
<table>
<thead>
<tr>
<th>Program</th>
<th>Dependencies</th>
</tr>
</thead>
<tbody>
<tr>
<td>newt</td>
<td>fmin</td>
</tr>
<tr>
<td></td>
<td>fdjac</td>
</tr>
<tr>
<td></td>
<td>ludcmp</td>
</tr>
<tr>
<td></td>
<td>lubksb</td>
</tr>
<tr>
<td></td>
<td>lnsrch</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>odeint</td>
<td>[derivs]</td>
</tr>
<tr>
<td></td>
<td>rkqs</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>orthog</td>
<td></td>
</tr>
<tr>
<td>pade</td>
<td>ludcmp</td>
</tr>
<tr>
<td></td>
<td>lubksb</td>
</tr>
<tr>
<td></td>
<td>mprove</td>
</tr>
<tr>
<td>pccheb</td>
<td></td>
</tr>
<tr>
<td>pcasft</td>
<td></td>
</tr>
<tr>
<td>pearsn</td>
<td>betai</td>
</tr>
<tr>
<td></td>
<td>gamma ln</td>
</tr>
<tr>
<td>period</td>
<td>avevar</td>
</tr>
<tr>
<td>piksr2</td>
<td></td>
</tr>
<tr>
<td>piksrt</td>
<td></td>
</tr>
<tr>
<td>pinsv</td>
<td></td>
</tr>
<tr>
<td>plgndr</td>
<td></td>
</tr>
<tr>
<td>poidev</td>
<td>ran1</td>
</tr>
<tr>
<td></td>
<td>gamma ln</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>polcoe</td>
<td></td>
</tr>
<tr>
<td>polcof</td>
<td>polint</td>
</tr>
<tr>
<td>poldiv</td>
<td></td>
</tr>
<tr>
<td>polin2</td>
<td>polint</td>
</tr>
<tr>
<td>polint</td>
<td></td>
</tr>
<tr>
<td>powell</td>
<td>[func]</td>
</tr>
<tr>
<td></td>
<td>linmin</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>predic</td>
<td></td>
</tr>
<tr>
<td>probks</td>
<td></td>
</tr>
<tr>
<td>psdes</td>
<td></td>
</tr>
<tr>
<td>pwt</td>
<td></td>
</tr>
<tr>
<td>pwtset</td>
<td></td>
</tr>
<tr>
<td>pythag</td>
<td></td>
</tr>
<tr>
<td>pzxtr</td>
<td></td>
</tr>
<tr>
<td>qgaus</td>
<td>[func]</td>
</tr>
<tr>
<td>qrdcmp</td>
<td></td>
</tr>
<tr>
<td>Index of Programs and Dependencies</td>
<td>929</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>qromb ⌊ trapzd [func] ⌊ polint</td>
<td>§4.3 (p. 134)</td>
</tr>
<tr>
<td>qromo ⌊ midpnt [func] ⌊ polint</td>
<td>§4.4 (p. 137)</td>
</tr>
<tr>
<td>qroot ⌊ poldiv</td>
<td>§9.5 (p. 371)</td>
</tr>
<tr>
<td>qrsolv ⌊ rsolv</td>
<td>§2.10 (p. 93)</td>
</tr>
<tr>
<td>qrupd ⌊ rotate</td>
<td>§2.10 (p. 94)</td>
</tr>
<tr>
<td>qsimp ⌊ trapzd [func]</td>
<td>§4.2 (p. 133)</td>
</tr>
<tr>
<td>qtrap ⌊ trapzd [func]</td>
<td>§4.2 (p. 131)</td>
</tr>
<tr>
<td>quadct</td>
<td>§14.7 (p. 642)</td>
</tr>
<tr>
<td>quadm ⌊ wwgths ⌊ kermom</td>
<td>§18.3 (p. 793)</td>
</tr>
<tr>
<td>quadv1</td>
<td>§14.7 (p. 643)</td>
</tr>
<tr>
<td>ran0</td>
<td>§7.1 (p. 270)</td>
</tr>
<tr>
<td>ran1</td>
<td>§7.1 (p. 271)</td>
</tr>
<tr>
<td>ran2</td>
<td>§7.1 (p. 272)</td>
</tr>
<tr>
<td>ran3</td>
<td>§7.1 (p. 273)</td>
</tr>
<tr>
<td>ran4 ⌊ psdes</td>
<td>§7.5 (p. 294)</td>
</tr>
<tr>
<td>rank</td>
<td>§8.4 (p. 333)</td>
</tr>
<tr>
<td>ranpt ⌊ ran1</td>
<td>§7.8 (p. 318)</td>
</tr>
<tr>
<td>ratint</td>
<td>§3.2 (p. 106)</td>
</tr>
<tr>
<td>ratlsq [fn] ⌊ dsvdcmp ⌊ dpythag ⌊ dsvbksb ⌊ ratval</td>
<td>§5.13 (p. 200)</td>
</tr>
<tr>
<td>ratval</td>
<td>§5.13 (p. 170)</td>
</tr>
<tr>
<td>rc</td>
<td>§6.11 (p. 259)</td>
</tr>
<tr>
<td>rd</td>
<td>§6.11 (p. 257)</td>
</tr>
<tr>
<td>realft ⌊ four1</td>
<td>§12.3 (p. 507)</td>
</tr>
<tr>
<td>rebin</td>
<td>§7.8 (p. 314)</td>
</tr>
<tr>
<td>red</td>
<td>§17.3 (p. 763)</td>
</tr>
<tr>
<td>relax</td>
<td>§19.6 (p. 872)</td>
</tr>
<tr>
<td>relax2</td>
<td>§19.6 (p. 878)</td>
</tr>
<tr>
<td>resid</td>
<td>§19.6 (p. 872)</td>
</tr>
<tr>
<td>revcst</td>
<td>§10.9 (p. 441)</td>
</tr>
<tr>
<td>revers</td>
<td>§10.9 (p. 442)</td>
</tr>
<tr>
<td>rf</td>
<td>§6.11 (p. 257)</td>
</tr>
</tbody>
</table>
Index of Programs and Dependencies

<table>
<thead>
<tr>
<th>Program</th>
<th>Dependencies</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>rj</td>
<td>rc</td>
<td>§6.11 (p. 258)</td>
</tr>
<tr>
<td>rf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rk4</td>
<td>[derivs]</td>
<td>§16.1 (p. 706)</td>
</tr>
<tr>
<td>rkck</td>
<td>[derivs]</td>
<td>§16.2 (p. 713)</td>
</tr>
<tr>
<td>rkdumb</td>
<td>[derivs]</td>
<td>§16.1 (p. 707)</td>
</tr>
<tr>
<td>rk4</td>
<td>[derivs]</td>
<td></td>
</tr>
<tr>
<td>rkqs</td>
<td>rkck</td>
<td>§16.2 (p. 712)</td>
</tr>
<tr>
<td>rlf3</td>
<td>fourn</td>
<td>§12.5 (p. 522)</td>
</tr>
<tr>
<td>rofunc</td>
<td>select</td>
<td>§15.7 (p. 700)</td>
</tr>
<tr>
<td>rotate</td>
<td></td>
<td>§2.10 (p. 95)</td>
</tr>
<tr>
<td>rsolv</td>
<td></td>
<td>§2.10 (p. 93)</td>
</tr>
<tr>
<td>rstruct</td>
<td></td>
<td>§19.6 (p. 870)</td>
</tr>
<tr>
<td>rtbis</td>
<td>[func]</td>
<td>§9.1 (p. 347)</td>
</tr>
<tr>
<td>rtflap</td>
<td>[func]</td>
<td>§9.2 (p. 349)</td>
</tr>
<tr>
<td>rtnewt</td>
<td>[funcd]</td>
<td>§9.4 (p. 358)</td>
</tr>
<tr>
<td>rt safe</td>
<td>[funcd]</td>
<td>§9.4 (p. 359)</td>
</tr>
<tr>
<td>rtsec</td>
<td>[func]</td>
<td>§9.2 (p. 350)</td>
</tr>
<tr>
<td>rzextr</td>
<td></td>
<td>§16.4 (p. 725)</td>
</tr>
<tr>
<td>savgol</td>
<td>lncmp</td>
<td>§14.8 (p. 646)</td>
</tr>
<tr>
<td></td>
<td>lubksb</td>
<td></td>
</tr>
<tr>
<td>scrsho</td>
<td>[func]</td>
<td>§9.0 (p. 342)</td>
</tr>
<tr>
<td>select</td>
<td></td>
<td>§8.5 (p. 334)</td>
</tr>
<tr>
<td>selip</td>
<td>shell</td>
<td>§8.5 (p. 335)</td>
</tr>
<tr>
<td>sfroid</td>
<td>plgndr</td>
<td>§17.4 (p. 768)</td>
</tr>
<tr>
<td></td>
<td>solvde</td>
<td></td>
</tr>
<tr>
<td>shell</td>
<td></td>
<td>§8.1 (p. 323)</td>
</tr>
<tr>
<td>shoot</td>
<td>[load]</td>
<td>§17.1 (p. 750)</td>
</tr>
<tr>
<td></td>
<td>odesint</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[derivs]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rkqs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rkck</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[derivs]</td>
<td></td>
</tr>
<tr>
<td>shootf</td>
<td>[load1]</td>
<td>§17.2 (p. 752)</td>
</tr>
<tr>
<td></td>
<td>odesint</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[derivs]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rkqs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>rkck</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[derivs]</td>
<td></td>
</tr>
<tr>
<td>simp1</td>
<td></td>
<td>§10.8 (p. 434)</td>
</tr>
<tr>
<td>simp2</td>
<td></td>
<td>§10.8 (p. 434)</td>
</tr>
<tr>
<td>simp3</td>
<td></td>
<td>§10.8 (p. 435)</td>
</tr>
<tr>
<td>Index of Programs and Dependencies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>simplex</td>
<td>§10.8 (p. 432)</td>
<td></td>
</tr>
<tr>
<td>simp1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>simp2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>simp3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>simpr</td>
<td>§16.6 (p. 736)</td>
<td></td>
</tr>
<tr>
<td>ludcmp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lubksb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[derivs]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sinft</td>
<td>§12.3 (p. 511)</td>
<td></td>
</tr>
<tr>
<td>realft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>four1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>slvsm2</td>
<td>§19.6 (p. 878)</td>
<td></td>
</tr>
<tr>
<td>fill10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>slvsm1</td>
<td>§19.6 (p. 872)</td>
<td></td>
</tr>
<tr>
<td>fill10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sncndn</td>
<td>§6.11 (p. 262)</td>
<td></td>
</tr>
<tr>
<td>snrm</td>
<td>§2.7 (p. 81)</td>
<td></td>
</tr>
<tr>
<td>sobseq</td>
<td>§7.7 (p. 302)</td>
<td></td>
</tr>
<tr>
<td>solvde</td>
<td>§17.3 (p. 760)</td>
<td></td>
</tr>
<tr>
<td>difeq</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pinvs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>red</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bksub</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sor</td>
<td>§19.5 (p. 860)</td>
<td></td>
</tr>
<tr>
<td>sort</td>
<td>§8.2 (p. 324)</td>
<td></td>
</tr>
<tr>
<td>sort2</td>
<td>§8.2 (p. 326)</td>
<td></td>
</tr>
<tr>
<td>sort3</td>
<td>§8.4 (p. 332)</td>
<td></td>
</tr>
<tr>
<td>indexx</td>
<td></td>
<td></td>
</tr>
<tr>
<td>spectrm</td>
<td>§13.4 (p. 550)</td>
<td></td>
</tr>
<tr>
<td>four1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>spear</td>
<td>§14.6 (p. 635)</td>
<td></td>
</tr>
<tr>
<td>sort2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>crank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>erfcc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>betai</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gammln</td>
<td></td>
<td></td>
</tr>
<tr>
<td>betacf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sphbes</td>
<td>§6.7 (p. 245)</td>
<td></td>
</tr>
<tr>
<td>bessy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>beschb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chebev</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sphfpt</td>
<td>§17.4 (p. 772)</td>
<td></td>
</tr>
<tr>
<td>newt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fdjac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>shoot((q.v))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lnsrch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fmin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>shoot((q.v))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ludcmp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lubksb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sphoot</td>
<td>§17.4 (p. 771)</td>
<td></td>
</tr>
<tr>
<td>newt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fdjac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>shoot((q.v))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lnsrch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fmin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>shoot((q.v))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ludcmp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lubksb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>splie2</td>
<td>§3.6 (p. 121)</td>
<td></td>
</tr>
<tr>
<td>spline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>splin2</td>
<td>§3.6 (p. 121)</td>
<td></td>
</tr>
<tr>
<td>splint</td>
<td></td>
<td></td>
</tr>
<tr>
<td>spread</td>
<td>§13.8 (p. 576)</td>
<td></td>
</tr>
<tr>
<td>Procedure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>sprsax</td>
<td></td>
<td>§2.7 (p. 72)</td>
</tr>
<tr>
<td>sprsin</td>
<td></td>
<td>§2.7 (p. 72)</td>
</tr>
<tr>
<td>sprspm</td>
<td></td>
<td>§2.7 (p. 75)</td>
</tr>
<tr>
<td>sprstm</td>
<td></td>
<td>§2.7 (p. 76)</td>
</tr>
<tr>
<td>sprstps</td>
<td>iindexx</td>
<td>§2.7 (p. 73)</td>
</tr>
<tr>
<td>sprstx</td>
<td></td>
<td>§2.7 (p. 73)</td>
</tr>
<tr>
<td>stifbs</td>
<td>jacobs, simple, lubcmp, lubksb, [derivs]</td>
<td>§16.6 (p. 737)</td>
</tr>
<tr>
<td>stif</td>
<td>jacobs, lubcmp, lubksb, [derivs]</td>
<td>§16.6 (p. 732)</td>
</tr>
<tr>
<td>stoerm</td>
<td>[derivs]</td>
<td>§16.5 (p. 726)</td>
</tr>
<tr>
<td>svbksb</td>
<td></td>
<td>§2.6 (p. 56)</td>
</tr>
<tr>
<td>svdcmb</td>
<td>pythag</td>
<td>§2.6 (p. 59)</td>
</tr>
<tr>
<td>svdfit</td>
<td>[funcs], svdcmp, pythag</td>
<td>§15.4 (p. 672)</td>
</tr>
<tr>
<td>svdvar</td>
<td></td>
<td>§15.4 (p. 673)</td>
</tr>
<tr>
<td>toepll</td>
<td></td>
<td>§2.8 (p. 88)</td>
</tr>
<tr>
<td>tptests</td>
<td>avevar, betai, gammln, betacf</td>
<td>§14.2 (p. 612)</td>
</tr>
<tr>
<td>tqli</td>
<td>pythag</td>
<td>§11.3 (p. 473)</td>
</tr>
<tr>
<td>trapz</td>
<td>[func]</td>
<td>§4.2 (p. 131)</td>
</tr>
<tr>
<td>tred2</td>
<td></td>
<td>§11.2 (p. 467)</td>
</tr>
<tr>
<td>tridag</td>
<td></td>
<td>§2.4 (p. 43)</td>
</tr>
<tr>
<td>trncst</td>
<td></td>
<td>§10.9 (p. 442)</td>
</tr>
<tr>
<td>trnspt</td>
<td></td>
<td>§10.9 (p. 442)</td>
</tr>
<tr>
<td>ttests</td>
<td>avevar, betai, gammln, betacf</td>
<td>§14.2 (p. 610)</td>
</tr>
<tr>
<td>tutests</td>
<td>avevar, betai, gammln, betacf</td>
<td>§14.2 (p. 611)</td>
</tr>
<tr>
<td>twoft</td>
<td>four1</td>
<td>§12.3 (p. 505)</td>
</tr>
<tr>
<td>vander</td>
<td></td>
<td>§2.8 (p. 84)</td>
</tr>
<tr>
<td>Program</td>
<td>Dependencies</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>------</td>
</tr>
<tr>
<td>vegas</td>
<td>rebin</td>
<td>§7.8</td>
</tr>
<tr>
<td></td>
<td>ran2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[fxn]</td>
<td></td>
</tr>
<tr>
<td>voltra</td>
<td>[g]</td>
<td>§18.2</td>
</tr>
<tr>
<td></td>
<td>[ak]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ludcmp</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lubksb</td>
<td></td>
</tr>
<tr>
<td>wt1</td>
<td>daub4</td>
<td>§13.10</td>
</tr>
<tr>
<td>wtn</td>
<td>daub4</td>
<td>§13.10</td>
</tr>
<tr>
<td>wwgts</td>
<td>kermom</td>
<td>§18.3</td>
</tr>
<tr>
<td>zbrac</td>
<td>[func]</td>
<td>§9.1</td>
</tr>
<tr>
<td>zbrak</td>
<td>[func]</td>
<td>§9.1</td>
</tr>
<tr>
<td>zbrent</td>
<td>[func]</td>
<td>§9.3</td>
</tr>
<tr>
<td>zrhqr</td>
<td>balanc</td>
<td>§9.5</td>
</tr>
<tr>
<td></td>
<td>hqr</td>
<td></td>
</tr>
<tr>
<td>zriddr</td>
<td>[func]</td>
<td>§9.2</td>
</tr>
<tr>
<td>zroots</td>
<td>laguer</td>
<td>§9.5</td>
</tr>
</tbody>
</table>
General Index to Volumes 1 and 2

In this index, page numbers 1 through 934 refer to Volume 1, *Numerical Recipes in Fortran 77*, while page numbers 935 through 1446 refer to Volume 2, *Numerical Recipes in Fortran 90*. Front matter in Volume 1 is indicated by page numbers in the range 1/ through 1/xxxi, while front matter in Volume 2 is indicated 2/ through 2/xx.

Abstract data types 2/xiii, 1030

Accelerated convergence of series 160ff., 1070

Accuracy 19f.

Achievable in minimization 392, 397, 404

Achievable in root finding 346f.

Contrasted with fidelity 832, 840

CPU different from memory 181

Avoiding stability 704, 729, 830, 844

Accuracy parameters 1362f.

Acknowledgments 1/xvi, 2/xx

Ada 2/x

Adams-Bashford-Moulton method 741

Adams’ stopping criterion 366

Adaptive integration 123, 135, 703, 708ff., 720, 726, 731f., 737, 742ff., 788, 1298ff., 1303, 1308f.

Monte Carlo 306ff., 1161ff.

Addition, multiple precision 907, 1353

Addition theorem, elliptic integrals 255

ADI (alternating direction implicit) method 847, 861f., 906

Adjoint operator 867

Adobe Illustrator 1/xvi, 2/xx

Advective equation 826

AGM (arithmetic geometric mean) 906

Airy function 204, 234, 243f.

routine for 244f., 1121

Aitken’s delta squared process 160

Aitken’s interpolation algorithm 102

Algol 2/xx, 2/xiv

Algorithms, non-numerical 881ff., 1343ff.

Aliasing 495, 569

see also Fourier transform

all() intrinsic function 945, 948

All-poles model 566

see also Maximum entropy method (MEM)

All-zeros model 566

see also Periodogram

Allocatable array 938, 941, 952ff., 1197, 1212, 1266, 1293, 1306, 1336

allocate statement 938f., 941, 953f., 1197, 1266, 1293, 1306, 1336

allocated() intrinsic function 938, 952ff., 1197, 1266, 1293

Allocation status 938, 952ff., 961, 1197, 1266, 1293

Alpha AXP 2/xix

Alternating-direction implicit method (ADI) 847, 861f., 906

Alternating series 160f., 1070

Alternative extended Simpson’s rule 128

American National Standards Institute (ANSI) 2/xx, 2/xiii

Amoeba 403

see also Simplex, method of Nelder and Mead

Amplification factor 828, 830, 832, 840, 845f.

Amplitude error 831

Analog-to-digital converter 812, 886

Analyticity 195

Analyze/factorize/operate package 64, 824

Anderson-Darling statistic 621

Andrew’s sine 697

Annealing, method of simulated 387f., 436ff., 1219ff.

assessment 447

for continuous variables 437, 443ff., 1222

schedule 438

thermodynamic analogy 437

traveling salesman problem 438ff., 1219ff.

ANSI (American National Standards Institute) 2/xx, 2/xiii

Antonov-Saleev variant of Sobol’ sequence 300, 1160

any() intrinsic function 945, 948

APL (computer language) 2/xx

Apple 1/xiii

Macintosh 2/xix, 4, 886

Approximate inverse of matrix 49

Approximation of functions 99, 1043

by Chebyshev polynomials 185ff., 513, 1076f.

Padé approximant 194ff., 1080f.

by rational functions 197ff., 1081f.

by wavelets 594ff., 782

see also Fitting

Argument keyword 2/xiv, 947f., 1341

optional 2/xiv, 947f., 1092, 1228, 1230, 1256, 1272, 1275, 1340

Argument checking 994ff., 1086, 1090, 1092, 1370f.
Index to Volumes 1 and 2

Arithmetic
- arbitrary precision 881, 906ff., 1352ff.
- floating point 881, 1343
- IEEE standard 276, 882, 1343
- rounding 882, 1343

Arithmetic coding
- 881, 902ff., 1349ff.
- Arithmetic-geometric mean (AGM) method 906

Arithmetic-if statement
- 2/xxi

Arithmetic progression
- 971ff., 996, 1072, 1127, 1365, 1371ff.

Array
- 953ff.
 - allocatable 938, 941, 952ff., 1197, 1212, 1266, 1293, 1306, 1336
 - allocated with pointer 941
 - allocation 953
 - array manipulation functions 950
 - array sections 939, 941, 943ff.
 - of arrays 2/xxi, 956, 1336
 - associated pointer 953f.
 - assumed-shape 942
 - automatic 938, 954, 1197, 1212, 1336
 - centered subarray of 113
 - conformable to a scalar 942f., 965, 1094
 - constructor 2/xxi, 968, 971, 1022, 1052, 1055, 1127
 - copying 991, 1034, 1327ff., 1365ff.
 - cumulative product 997f., 1072, 1086, 1375
 - cumulative sum 997, 1280ff., 1365, 1375
 - deallocation 938, 953f., 1197, 1266, 1293
 - disassociated pointer 953
 - extents 938, 949
 - in Fortran 90 941
 - increasing storage for 955, 1070, 1302
 - index loss 967ff.
 - index table 1173ff.
 - indices 942
 - inquiry functions 948ff.
 - intrinsic procedures 2/xxiii, 948ff.
 - of length 0 944
 - of length 1 949
 - location of first “true” 993, 1041, 1369
 - location of maximum value 993, 1015, 1017, 1365, 1369
 - location of minimum value 993, 1369f.
 - manipulation functions 950, 1247
 - masked swapping of elements in two arrays 1368
 - operations on 942, 949, 964ff., 969, 1026, 1040, 1050, 1200, 1326
 - outer product 949, 1076
 - parallel features 941ff., 964ff., 985
 - passing variable number of arguments to function 1022
 - of pointers forbidden 956, 1337
 - rank 938, 949
 - reallocation 955, 992, 1070ff., 1365, 1368f.
 - reduction functions 948ff.
 - shape 938, 944, 949
 - size 938
 - skew sections 945, 985
 - stride 944
 - subscript bounds 942
 - subscript triplet 944

- swapping elements of two arrays 991, 1015, 1365ff.
- target 938
- three-dimensional, in Fortran 90 1248
- transformational functions 948ff.
- unary and binary functions 949
 - undefined status 952ff., 961, 1266, 1293
 - zero-length 944

Array section
- 2/xxiii, 943ff., 960

- matches by shape 944
 - pointer alias 939, 944f., 1286, 1333
 - skew 2/xxi, 945, 960, 985, 1284
 - vs. eoshift 1078

- array-copy() utility function 988, 991, 1034, 1153, 1278, 1528

- arith() utility function 972, 974, 988, 996, 1072, 1086, 1127
 - replaces do-list 968

- Artificial viscosity 831, 837

- Ascending transformation, elliptic integrals 256

- ASCII character set 6, 888, 896, 902

- Assembly language 269

- assert() utility function 988, 994, 1086, 1090, 1249

- asserts_eq() utility function 988, 995, 1022

- associated() intrinsic function 952f.

- Associated Legendre polynomials 246ff., 764, 1122f., 1319

- recurrence relation 247

- relation to Legendre polynomials 246

- Association, measures of 604, 622ff., 1275

- Assumed-shape array 942

- Asymptotic series 161

- exponential integral 218

- Attenuation factors 583, 1261

- Autocorrelation 492
 - in linear prediction 558
 - use of FFT 538f., 1254

- Wiener-Khinchin theorem 492, 566f.

- AUTODIN-II polynomial 890

- Automatic array 938, 954, 1197, 1212, 1336
 - specifying size of 938, 954

- Automatic deallocation 2/kv, 961

- Autonomous differential equations 729f.

- Autoregressive model (AR) see Maximum entropy method (MEM)

- Average deviation of distribution 605, 1269

- Averaging kernel, in Backus-Gilbert method 807

Back substitution
- 33ff., 39, 42, 92, 1017
 - in band diagonal matrix 46, 1021
 - in Cholesky decomposition 90, 1039
 - complex equations 41
 - direct for computing $A^{-1} \cdot B$ 40
 - with QR decomposition 93, 1040
 - relaxation solution of boundary value problems 755, 1316

- in singular value decomposition 56, 1022f.

- Backtracking 419
 - in quasi-Newton methods 376f., 1195

- Backus-Gilbert method 806ff.

- Backus, John 2/x

- Backward deflation 363
Index to Volumes 1 and 2

Bader-Deuffhard method 730, 735, 1310f.
Bairstow’s method 364, 370, 1193
Balancing 476f., 1230f.
Band diagonal matrix 42ff., 1019
backsubstitution 46, 1021
LU decomposition 45, 1020
multiply by vector 44, 1019
storage 44, 1019
Band-pass filter 551, 554f.
wavelets 584, 592f.
Bandwidth limited function 495
Bank accounts, checksum for 894
Bar codes, checksum for 894
Bartlett window 547, 1254ff.
Base case, of recursive procedure 958
Base of representation 19, 882, 1343
BASIC, Numerical Recipes in 1, 2x, 2/xvii
Basis functions in general linear least squares 665
Bayes’ Theorem 810
Bayesian
approach to inverse problems 799, 810f., 816f.
contrasted with frequentist 810 vs. historic maximum entropy method 816f.
views on straight line fitting 664
Bays’ shuffle 270
Bernoulli number 132
Bessel functions 222f., 234ff., 936, 1101ff.
asympotic form 222f., 229f.
complex 304
continued fraction 234, 239
double precision 223
fractional order 223, 234ff., 1115ff.
Miller’s algorithm 175, 228, 1106
modified 229ff.
modified, fractional order 239ff.
modified, normalized formula 232, 240
modified, routines for 230ff., 1109ff.
normalization formula 175
parallel computation of 1107ff.
recurrence relation 172, 224, 234, 239
reflection formulas 236
reflection formulas, modified functions 241
routines for 225ff., 236ff., 1101ff.
routines for modified functions 241ff., 1118
series for 160, 223
series for 241
series for 235
spherical 234, 245, 1121f.
turning point 234
Wronskian 234, 239
Best-fit parameters 650, 656, 660, 698, 1285ff.
Beta function 206ff., 1089
incomplete see Incomplete beta function
BFGS algorithm see Broyden-Fletcher-Goldfarb-Shanno algorithm
Bias, of exponent 19
Bias, removal in linear prediction 563
Biconjugacy 77
Biconjugate gradient method 824
elliptic partial differential equations 824
preconditioning 78f., 824, 1037
for sparse system 77, 599, 1034ff.
Bicubic interpolation 118f., 1049f.
Bicubic spline 120f., 1050f.
Big-endian 293
Bilinear interpolation 117
Binary constant, initialization 959
Binomial coefficients 206ff., 1087f.
recurrences for 209
Binomial probability function 208
cumulative 222f.
developes from 281, 285f., 1155
Binormal distribution 631, 690
Biorthogonality 77
Bisection 111, 359, 1045f.
compared to minimum bracketing 390ff.
minimum finding with derivatives 399
root finding 343, 346ff., 352ff., 390, 469, 1184f.
BISYNCH 890
Bit 18
manipulation functions see Bitwise logical functions
reversal in fast Fourier transform (FFT) 499f., 525
bitwise intrinsic function 951
Bitwise logical functions 2xxii, 17, 287, 890f., 951
Block-by-block method 788
Block of statements 7
Bode’s rule 126
Boltzmann probability distribution 437
Boltzmann’s constant 437
Bootstrap method 686f.
Bordering method for Toeplitz matrix 85f.
Borwein and Borwein method for π 906, 1357
Boundary 155f., 425f., 745
Boundary conditions
for differential equations 701f.
initial value problems 702
in multigrid method 868f.
partial differential equations 508, 819ff., 848ff.
for spheroidal harmonics 764
two-point boundary value problems 702, 745ff., 1314ff.
Boundary value problems see Differential equations; Elliptic partial differential equations; Two-point boundary value problems
Box-Muller algorithm for normal deviate 279f., 1152
Bracketing
of function minimum 343, 390ff., 402, 1201f.
of roots 341, 343ff., 353f., 362, 364, 369, 390, 1183f.
Branch cut, for hypergeometric function 203
Branching 9
Break iteration 14
Brenner, N.M. 500, 517
Index to Volumes 1 and 2

Brent’s method
minimization 389, 395ff., 660ff., 1204ff., 1286
minimization, using derivative 389, 399, 1205
root finding 341, 349, 660ff., 1188ff., 1286
Broadcast (parallel capability) 965ff.
Brodyen-Fletcher-Goldfarb-Shanno algorithm 390, 418ff., 1215
Brodyen’s method 373, 382ff., 386, 1199ff.
singular Jacobian 386
best() intrinsic function 951
Bubble sort 321, 1168
Bugs 4
in compilers 1/viii
how to report 1/v, 2/v
Bulirsch-Stoer algorithm for rational function interpolation 105ff., 1043
method (differential equations), stepsize control 719, 726
for second order equations 726, 1307
Burg’s LP algorithm 561, 1256
Byte 18

C (programming language) 13, 2/viii and case construct 1010
Numerical Recipes in, 1, 2/x, 2/viii
C++ 1/xiv, 2/viii, 2xxi, 7f.
class templates 1083, 1106
Calendar algorithms 1f., 13ff., 1010ff.
Calibration 653
Capital letters in programs 3, 937
Cards, sorting a hand of 321
Carlson’s elliptic integrals 255ff., 1128ff.
case construct 2/xiv, 1010
trapping errors 1036
Cash-Karp parameters 710, 1299ff.
Cauchy probability distribution see Lorentzian probability distribution
Cauchy problem for partial differential equations 81ff.
Cayley’s representation of exp(−iHt) 844
CCITT (Comité Consultatif International Télé-
graphique et Téléphonique) 889ff., 901
CCITT polynomial 889ff.
celling() intrinsic function 947
Center of mass 295ff.
Central limit theorem 652ff.
Central tendency, measures of 604ff., 1269
Change of variable
in integration 137ff., 788, 1056ff.
in Monte Carlo integration 298
in probability distribution 279
Character functions 952
Character variables, in Fortran 90 1183
Characteristic polynomial
digital filter 554
eigensystems 449, 469
linear prediction 559
matrix with a specified 368, 1193
of recurrence relation 175

Characteristics of partial differential equations 818
Chebyshev acceleration in successive over-
relaxation (SOR) 859ff., 1332
Chebyshev approximation 84, 124, 183, 184ff., 1076ff.
Clenshaw-Curtis quadrature 190
Clenshaw’s recurrence formula 187, 1076
coefficients for 185ff., 1076
contrasted with Padé approximation 195
derivative of approximated function 183, 189, 1077ff.
economization of series 192ff., 195, 1080
for error function 214, 1095
even function 188
and fast cosine transform 513
gamma functions 236, 1118
integral of approximated function 189, 1078
odd function 188
polynomial fits derived from 191, 1078
rational function 197ff., 1081ff.
Remes exchange algorithm for filter 553
Chebyshev polynomials 184ff., 1076ff.
continuous orthonormality 184
discrete orthonormality 185
explicit formulas for 184
formula for 2π in terms of 193, 1080
Check digit 894, 1345ff.
Checksum 881, 888
Cyclic redundancy (CRC) 888ff., 1344ff.
Cherry, sundae without a 809
Chi-by-eye 651
Chi-square fitting see Fitting; Least squares fitting
Chi-square probability function 209ff., 215, 615, 654, 798, 1272
as boundary of confidence region 688ff.
related to incomplete gamma function 215
Chi-square test 614f.
for binned data 614f., 1272
chi-by-eye 651
and confidence limit estimation 688ff.
for contingency table 623ff., 1275
degrees of freedom 615f.
for inverse problems 797
least squares fitting 653ff., 1285
nonlinear models 675ff., 1292
rule of thumb 655
for straight line fitting 655ff., 1285
for straight line fitting, errors in both coordi-
nates 660, 1286ff.
for two binned data sets 616, 1272
unequal size samples 617
Chip rate 290
Chip signal 556
Cholesky decomposition 89ff., 423, 455, 1038
backsubstitution 90, 1039
operation count 90
pivoting 90
solution of normal equations 668
Circlulant 585
Class, data type 7
Clenshaw-Curtis quadrature 124, 190, 512f.
Index to Volumes 1 and 2

Clenshaw’s recurrence formula 176f., 191, 1078
for Chebyshev polynomials 187, 1076
stability 176f.
Clocking errors 891
CM computers (Thinking Machines Inc.) 964
CM Fortran 2/xv
cn function 261, 1137f.
Coarse-grid correction 864f.
Coarse-to-fine operator 864, 1337
Coding
arithmetic 902ff., 1349ff.
checksums 888, 1344
decoding a Huffman-encoded message 900, 1349
Huffman 896f., 1346ff.
run-length 901
variable length code 896, 1346ff.
Ziv-Lempel 896
see also Arithmetic coding; Huffman codd-
ing
Coefficients
binomial 208, 1087f.
for Gaussian quadrature 140ff., 1059ff.
for Gaussian quadrature, nonclassical weight
function 151ff., 788f., 1064
for quadrature formulas 125ff., 789, 1328
Cohen, Malcolm 2/xiv
Column degeneracy 22
Column operations on matrix 29, 31ff.
Column totals 624
Combinatorial minimization see Annealing
Comité Consultatif International Télégraphique
et Téléphonique (CCITT) 889ff., 901
Common block
obsolete 2/xif.
superseded by internal program 957, 1067
superseded by module 940, 953, 1298,
1320, 1322, 1324, 1330
Communication costs in parallel processing
969, 981, 1250
Communication theory, use in adaptive integra-
tion 721
Communications protocol 888
Comparison function for rejection method
281
Compilers 964, 1364
CM Fortran 968
DEC (Digital Equipment Corp.) 2/viii
IBM (International Business Machines)
2/viii
Microsoft Fortran PowerStation 2/viii
NAG (Numerical Algorithms Group) 2/viii,
2/xiv
for parallel supercomputers 2/viii
Complementary error function 1094f.
see Error function
Complete elliptic integral see Elliptic integrals
Complex arithmetic 171f.
avoidance of in path integration 203
cubic equations 179f.
for linear equations 41
quadratic equations 178
Complex error function 252
Complex plane
fractal structure for Newton’s rule 360f.
path integration for function evaluation
201ff., 263, 1138
poles in 105, 160, 202f., 206, 554, 566,
718f.
Complex systems of linear equations 41f.
Compression of data 596f.
Concordant pair for Kendall’s tau 637, 1281
Condition number 53, 78
Confidence level 687, 691ff.
Confidence limits
bootstrap method 687f.
and chi-square 688f.
confidence region, confidence interval 687
on estimated model parameters 684ff.
by Monte Carlo simulation 684f.
from singular value decomposition (SVD)
693f.
Confluent hypergeometric function 204, 239
Conformable arrays 942f., 1094
Conjugate directions 408f., 414ff., 1210
Conjugate gradient method
biconjugate 77, 1034
compared to variable metric method 418
elliptic partial differential equations 824
for minimization 390, 413ff., 804, 815,
1210, 1214
minimum residual method 78
preconditioner 78f., 1037
for sparse system 77ff., 599, 1034
and wavelets 599
Conservative differential equations 726, 1307
Constrained linear inversion method 799ff.
Constrained linear optimization see Linear pro-
gramming
Constrained optimization 387
Constraints, deterministic 804ff.
Constraints, linear 423
CONTAINS statement 954, 957, 1067, 1134,
1202
Contingency coefficient C 625, 1275
Contingency table 622ff., 638, 1275f.
statistics based on chi-square 623ff., 1275f.
statistics based on entropy 626ff., 1275f.
Continued fraction 163ff.
Bessel functions 234
convergence criterion 165
equivalence transformation 166
evaluation 163ff.
evaluation along with normalization condi-
tion 240
even and odd parts 166, 211, 216
even part 249, 251
exponential integral 216
 Fresnel integral 248f.
incomplete beta function 219ff., 1099ff.
incomplete gamma function 211, 1092f.
Leitz’s method 165, 212
modified Lentz’s method 165
Pincherle’s theorem 175
ratio of Bessel functions 239
rational function approximation 164, 211,
219f.
recurrence for evaluating 164f.
Index to Volumes 1 and 2

and recurrence relation 175
sine and cosine integrals 250ff.
Steed's method 164f.
tangent function 164
typography for 163
Continuous variable (statistics) 623
Control structures 7ff., 2/xiv
bad 15
named 959, 1219, 1305
Convergence
accelerated, for series 160ff., 1070
of algorithm for pi 906
criteria for 347, 392, 404, 483, 488, 679,
759
eigenvalues accelerated by shifting 470f.
golden ratio 349, 399
go of golden section search 392f.
of Levenberg-Marquardt method 679
linear 346, 393
of QL method 470f.
quadratic 49, 351, 356, 409f., 419, 906
rate 346ff., 353, 356
reconvergence rel 175
of Ridders' method 351
series vs. continued fraction 163f.
and spectral radius 859ff., 862
Conversion intrinsic functions 946f.
Convex sets, use in inverse problems 804
Convolution
denoted by asterisk 492
finite impulse response (FIR) 531
e of functions 492, 503f.
of large data sets 536f.
for multiple precision arithmetic 909,
1354
multiplication as 909, 1354
necessity for optimal filtering 535
overlap-add method 537
overlap-save method 536f.
and polynomial interpolation 113
relation to wavelet transform 585
theorem 492, 531ff., 546
theorems, discrete 531ff.
treatment of end effects 533
use of FFT 523, 531ff., 1253
wraparound problem 533
Cooley-Tukey FFT algorithm 503, 1250
parallel version 1239f.
Co-processor, floating point 886
Copyright rules 1/xx, 2/xx
Cornwell-Evans algorithm 816
Corporate promotion ladder 328
Corrected two-pass algorithm 607, 1269
Correction, in multigrid method 863
Correlation coefficient (linear) 630ff., 1276
Correlation function 492
autocorrelation 492, 539, 558
and Fourier transforms 492
theorem 492, 538
treatment of end effects 538f.
using FFT 538f., 1254
Wiener-Khinchin theorem 492, 566f.
Correlation, statistical 603f., 622
Kendall's tau 634, 637ff., 1279
linear correlation coefficient 630ff., 658,
1276
linear related to least square fitting 630,
658
nonparametric or rank statistical 633ff.,
1277
among parameters in a fit 657, 667, 670
in random number generators 268
Spearman rank-order coefficient 634f.,
1277
sum squared difference of ranks 634,
1277
Cosine function, rec 172
Cosine integral 248, 250ff., 1125f.
continued fraction 250
routine for 251f., 1125
series 250
Cosine transform see Fast Fourier transform
(FFT); Fourier transform
Coulomb wave function 204, 234
count() intrinsic function 948
Courant condition 829, 832ff., 836
multidimensional 846
Courant-Friedrichs-Lewy stability criterion see
Courant condition
Covariance
a priori 700
in general linear least squares 667, 671,
128ff.
matrix, by Cholesky decomposition 91,
667
matrix, of errors 796, 808
matrix, is inverse of Hessian matrix 679
matrix, when it is meaningful 690ff.
in nonlinear models 679, 681, 1292
relation to chi-square 690ff.
from singular value decomposition (SVD)
693f.
in straight line fitting 657
epl()time() intrinsic function (Fortran 95) 961
CR method see Cyclic reduction (CR)
Cramer's V 625, 1275
Crane-Nicolson method 840, 844, 846
Cray computers 964
CRC (cyclic redundancy check) 888ff., 1344f.
CRC-12 890
CRC-16 polynomial 890
CRC-CITT 890
Creativity, essay on 9
Critical (Nyquist) sampling 494, 543
Cross (denotes matrix outer product) 66
Cross-tabulation analysis 623
see also Contingency table
Croot's algorithm 36ff., 45, 1017
cshift() intrinsic function 950
communication bottleneck 969
Cubic equations 178ff., 360
Cubic spline interpolation 107ff., 1044f.
see also Spline
cumprod() utility function 974, 988, 997,
1072, 1086
cumsum() utility function 974, 989, 997,
1280, 1305
Cumulant, of a polynomial 977, 999, 1071f.,
1192
Index to Volumes 1 and 2

Cumulative binomial distribution 222f.
Cumulative Poisson function 214
related to incomplete gamma function 214
Curvature matrix see Hessian matrix
cycle statement 959, 1219
Cycle, in multigrid method 865
Cyclic Jacobi method 459, 1225
Cyclic reduction (CR) 848f., 852ff.
linear recurrences 974
tridiagonal systems 976, 1018
Cyclic redundancy check (CRC) 888ff., 1344f.
Cyclic tridiagonal systems 67, 1030

D.C. (direct current) 492
Danieldson-Lanczos lemma 498f., 525, 1235ff.
DAP Fortran 2/xi
Data
assigning keys to 889
continuous vs. binned 614
entropy 626ff., 896, 1275
essay on 603
fitting 650ff., 1285ff.
fractals 655
glitches in 653
iid (independent and identically distributed) 686
modeling 659ff., 1285ff.
serial port 892
smoothing 664, 644ff., 1283f.
statistical tests 603ff., 1269ff.
unevenly or irregularly sampled 569, 574,
648f., 1285ff.
use of CRCs in manipulating 889
windowing 545ff., 1254
see also Statistical tests
Data compression 596f., 881
arithmetic coding 902ff., 1349ff.
cosine transform 513
Huffman coding 896f., 902, 1346ff.
linear predictive coding (LPC) 563ff.
lossless 896
Data Encryption Standard (DES) 290ff., 1144,
1147f., 1156ff.
Data hiding 956ff., 1209, 1293, 1296
Data parallelism 941, 964ff., 985
DATA statement 959
for binary, octal, hexadecimal constants 959
repeat count feature 959
superseded by initialization expression 943, 959, 1127
Data type 18, 936
accuracy parameters 1362f.
character 1183
derived 2/xii, 937, 1030, 1336, 1346
derived, for array of arrays 956, 1336
derived, initialization 2/xv
derived, for Numerical Recipes 1361
derived, storage allocation 955
DP (double precision) 1361f.
DPC (double precision complex) 1361
I1B (1 byte integer) 1361
I2B (2 byte integer) 1361
I4B (4 byte integer) 1361
intrinsic 937
LGT (default logical type) 1361
ntype.f90 1361f.
passing complex as real 1140
SP (single precision) 1361f.
SPC (single precision complex) 1361
user-defined 1346
DAUB4 584ff., 588, 590ff., 594, 1264ff.
DAUB6 586
DAUB12 598
DAUB20 590ff., 1265
Daubechies wavelet coefficients 584ff., 588,
590f., 594, 598, 1264ff.
Davidson-Fletcher-Powell algorithm 390, 418ff.,
1215
Dawson’s integral 252ff., 600, 1127f.
approximation for 252f.
routine for 253f., 1127
dble() intrinsic function (deprecated) 947
deallocate statement 938f., 953f., 1197, 1266,
1293
Deallocation, of allocatable array 938, 953f.,
1197, 1266, 1293
Debugging 8
DEC (Digital Equipment Corp.) 1/xxiii, 2/xxix,
886
Alpha AXP 2/viii
Fortran 90 compiler 2/viii
quadruple precision option 1362
VAX 4
Decomposition see Cholesky decomposition;
LU decomposition; QR decomposition;
Singular value decomposition (SVD)
Deconvolution 535, 540, 1253
see also Convolution; Fast Fourier transform
(FFT); Fourier transform
Defect, in multigrid method 863
Deferred approach to the limit see Richard-
son’s deferred approach to the limit
Deflation of matrix 471 of polynomials 362ff., 370ff., 977
Degeneracy of linear algebraic equations 22,
53, 57, 670
Degenerate kernel 785
Degenerate minimization principle 795
Degrees of freedom 615f., 654, 691
Dekker, T.J. 353
Demonstration programs 3, 936
Deprecated features
common block 2/xif., 940, 953, 957,
1067, 1298, 1320, 1322, 1324, 1330
dble() intrinsic function 947
EQUIVALENCE statement 2/xif., 1161,
1286
statement function 1057, 1256
Derivatives
computation via Chebyshev approximation 183, 189, 1077f.
computation via Savitzky-Golay filters 183, 645
matrix of first partial see Jacobian determi-
nant
matrix of second partial see Hessian ma-
trix
Index to Volumes 1 and 2

numerical computation 180ff., 379, 645, 732, 750, 771, 1075, 1197, 1309
of polynomial 167, 978, 1071ff.
use in optimization 388ff., 399, 1205ff.
Derived data type see Data type, derived
DES see Data Encryption Standard
Descending transformation, elliptic integrals 256
Descent direction 376, 382, 419
Descriptive statistics 603ff., 1269ff.
see also Statistical tests
Design matrix 645, 665, 795, 801, 1082
Determinant 25, 41
Deviates, random see Random deviates
DFP algorithm see Davidon-Fletcher-Powell algorithm
diagadd() utility function 985, 989, 1004
diagmult() utility function 985, 989, 1004,
1294
Diagonal dominance 43, 679, 780, 856
Difference equations, finite see Finite difference equations (FDEs)
Difference operator 161
Differential equations 701ff., 1297ff.
accuracy vs. stability 704, 729
Adams-Bashforth-Moulton schemes 741
adaptive stepsize control 703, 708ff., 719,
726, 731, 737, 742ff., 1298ff., 1303ff.,
1308ff., 1311ff.
algorithmically difficult sets 763
backward Euler’s method 729
Bader-Deauffard method for stiff 730,
735, 1310ff.
boundary conditions 701ff., 745ff., 749,
751ff., 771, 1314ff.
Bulirsch-Stoer method 202, 263, 702, 706,
716, 718ff., 740, 1138, 1303
Bulirsch-Stoer method for conservative
equations 726, 1307
comparison of methods 702ff., 739ff., 743
conservative 726, 1307
danger of too small stepsize 714
eigenvalue problem 748, 764ff., 770ff.,
1319ff.
embedded Runge-Kutta method 709ff.,
731, 1298, 1308
equivalence of multistep and multivalue
methods 743
Euler’s method 702, 704, 728ff.
forward Euler’s method 728
free boundary problem 748, 776
high-order implicit methods 730ff., 1308ff.
implicit differing 729, 740, 1308
initial value problems 702
internal boundary conditions 775ff.
internal singular points 775ff.
interpolation on right-hand sides 111
Kaps-Rentrop method for stiff 730, 1308
local extrapolation 709
modified midpoint method 716ff., 719,
1302ff.
multistep methods 740ff.
multivalue methods 740
order of method 704ff., 719
path integration for function evaluation
201ff., 263, 1138
predictor-corrector methods 702, 730,
740ff.
reduction to first-order sets 701, 745
relaxation method 746ff., 753ff., 1316ff.
relaxation method, example of 764ff.,
1319ff.
r.h.s. independent of x 729ff.
Rosenbrock methods for stiff 730, 1308ff.
Runge-Kutta method 702, 704ff., 708ff.,
731, 740, 1297ff., 1308
Runge-Kutta method, high-order 705,
1297
Runge-Kutta-Fehlberg method 709ff., 1298
scaling stepsize to required accuracy 709
second order 726, 1307
semi-implicit differencing 730
semi-implicit Euler method 730, 735ff.
semi-implicit extrapolation method 730,
735ff., 1311ff.
semi-implicit midpoint rule 735ff., 1310ff.
shooting method 746, 749ff., 1314ff.
shooting method, example 770ff., 1321ff.
similarity to Wolterson integral equations 786
singuar points 718ff., 751, 775ff., 1315ff.,
1323ff.
step doubling 708ff.
stepsize control 703, 708ff., 719, 726,
731, 737, 742ff., 1298, 1303ff., 1308ff.
stiff 703, 727ff., 1308ff.
stiff methods compared 739
Stoermer’s rule 726, 1307
see also Partial differential equations; Two-
point boundary value problems
Diffusion equation 818, 838ff., 855
Crank-Nicolson method 840, 844, 846
Forward Time Centered Space (FTCS)
839ff., 855
implicit differencing 840
multidimensional 846
Digamma function 216
Digital filtering see Filter
Dihedral group D2n 894
dim optional argument 948
Dimensional expansion 965ff.
Dimensions (units) 678
Diminishing increment sort 322, 1168
Dirac delta function 284, 780
Direct method see Periodogram
Direct methods for linear algebraic equations
26, 1014
Direct product see Outer product of matrices
Direction of largest decrease 410ff.
Direction numbers, Sobol’s sequence 300
Direction-set methods for minimization 389,
406ff., 1210ff.
Dirichlet boundary conditions 820, 840, 850,
856, 858
Disclaimer of warranty 1Ax, 2xvii
Discordant pair for Kendall’s tau 657, 1281
Discrete convolution theorem 531ff.
Index to Volumes 1 and 2

<table>
<thead>
<tr>
<th>Discrete Fourier transform (DFT)</th>
<th>495ff., 1235ff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>as approximate continuous transform</td>
<td>497</td>
</tr>
<tr>
<td>see also Fast Fourier transform (FFT)</td>
<td></td>
</tr>
<tr>
<td>Discrete optimization</td>
<td>436ff., 1219ff.</td>
</tr>
<tr>
<td>Discriminant</td>
<td>178, 457</td>
</tr>
<tr>
<td>Diskettes</td>
<td>are ANSI standard 3</td>
</tr>
<tr>
<td>how to order</td>
<td>1/xii, 2/xvii</td>
</tr>
<tr>
<td>Dispersion</td>
<td>831</td>
</tr>
<tr>
<td>DISPO see Savitzky-Golay filters</td>
<td>830</td>
</tr>
<tr>
<td>Dissipation, numerical</td>
<td>830</td>
</tr>
<tr>
<td>Divergent series</td>
<td>161</td>
</tr>
<tr>
<td>Divide and conquer algorithm</td>
<td>1226, 1229</td>
</tr>
<tr>
<td>Division</td>
<td>complex 171</td>
</tr>
<tr>
<td>multiple precision 910ff., 1356</td>
<td></td>
</tr>
<tr>
<td>of polynomials</td>
<td>169, 362, 370, 1072</td>
</tr>
<tr>
<td>dn function</td>
<td>261, 1137f.</td>
</tr>
<tr>
<td>Do-list, implied</td>
<td>968, 971, 1127</td>
</tr>
<tr>
<td>Do-loop</td>
<td>2/xiv</td>
</tr>
<tr>
<td>Do-until iteration</td>
<td>14</td>
</tr>
<tr>
<td>Do-while iteration</td>
<td>13</td>
</tr>
<tr>
<td>Dogleg step methods</td>
<td>386</td>
</tr>
<tr>
<td>Domain of integration</td>
<td>155f.</td>
</tr>
<tr>
<td>Dominant solution of recurrence relation</td>
<td>174</td>
</tr>
<tr>
<td>Dot (denotes matrix multiplication)</td>
<td>23</td>
</tr>
<tr>
<td>dot product() intrinsic function 945, 949, 969, 1216</td>
<td></td>
</tr>
<tr>
<td>Double exponential error distribution</td>
<td>696</td>
</tr>
<tr>
<td>Double precision</td>
<td>converting to 1362</td>
</tr>
<tr>
<td>as refuge of scoundrels</td>
<td>882</td>
</tr>
<tr>
<td>use in iterative improvement</td>
<td>47, 1022</td>
</tr>
<tr>
<td>Double root</td>
<td>341</td>
</tr>
<tr>
<td>Downhill simplex method see Simplex method, method of Nelder and Mead</td>
<td></td>
</tr>
<tr>
<td>DP, defined</td>
<td>937</td>
</tr>
<tr>
<td>Driver programs</td>
<td>3</td>
</tr>
<tr>
<td>Dual viewpoint, in multigrid method</td>
<td>875</td>
</tr>
<tr>
<td>Duplication theorem, elliptic integrals</td>
<td>256</td>
</tr>
<tr>
<td>DWT (discrete wavelet transform) see Wavelet transform</td>
<td></td>
</tr>
<tr>
<td>Dynamical allocation of storage 2/xiii, 869, 938, 941ff., 953ff., 1327, 1336</td>
<td></td>
</tr>
<tr>
<td>garbage collection</td>
<td>956</td>
</tr>
<tr>
<td>increasing</td>
<td>955, 1070, 1302</td>
</tr>
</tbody>
</table>

Eardley, D.M. 338
EBCDCIC 890
Economization of power series 192f., 195, 1080
Eigensystems 449ff., 1225ff.
balancing matrix 476f., 1230f.
bounds on eigenvalues 50
calculation of few eigenvalues 454, 488
canned routines 454f.
characteristic polynomial 449, 469
completeness 450
defective 450, 476, 489
deflation 471
degenerate eigenvalues 449f.
eliminaiton method 453, 478, 1231
factorization method 453
fast Givens reduction 463
generalized eigenproblem 455
Givens reduction 462f.
Hermitian matrix 475
Hessenberg matrix 453, 470, 476ff., 488, 1232
Householder transformation 453, 462ff., 469, 473, 475, 478, 1227f., 1231
ill-conditioned eigenvalues 477
implicit shifts 472ff., 1228f.
and integral equations 779, 785
invariance under similarity transform 452
inverse iteration 455, 469, 476, 487ff., 1230
Jacobi transformation 453, 456ff., 462, 475, 489, 1225f.
left eigenvalues 451
list of tasks 454f.
multiple eigenvalues 489
nonlinear 455
non symmetric matrix 476ff., 1230ff.
operation count of balancing 476
operation count of Givens reduction 463
operation count of Householder reduction 467
operation count of inverse iteration 488
operation count of Jacobi method 460
operation count of QL method 470, 473
operation count of QR method for Hessenberg matrices 484
operation count of reduction to Hessenberg form 479
orthogonality 450
parallel algorithms 1226, 1229
polynomial roots and 368, 1193
QL method 469ff., 475, 488f.
QL method with implicit shifts 472ff., 1228f.
QR method 52, 453, 456, 469ff., 1228
QR method for Hessenberg matrices 480ff., 1232ff.
real, symmetric matrix 150, 467, 785, 1225, 1228
reduction to Hessenberg form 478f., 1231
right eigenvalues 451
shifting eigenvalues 449, 470f., 480
special matrices 454
termination criterion 484, 488
tridiagonal matrix 453, 469ff., 488, 1228
Eigenvalue and eigenvector, defined 449
Eigenvalues and polynomial root finding 368, 1193
EISPACK 454, 475
Electromagnetic potential 519
ELEMENTAL attribute (Fortran 95) 961, 1084
Elemental functions 2/xiii, 2/xx, 940, 942, 946f., 961, 986, 1015, 1083, 1097f.
Elimination **see** Gaussian elimination 688
Elliptic integrals 254ff., 906
addition theorem 255
Index to Volumes 1 and 2

Extrapolation 99ff.
in Bulirsch-Stoer method 718ff., 726, 1305ff.
differential equations 702
by linear prediction 557ff., 1256f.
local 709
maximum entropy method as type of 567
polynomial 724, 726, 740, 1305f.
rational function 718ff., 726, 1306f.
relation to interpolation 101
for Romberg integration 134
see also Interpolation
Extremization see Minimization

F-distribution probability function 222
F-test for differences of variances 611, 613, 1271
FACR see Fourier analysis and cyclic reduction (FACR)
Facsimile standard 901
Factorial
double (denoted “!!”) 247
evaluation of 159, 1072, 1086
relation to gamma function 206
routine for 207f., 1086ff.
False position 347ff., 1185f.
Family tree 338
FAS (full approximation storage algorithm) 874, 1339ff.
Fast Fourier transform (FFT) 498ff., 881, 981, 1235f.
alternative algorithms 503f.
as approximation to continuous transform 497
Bartlett window 547, 1254
bit reversal 499f., 525
and Chenshaw-Curtis quadrature 190
column-parallell algorithm 981, 1237ff.
communication bottleneck 969, 981, 1250
convolution 503f., 523, 531ff., 909, 1253, 1354
convolution of large data sets 536f.
Cooley-Tukey algorithm 503, 1250
Cooley-Tukey algorithm, parallel 1239f.
relation 538f., 1254
cosine transform 190, 511ff., 851, 1245f.
cosine transform, second form 513, 852, 1246
Danielsen-Lanczos lemma 498f., 525
data sets not a power of 2 503
data smoothing 645
data windowing 545ff., 1254
decimation-in-frequency algorithm 503
decimation-in-time algorithm 503
discrete autocorrelation 539, 1254
discrete convolution theorem 531ff.
discrete correlation theorem 538
at double frequency 575
effect of caching 982
epsilon point corrections 578f., 1261ff.
external storage 525
figures of merit for data windows 548
filtering 551f.
FIR filter 553
four-step framework 983, 1239
Fourier integrals 577ff., 1261
Fourier integrals, infinite range 583
Hamming window 547
Hann window 547
history 498
IIR filter 553ff.
image processing 803, 805
integrals using 124
inverse of cosine transform 512ff.
inverse of sine transform 511
large data sets 525
leakage 544
memory-local algorithm 528
multidimensional 515ff., 1236f., 1241,
1246, 1251
for multiple precision arithmetic 906
for multiple precision multiplication 909, 1354
number-theoretic transforms 503f.
operation count 498
optimal (Wiener) filtering 539ff., 558
order of storage in 501
parallel algorithms 981ff., 1235ff.
partial differential equations 824, 848ff.
Parzen window 547
periodicity of 497
periodogram 543ff., 566
power spectrum estimation 542ff., 1254f.
for quadrature 124
of real data in 2D and 3D 519ff., 1248f.
of real functions 504ff., 519ff., 1242f., 1248f.
related algorithms 503f.
row-parallel algorithm 981, 1235f.
Sande-Tukey algorithm 503
sine transform 508ff., 850, 1245
Singleton’s algorithm 525
six-step framework 983, 1240
square window 546, 1254
timing 982
 treatment of end effects in convolution 533
 treatment of end effects in correlation 538f.
Tukey’s trick for frequency doubling 575
use in smoothing data 645
used for Lomb periodogram 574, 1259
variance of power spectrum estimate 544ff., 549
virtual memory machine 528
Welch window 547, 1254
Winograd algorithms 503
see also Discrete Fourier transform (DFT);
Fourier transform; Spectral density

Faure sequence 300
Fax (facsimile) Group 3 standard 901
Feasible vector 424
FFT see Fast Fourier transform (FFT)
Field, in data record 329
Figure-of-merit function 650
Filon’s method 583
Filter 551f.
causal 552
bilinear transformation method 554
causal 552, 644
Index to Volumes 1 and 2

Carlson’s forms and algorithms 255ff., 1128ff.
Cauchy principal value 256f.
duplication theorem 256
Legendre 254ff., 260ff., 1135ff.
routines for 257ff., 1128ff.
symmetric form 255
Weierstrass 255
Elliptic partial differential equations 818, 1332ff.
alternating-direction implicit method (ADI) 861ff., 906
analyze/factorize/operate package 824
biconjugate gradient method 824
boundary conditions 820
comparison of rapid methods 854
conjugate gradient method 824
cyclic reduction 848ff., 852ff.
Fourier analysis and cyclic reduction (FACR) 848ff., 854
Gauss-Seidel method 855, 864ff., 876, 1338, 1341
incomplete Cholesky conjugate gradient method (ICCQ) 824
Jacobi’s method 855ff., 864
matrix methods 824
multigrid method 824, 862ff., 1009, 1334ff.
rapid (Fourier) method 824, 848ff.
relaxation methods 823, 854ff., 1332
strongly implicit procedure 824
successive over-relaxation (SOR) 857ff., 862, 866, 1332
elsewhere construct 943
Emacs, GNU 1/xvi
Embedded Runge-Kutta method 709ff., 731, 1298, 1308
Encapsulation, in programs 7
Encryption 290, 1156
enddo statement 12, 17
Entropy 896
data 626ff., 811, 1275
EOM (end of message) 902
coshift() intrinsic function 950
communication bottleneck 969
vector shift argument 1019ff.
vs. array section 1078
epsilon() intrinsic function 951, 1189
Equation constraints 423
Equations 178ff., 360
normal (fitting) 645, 666ff., 800, 1288
quadratic 20, 178
see also Differential equations; Partial differential equations; Root finding
Equivalence classes 337ff., 1180
EQUIVALENT statement 2/xif., 1161, 1286
Equivalence transformation 166
Error
checksums for preventing 891
clocking 891
double exponential distribution 696
local truncation 875
Lorentzian distribution 696f.
in multigrid method 863
nonnormal 653, 690, 694ff.
relative truncation 875
roundoff 180ff., 881, 1362
series, advantage of an even 132ff., 717, 1362
systematic vs. statistical 653, 1362
truncation 20ff., 180, 399, 709, 881, 1362
varieties found by check digits 895
varieties of, in PDEs 831ff.
see also Roundoff error
Error function 213ff., 601, 1094ff.
approximation via sampling theorem 601
Chebyshev approximation 214, 1095
complex 252
for Fisher’s z-transformation 632, 1276
dawson’s integral 252, 1127
to Fresnel integrals 248
relation to incomplete gamma function 213
routine for 214, 1094
for significance of correlation 631, 1276
for sum squared difference of ranks 635, 1277
Error handling in programs 2/xii, 2/xvi, 3, 994ff., 1036, 1370ff.
Estimation of parameters see Fitting: Maximum likelihood estimate
Estimation of power spectrum 542ff., 565ff., 1254ff., 1258
Euler equation (fluid flow) 831
Euler-Maclaurin summation formula 132, 135
Euler’s constant 216ff., 250
Euler’s method for differential equations 702, 704, 728ff.
Euler’s transformation 160ff., 1070
generalized form 162f.
Evaluation of functions see Function
Even and odd parts, of continued fraction 166, 211, 216
Even parity 888
Exception handling in programs see Error handling in programs
exit statement 959, 1219
Explicit differing 827
Exponent in floating point format 19, 882, 1343
exponent intrinsic function 1107
Exponential deviate 278, 1151ff.
Exponential integral 215ff., 1096ff.
asymptotic expansion 218
continued fraction 216
reurrence relation 172
related to incomplete gamma function 215
relation to cosine integral 250
routine for $\text{Ei}(x)$ 218, 1097
routine for $\text{En}(x)$ 217, 1096
series 216
Exponential probability distribution 570
Extended midpoint rule 124ff., 129ff., 135, 1054f.
Extended Simpson’s rule 128, 788, 790
Extended Simpson’s three-eighths rule 789
Extended trapezoidal rule 125, 127, 130ff., 135, 786, 1052ff., 1326
roundoff error 132
Extrapolation (so-called) 574, 1261
<table>
<thead>
<tr>
<th>Characteristic polynomial</th>
<th>554</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data smoothing</td>
<td>644f., 1283f.</td>
</tr>
<tr>
<td>Digital</td>
<td>551ff.</td>
</tr>
<tr>
<td>DISPO</td>
<td>644</td>
</tr>
<tr>
<td>Fourier transform (FFT)</td>
<td>523, 1511f.</td>
</tr>
<tr>
<td>Finite impulse response (FIR)</td>
<td>531, 552</td>
</tr>
<tr>
<td>Homogeneous modes of</td>
<td>554</td>
</tr>
<tr>
<td>Infinite impulse response (IIR)</td>
<td>552ff., 566</td>
</tr>
<tr>
<td>Kalman filter</td>
<td>700</td>
</tr>
<tr>
<td>Linear regression</td>
<td>552ff.</td>
</tr>
<tr>
<td>Low-pass for smoothing</td>
<td>644f., 1283f.</td>
</tr>
<tr>
<td>Nonrecursive</td>
<td>552</td>
</tr>
<tr>
<td>Optimal (Wiener)</td>
<td>535, 539ff., 558, 644</td>
</tr>
<tr>
<td>Quadrature mirror</td>
<td>585, 593</td>
</tr>
<tr>
<td>Realizable</td>
<td>552, 554f.</td>
</tr>
<tr>
<td>Recursive</td>
<td>552ff., 566</td>
</tr>
<tr>
<td>Remes exchange algorithm</td>
<td>553</td>
</tr>
<tr>
<td>Savitzky-Golay</td>
<td>183, 644f., 1283f.</td>
</tr>
<tr>
<td>Stability</td>
<td>554f.</td>
</tr>
<tr>
<td>Finite difference equation (FDEs)</td>
<td>753, 763, 774</td>
</tr>
<tr>
<td>Alternating-direction implicit method (ADI)</td>
<td>847, 861f.</td>
</tr>
<tr>
<td>Art not science</td>
<td>829</td>
</tr>
<tr>
<td>Cayley's form for unitary operator</td>
<td>844</td>
</tr>
<tr>
<td>Courant condition</td>
<td>829, 822f., 836</td>
</tr>
<tr>
<td>Courant condition (multidimensional)</td>
<td>846</td>
</tr>
<tr>
<td>Crank-Nicolson method</td>
<td>840, 844, 846</td>
</tr>
<tr>
<td>Eigenvalues</td>
<td>827f.</td>
</tr>
<tr>
<td>Explicit vs. implicit schemes</td>
<td>827</td>
</tr>
<tr>
<td>Forward Euler</td>
<td>826f.</td>
</tr>
<tr>
<td>Forward Time Centered Space (FTCS)</td>
<td>827f., 836f., 843, 855</td>
</tr>
<tr>
<td>Implicit scheme</td>
<td>840</td>
</tr>
<tr>
<td>Lax method</td>
<td>828ff., 836</td>
</tr>
<tr>
<td>Lax method (multidimensional)</td>
<td>845ff.</td>
</tr>
<tr>
<td>Mesh stiffness instability</td>
<td>834f.</td>
</tr>
<tr>
<td>Numerical derivatives</td>
<td>181</td>
</tr>
<tr>
<td>Partial differential equations</td>
<td>821f.</td>
</tr>
<tr>
<td>Relaxation methods</td>
<td>753ff.</td>
</tr>
<tr>
<td>Staggered leapfrog method</td>
<td>833f.</td>
</tr>
<tr>
<td>Two-step Lax-Wendroff method</td>
<td>835ff.</td>
</tr>
<tr>
<td>Upwind differencing</td>
<td>832f., 837</td>
</tr>
<tr>
<td>See also</td>
<td>Partial differential equations</td>
</tr>
<tr>
<td>Finite element methods</td>
<td>824</td>
</tr>
<tr>
<td>Finite impulse response (FIR)</td>
<td>531</td>
</tr>
<tr>
<td>Finkelstein, S. 1/xvii, 2/ix</td>
<td></td>
</tr>
<tr>
<td>FIR (finite impulse response) filter</td>
<td>552</td>
</tr>
<tr>
<td>Fisher's z-transformation</td>
<td>631f., 1276</td>
</tr>
<tr>
<td>Fitting</td>
<td>650ff., 1285ff.</td>
</tr>
<tr>
<td>Basis functions</td>
<td>665</td>
</tr>
<tr>
<td>By Chebyshev approximation</td>
<td>185f., 1076</td>
</tr>
<tr>
<td>Chi-square</td>
<td>653ff., 1285ff.</td>
</tr>
<tr>
<td>Confidence levels related to chi-square values</td>
<td>691f.</td>
</tr>
<tr>
<td>Confidence levels from singular value decomposition (SVD)</td>
<td>693f.</td>
</tr>
<tr>
<td>Confidence limits on fitted parameters</td>
<td>684ff.</td>
</tr>
<tr>
<td>Covariance matrix not always meaningful</td>
<td>651, 690</td>
</tr>
<tr>
<td>Degeneracy of parameters</td>
<td>674</td>
</tr>
<tr>
<td>an exponential</td>
<td>674</td>
</tr>
<tr>
<td>Interview</td>
<td>668, 700</td>
</tr>
<tr>
<td>Gaussians, a sum of</td>
<td>682, 1294</td>
</tr>
<tr>
<td>General linear least squares</td>
<td>665ff., 1288, 1290f.</td>
</tr>
<tr>
<td>Kalman filter</td>
<td>700</td>
</tr>
<tr>
<td>K-S test</td>
<td>621f.</td>
</tr>
<tr>
<td>Least squares</td>
<td>651ff., 1285</td>
</tr>
<tr>
<td>Legendre polynomials</td>
<td>674, 1291f.</td>
</tr>
<tr>
<td>Levenberg-Marquardt method</td>
<td>678ff., 816, 1292f.</td>
</tr>
<tr>
<td>Linear regression</td>
<td>655ff., 1285ff.</td>
</tr>
<tr>
<td>Maximum likelihood estimation</td>
<td>652f., 694ff.</td>
</tr>
<tr>
<td>Monte Carlo simulation</td>
<td>622, 654, 684ff.</td>
</tr>
<tr>
<td>Multidimensional</td>
<td>675f.</td>
</tr>
<tr>
<td>Nonlinear models</td>
<td>675ff., 1292f.</td>
</tr>
<tr>
<td>Advanced methods</td>
<td>683</td>
</tr>
<tr>
<td>Nonlinear problems</td>
<td>674</td>
</tr>
<tr>
<td>Nonnormal errors</td>
<td>656, 690, 694ff.</td>
</tr>
<tr>
<td>Polynomial</td>
<td>83, 114, 191, 645, 665, 674, 1078, 1291</td>
</tr>
<tr>
<td>by rational Chebyshev approximation</td>
<td>197ff.</td>
</tr>
<tr>
<td>Robust methods</td>
<td>694ff., 1294</td>
</tr>
<tr>
<td>Sharp spectral features</td>
<td>566</td>
</tr>
<tr>
<td>Standard (probable) errors on fitted parameters</td>
<td>657ff., 661, 667, 671, 684ff., 1285f., 1288, 1290</td>
</tr>
<tr>
<td>Straight line</td>
<td>655ff., 667f., 698, 1285ff., 1294f.</td>
</tr>
<tr>
<td>Straight line, errors in both coordinates</td>
<td>660ff., 1286ff.</td>
</tr>
<tr>
<td>See also</td>
<td>Error; Least squares fitting; Maximum likelihood estimate; Robust estimation</td>
</tr>
<tr>
<td>Five-point difference star</td>
<td>867</td>
</tr>
<tr>
<td>Fixed point format</td>
<td>18</td>
</tr>
<tr>
<td>Fletcher-Powell algorithm</td>
<td>See Davidson-Fletcher-Powell algorithm</td>
</tr>
<tr>
<td>Fletcher-Reeves algorithm</td>
<td>390, 414ff., 1214</td>
</tr>
<tr>
<td>Floating point co-processor</td>
<td>886</td>
</tr>
<tr>
<td>Floating point format</td>
<td>88ff., 1343</td>
</tr>
<tr>
<td>Care in numerical derivatives</td>
<td>181</td>
</tr>
<tr>
<td>IEEE</td>
<td>276, 882, 1343</td>
</tr>
<tr>
<td>Floor intrinsic function</td>
<td>948</td>
</tr>
<tr>
<td>Flux-conservative initial value problems</td>
<td>825ff.</td>
</tr>
<tr>
<td>FMG (full multigrid method)</td>
<td>863, 868, 1334f.</td>
</tr>
<tr>
<td>FOR iteration</td>
<td>9f., 12</td>
</tr>
<tr>
<td>Forall statement</td>
<td>2/xii, 2/xv, 960, 964, 986</td>
</tr>
<tr>
<td>Access to associated index</td>
<td>968</td>
</tr>
<tr>
<td>Skew array sections</td>
<td>985, 1007</td>
</tr>
<tr>
<td>Formats of numbers</td>
<td>18ff., 882, 1343</td>
</tr>
<tr>
<td>Fortran 9</td>
<td>arithmetic-if statement 2/xi</td>
</tr>
<tr>
<td>COMMON block</td>
<td>2/xif, 953, 957</td>
</tr>
<tr>
<td>Deprecated features</td>
<td>2/xif, 947, 1057, 1161, 1256, 1286</td>
</tr>
<tr>
<td>Dynamical allocation of storage</td>
<td>869, 1336</td>
</tr>
<tr>
<td>EQUIVALENCE statement</td>
<td>2/xif, 1161, 1286</td>
</tr>
<tr>
<td>Evolution of 2/xif.</td>
<td>exception handling 2/xii, 2/xvi</td>
</tr>
<tr>
<td>File names</td>
<td>935</td>
</tr>
<tr>
<td>Fortran 2000 (planned)</td>
<td>2/xvi</td>
</tr>
</tbody>
</table>
Index to Volumes 1 and 2

Fortran 95	2/xv, 945, 947, 1084, 1100, 1364
HPF (High-Performance Fortran)	2/xvf. Numerical Recipes in 2/x, 2/xvii, 1
obsoleted features	2/xif. side effects 960
see also Fortran 90	
Fortran D	2/xv
Fortran 77	1/xix
bit manipulation functions	17
hexadecimal constants	17
Fortran 8x	2/xii, 2/xiii
Fortran 90	3
abstract data types	2/xiii, 1030
all() intrinsic function	945, 948
allocatable array	938, 941, 953ff., 1197, 1212, 1266, 1293, 1306, 1336
allocate statement	938ff., 941, 953ff., 1197, 1266, 1293, 1306, 1336
allocated() intrinsic function	938, 952ff., 1197, 1266, 1293
any() intrinsic function	945, 948
array allocation and deallocation	953
array of arrays	2/xii, 956, 1336
array constructor	2/xii, 968, 971, 1022, 1052, 1055, 1127
array construct with implied do-list	968, 971
array extents	938, 949
array features	941ff., 953ff.
array intrinsic procedures	2/xiii, 948ff.
array of length	0 944
array of length	1 949
array manipulation functions	950
array parallel operations	964ff.
array rank	938, 949
array reallocation	955
array section	2/xiiif., 2/xiii, 939, 941ff., 960, 1078, 1284, 1286, 1333
array shape	938, 949
array size	938, 942
array transpose	981ff.
array unary and binary functions	949
associated() intrinsic function	952f.
associated pointer	953f.
assumed-shape array	942
automatic array	938, 954, 1197, 1212, 1336
backwards-compatibility	935, 946
bit manipulation functions	2/xiii, 951
bit_size() intrinsic function	951
broadcasts	965ff.
btest() intrinsic function	951
case construct	1010, 1036
case insensitive	937
ceiling() intrinsic function	947
character functions	952
character variables	1183
cmplx function	1125
communication bottlenecks	969, 981, 1250
compatibility with Fortran 77	935, 946
compilers	2/xvii, 2/xiv, 1364
compiling	936
conformable arrays	942ff., 1094
CONTAINS statement	954, 957, 985, 1067, 1134, 1202
control structure	2/xiv, 959, 1219, 1305
conversion elemental functions	946
count() intrinsic function	948
cshift() intrinsic function	950, 969
cycle statement	959, 1219
data hiding	956ff., 1209
data parallelism	964
DATA statement	959
data types	937, 1336, 1346, 1361
deallocate statement	938ff., 953ff., 1197, 1266, 1293
deallocaing array	938, 953ff., 1197, 1266, 1293
defined types	956
deprecated features	947, 1057, 1161, 1256, 1286
derived types	937, 955
dimensional expansion	965ff.
do-loop	2/xiv
dot_product() intrinsic function	945, 949, 969, 1216
dynamical allocation of storage	2/xiii, 938, 941ff., 953ff., 1327, 1336
elemental functions	940, 942, 946ff., 951, 1015, 1083, 1364
elsewhere construct	943
eoshift() intrinsic function	950, 969, 1019ff.
1078	
epsilon() intrinsic function	951, 1189
example	936
exit statement	959, 1219
exponent() intrinsic function	1107
floor() intrinsic function	948
Fortran tip icon	1009
garbage collection	956
gather-scatter operations	2/xii, 969, 981, 984, 1002, 1032, 1034, 1250
generic interface	2/xiii, 1083
generic procedures	939, 1015, 1083, 1094, 1096, 1364
global variables	955, 957, 1210
history	2/kff.
huge() intrinsic function	951
iand() intrinsic function	951
ibcl() intrinsic function	951
ibits() intrinsic function	951
ibset() intrinsic function	951
ieor() intrinsic function	951
IMPLICIT NONE statement	2/xiv, 936
implied do-list	968, 971, 1127
index loss	967f.
initialization expression	943, 959, 1012, 1127
inquiry functions	948
integer model	1144, 1149, 1156
INTENT attribute	1072, 1092
interface	939, 942, 1067, 1084, 1384
internal subprogram	2/xiii, 2/xiv, 957, 1057, 1067, 1202f., 1256, 1302
interprocessor communication	969, 981, 1250
intrinsic data types	937
intrinsic procedures 939, 945ff., 987, 1016
iort() intrinsic function 951
ishift() intrinsic function 951
ishiftc() intrinsic function 951
keyword argument 2/xiv, 947ff., 1341
kind() intrinsic function 951
KIND parameter 937, 946, 1125, 1144,
1192, 1254, 1261, 1284, 1361
language features 935ff.
ibound() intrinsic function 499
lexical comparison 952
linear algebra 969ff., 1000ff., 1018ff., 1026,
1040, 1200, 1326
linear recurrence 971, 988
linking 936
literal constant 937, 1361
logo for tips 2/xii, 1009
mask 948, 967ff., 1006ff., 1038, 1102,
1200, 1226, 1305, 1333ff., 1368, 1378,
1382
matmul() intrinsic function 945, 949, 969,
1026, 1040, 1050, 1076, 1200, 1216,
1290, 1326
maxexponent() intrinsic function 1107
maxloc() intrinsic function 949, 961,
992ff., 1015
maxval() intrinsic function 945, 948, 961,
1016, 1273
memory leaks 953, 956, 1327
memory management 938, 953ff.
merge() intrinsic function 945, 950, 1010,
1094ff., 1099ff.
Metcalfe and Reid (M&R) 935
minloc() intrinsic function 949, 961, 992ff.
minval() intrinsic function 948, 961
missing language features 983ff., 987ff.
modularization 956ff.
MODULE facility 2/xiii, 936ff., 939ff.,
953ff., 957, 967, 1298, 1320, 1322,
1324, 1330, 1346
MODULE subprograms 940
modulo() intrinsic function 946, 1156
named constant 940, 1012, 1361
named control structure 959, 1219, 1305
nearest() intrinsic function 952, 1146
nested where construct forbidden 943
not() intrinsic function 951
nullify statement 953ff., 1070, 1302
numerical representation functions 951
ONLY option 941, 957, 1067
operator overloading 2/xiiff.
operator, user-defined 2/xii
optional argument 2/xiv, 947ff., 1092,
1228, 1230, 1256, 1272, 1275, 1340
outer product 969ff.
overloading 940, 1083, 1102
pack() intrinsic function 945, 950, 964,
969, 991, 1170, 1176, 1178
pack, for selective evaluation 1087
parallel extensions 2/xv, 959ff., 964, 981,
984, 987, 1002, 1032
parallel programming 963ff.
PARAMETER attribute 1012
pointer 2/xiiff., 938ff., 941, 944ff., 952ff.,
1067, 1070, 1197, 1210, 1212, 1266,
1302, 1327, 1336
pointer to function (missing) 1067
portability 963
present() intrinsic function 952
PRIVATE attribute 957, 1067
product() intrinsic function 948
programming conventions 937
PUBLIC attribute 957, 1067
quick start 936
radix() intrinsic function 1231
random_number() intrinsic function 1141,
1143
random_seed() intrinsic function 1141
read() intrinsic function 947, 1125
RECURSIVE keyword 958, 1065, 1067
recursive procedure 2/xiv, 958, 1065,
1067, 1166
reduction functions 948
reshape() intrinsic function 950, 969, 1247
RESULT keyword 958, 1073
SAVE attribute 953ff., 958ff., 1052, 1170,
1206, 1293
scale() intrinsic function 1107
scatter-with-combine (missing function) 984
shape() intrinsic function 938, 942, 945,
948
skew sections 985
sparse matrix representation 1030
specification statement 2/xiv
spread() intrinsic function 945, 950, 966ff.,
969, 1000, 1094, 1209ff.
statement functions deprecated 1057
stride (of an array) 944
structure constructor 2/xii
subtract triplet 944
sum() intrinsic function 945, 948, 966
tiny() intrinsic function 952
transformational functions 948
transpose() intrinsic function 950, 960,
969, 981, 1247
tricks 1009, 1072, 1146, 1274, 1278, 1280
truncation elemental functions 946
type checking 1140
ubound() intrinsic function 949
undefined pointer 953
unpack() intrinsic function 950, 964, 969
USE statement 936, 939ff., 954, 957, 1067,
1384
utility functions 987ff.
vctor subscripts 2/xiiff., 969, 981, 984,
1002, 1032, 1034, 1250
visibility 956ff., 1209, 1293, 1296
W5 technical committee 2/xi, 2/xiii,
2/xvf.
where construct 943, 985, 1060, 1291
X3J3 Committee 2/xii, 2/xiff., 2/xv, 947,
959, 964, 968, 990
zero-length array 944
Index to Volumes 1 and 2

see also Intrinsic procedures
see also Fortran
Fortran 95 947, 959ff.
allocatable variables 961
blocks 960
cputime() intrinsic function 961
elemental functions 2/xiii, 2/xv, 940, 961, 986, 1015, 1083ff., 1097ff.
forall statement 2/xii, 2/xv, 960, 964, 968, 986, 1007
initialization of derived data type 2/xv
initialization of pointer 2/xv, 961
minor changes from Fortran 90 961
modified intrinsic functions 961
nested where construct 2/xv, 960, 1100
pointer association status 961
pointers 961
PURE attribute 2/xv, 960ff., 964, 986
SAVE attribute 961
side effects 960
and skew array section 945, 985
see also Fortran
Fortran 2000 2/xvi
Forward deflation 363
Forward difference operator 161
Forward Euler differencing 826ff.
Forward Time Centered Space see FTCS
Four-step framework, for FFT 983, 1239
Fourier analysis and cyclic reduction (FACR) 948ff., 854
Fourier integrals
attenuation factors 583, 1261
depth corrections 578ff., 1261
tail integration by parts 583
use of fast Fourier transform (FFT) 577ff., 1261ff.
Fourier transform 99, 490ff., 1235ff.
aliasing 495, 569
approximation of Dawson’s integral 253
autocorrelation 492
basis functions compared 508ff.
contrasted with wavelet transform 584, 594
convolution 492, 503ff., 531ff., 909, 1253, 1354
correlation 492, 538ff., 1254
cosine transform 190, 511ff., 851, 1245ff.
cosine transform, second form 513, 852, 1246
critical sampling 494, 543, 545
definition 490
discrete Fourier transform (DFT) 184,
495ff.
Gaussian function 600
image processing 803, 805
infinite range 583
inverse of discrete Fourier transform 497
method for partial differential equations 848ff.
missing data 569
missing data, fast algorithm 574ff., 1259
Nyquist frequency 494ff., 520, 543, 545, 569, 571
optimal (Wiener) filtering 539ff., 558
Parseval’s theorem 492, 498, 544
power spectral density (PSD) 492f.
power spectrum estimation by FFT 542ff., 1254ff.
power spectrum estimation by maximum entropy method 565ff., 1258
properties of 491f.
sampling theorem 495, 543, 545, 600
scalings of 491
significance of a peak in 570
sine transform 508ff., 850, 1245
symmetries of 491
uneven sampling, fast algorithm 574ff., 1259
unevenly sampled data 569ff., 574, 1258
and wavelets 592f.
Wiener-Khinchin theorem 492, 558, 566f.
see also Fast Fourier transform (FFT);
Spectral density
Fractal region 360ff.
Fractional step methods 847f.
Fredholm alternative 780
Fredholm equations 779f.
eigenvalue problems 780, 785
error estimate in solution 784
first kind 779
Fredholm alternative 780
homogeneous, second kind 785, 1325
homogeneous vs. inhomogeneous 779f.
il-conditioned 780
infinite range 789
inverse problems 780, 795ff.
kernel 779f.
nonlinear 781
Nystrom method 782ff., 789, 1325
product Nystrom method 789, 1328ff.
second kind 779f., 782ff., 1325, 1331
with singularities 788, 1328ff.
with singularities, worked example 792,
1328ff.
subtraction of singularity 789
symmetric kernel 785
see also Inverse problems
Frequency domain 490
Frequency spectrum see Fast Fourier transform (FFT)
Frequentist, contrasted with Bayesian 810
Fresnel integrals 248ff.
asymptotic form 249
continued fraction 248f.
routine for 249ff., 1123
series 248
Friday the Thirteenth 14f., 1011f.
FTCS (forward time centered space) 827ff., 839ff., 843
stability of 827ff., 839ff., 855
Full approximation storage (FAS) algorithm 874, 1339ff.
Full moon 14f., 936, 1011f.
Full multigrid method (FMG) 863, 868, 1334ff.
Full Newton methods, nonlinear least squares 683
Full pivoting 29, 1014
Full weighting 867
Function
Airy 204, 243ff., 1121
Index to Volumes 1 and 2

- associated Legendre polynomial 246ff., 764, 1122ff., 1319
- autocorrelation of 492
- bandwidth limited 495
- Bessel 172, 204, 223ff., 234, 1101ff., 1115ff.
- beta 209, 1089
- binomial coefficients 208ff., 1087f.
- branch cuts of 202f.
- chi-square probability 215, 798
- complex 202
- confluent hypergeometric 204, 239
- convolution of 492
- correlation of 492
- cosine integral 250ff., 1123f.
- Coulomb wave 204, 234
- cumulative binomial probability 222f.
- cumulative Poisson 209ff.
- Dawson’s integral 252ff., 600, 1127f.
- digamma 216
- elliptic integrals 254ff., 906, 1128ff.
- error 213f., 248, 252, 601, 631, 635, 1094ff., 1127, 1276f.
- evaluation 159ff., 1070ff.
- evaluation by path integration 201ff., 263, 1138
- F-distribution probability 222
- Fresnel integral 248ff., 1123
- gamma 206, 1085
- hypergeometric 202f., 263ff., 1138ff.
- incomplete beta 219ff., 610, 1098ff., 1269
- incomplete gamma 209ff., 615, 654, 657ff., 1089ff., 1272, 1285
- inverse hyperbolic 178, 255
- inverse trigonometric 255
- Jacobian elliptic 261, 1137f.
- Kolmogorov-Smirnov probability 618ff., 640, 1274, 1281
- Legendre polynomial 172, 246, 674, 1122, 1291
- logarithmetic 255
- modified Bessel 229ff., 1109ff.
- modified Bessel, fractional order 239ff., 1118ff.
- overloading 1083
- parallel evaluation 986, 1009, 1084, 1087, 1090, 1102, 1128, 1134
- path integration to evaluate 201ff.
- pathological 99f., 343
- Poisson cumulative 214
- representations of 490
- routine for plotting a 342, 1182
- sine and cosine integrals 248, 250ff., 1125ff.
- sn, dn, cn 261, 1137f.
- spherical harmonics 246ff., 1122
- Student’s probability 221f.
- variable number of arguments 1022
- Weber 204

Functional iteration, for implicit equations 740f.
- FWHM (full width at half maximum) 548f.

- Gamma deviate 282f., 1153f.
- Gamma function 206ff., 1085
- incomplete see Incomplete gamma function
- Garbage collection 956
- Gather-scatter operations 2kixf., 984, 1002, 1032, 1034
- communication bottleneck 969, 981, 1250
- many-to-one 984, 1002, 1032, 1034
- Gauss-Chebyshev integration 141, 144, 512f.
- Gauss-Hermite integration 144, 789
- abcissas and weights 147, 1062
- normalization 147
- Gauss-Jacobi integration 144
- abcissas and weights 148, 1063
- Gauss-Jordan elimination 27ff., 33, 64, 1014f.
- operation count 34, 39
- solution of normal equations 667, 1288
- storage requirements 30
- Gauss-Kronrod quadrature 154
- Gauss-Laguerre integration 144, 789, 1060
- Gauss-Legendre integration 145f., 1059
- see also Gaussian integration
- Gauss-Lobatto quadrature 154, 190, 512
- Gauss-Radau quadrature 154
- Gauss-Seidel method (relaxation) 855, 857, 864ff., 1338
- nonlinear 876, 1341
- Gauss transformation 256
- Gaussian (normal) distribution 267, 652, 798
- central limit theorem 652f.
- deviates from 279ff., 571, 1152
- kurtosis of 606
- multivariate 690
- semi-invariants of 608
- tails compared to Poisson 653
- two-dimensional (binormal) 631
- variance of skewness of 606
- Gaussian elimination 33ff., 51, 55, 1014f.
- fill-in 45, 64
- integral equations 786, 1326
- operation count 34
- outer product variant 1017
- in reduction to Hessenberg form 478, 1231
- relaxation solution of boundary value problems 753ff., 777, 1316
- Gaussian function
- Hardy’s theorem on Fourier transforms 600
- see also Gaussian (normal) distribution
- calculation of abcissas and weights 142ff., 1009, 1059ff.
- error estimate in solution 784
- extensions of 153f.
- Golub-Welsch algorithm for weights and abcissas 150, 1064
- for integral equations 781, 783, 1325
- from known recurrence relation 150, 1064

© in this web service Cambridge University Press
Index to Volumes 1 and 2

- nonclassical weight function 151ff., 788ff., 1064ff., 1328ff.
- and orthogonal polynomials 142, 1009, 1061
- parallel calculation of formulas 1009, 1061
- preassigned nodes 153f.
- weight function log x 153
- weight functions 140ff., 788f., 1059ff., 1328f.
- Gear’s method (stiff ODEs) 730
- Geiger counter 266
- Generalized eigenvalue problems 455
- Generalized minimum residual method (GMRES) 78
- Generic interface see Interface, generic
- Generic procedures 939, 1083, 1094, 1096, 1364
- elemental 940, 942, 946ff., 1015, 1083
- Geometric progression 972, 996ff., 1365, 1372ff.
- geop() utility function 972, 974, 989, 996, 1127
- Geophysics, use of Backus-Gilbert method 809
- Gerchberg-Saxton algorithm 805
- get_diag() utility function 985, 989, 1005, 1226
- Gilbert and Sullivan 714
- Givens reduction 462f., 473
- fast 463
- operation count 463
- Glassman, A.J. 180
- continuous variables 443f., 1222
- Global variables 940, 953f., 1210
- allocatable array method 954, 1197, 1212, 1266, 1287, 1298
- communicated via internal subprogram 954, 957f., 1067, 1226
- danger of 957, 1209, 1293, 1296
- pointer method 954, 1197, 1212, 1266, 1287, 1302
- Globally convergent minimization 418ff., 1215
- root finding 373, 376ff., 382, 749f., 752, 1196, 1314f.
- GMRES (generalized minimum residual method) 78
- GNU Emacs 1/xvi
- Godunov’s method 837
- Golden mean (golden ratio) 21, 349, 392f., 399
- Golden section search 341, 389ff., 395, 1202ff.
- Golub-Welsch algorithm, for Gaussian quadrature 150, 1064
- Goodness-of-fit 650, 654, 657f., 662, 690, 1285
- GOTO statements, danger of 9, 959
- Gram-Schmidt
- biorthogonalization 415f.
- orthogonalization 94, 450f., 1039
- SVD as alternative to 58
- Graphics, function plotting 342, 1182f.
- Gravitational potential 519
- Gray code 300, 881, 886ff., 1344
- Greenbaum, A. 79
- Gregorian calendar 13, 16, 1011, 1013
- Grid square 116f.
- Group, dihedral 894, 1345
- Guard digits 882, 1343
- Half weighting 867, 1337
- Halton’s quasi-random sequence 300
- Hamming window 547
- Hamming’s motto 341
- Hann window 547
- Harmonic analysis see Fourier transform
- Hashing 293, 1144, 1148, 1156
- for random number seeds 1147f.
- HDLC checksum 890
- Heap (data structure) 327f., 336, 897, 1179
- Heapsort 320, 327f., 336, 1171f., 1179
- Helmholtz equation 852
- Hermite polynomials 144, 147
- approximation of roots 1062
- Hermitian matrix 450ff., 475
- Hertz (unit of frequency) 490
- Hessenberg matrix 94, 453, 470, 476ff., 488, 1231
- see also Matrix
- Hessian matrix 382, 408, 415f., 419f., 676ff., 803, 815
- is inverse of covariance matrix 667, 679
- second derivatives in 676
- Hexadecimal constants 17f., 276, 293
- initialization 959
- Hierarchically band diagonal matrix 598
- Hierarchy of program structure 6ff.
- High-order not same as high-accuracy 100f.,
 124, 389, 399, 705, 709, 741
- High-pass filter 551
- High-Performance Fortran (HPF) 2/xvi, 964,
 981, 984
- scatter-with-add 1032
- Hilbert matrix 83
- Home page, Numerical Recipes 1/xx, 2/xvii
- Homogeneous linear equations 53
- Hook step methods 386
- Hotelling’s method for matrix inverse 49, 598
- Householder transformation 52, 453, 462ff.,
 469, 473, 475, 478, 481ff., 1227f.
- operation count 467
- in QR decomposition 92, 1039
- HPF see High-Performance Fortran
- Huffman coding 564, 881, 896f., 902, 1346ff.
- huge() intrinsic function 951
- Hyperbolic functions, explicit formulas for
 inverse 178
- Hyperbolic partial differential equations 818
- advective equation 826
- flux-conservative initial value problems 825ff.
- Hypergeometric function 202f., 263ff.
- routine for 264f., 1138
- Hypothesis, null 603

I2B, defined 937
Index to Volumes 1 and 2

14B, defined 937
Ian() intrinsic function 951
ibclr() intrinsic function 951
ibits() intrinsic function 951
IBM 1/Axiii, 2/Aix
bad random number generator 268
Fortran 90 compiler 2/viii
PC 4, 276, 293, 886
PC-RT 4
radix base for floating point arithmetic 476
RS6000 2/xii, 4
IBM checksum 894
iset() intrinsic function 951
ICCG (incomplete Cholesky conjugate gradient method) 824
ICF (intrinsic correlation function) model 817
Identity (unit) matrix 25
IEEE floating point format 276, 882f., 1343
ioer() intrinsic function 951
if structure 12f.
ifist() utility function 989, 993, 1041, 1346
IIr (infinite impulse response) filter 552ff., 566
Ill-conditioned integral equations 780
Image processing 519, 803
cosine transform 513
fast Fourier transform (FFT) 519, 523, 803
as an inverse problem 803
maximum entropy method (MEM) 809ff.
from modulus of Fourier transform 805
wavelet transform 596f., 1267f.
imaxocl() utility function 989, 993, 1017
iminocl() utility function 989, 993, 1046, 1076
Implicit function theorem 340
pivoting 30, 1014
shifts in QL method 472ff.
Implicit differencing 827
for diffusion equation 840
for stiff equations 729, 740, 1308
IMPLICIT NONE statement 2/xiv, 936
Implied do-loop 968, 971, 1127
Importance sampling, in Monte Carlo 306f.
Improper integrals 135ff., 1055
Impulse response function 531, 540, 552
IMSL 1/xiii, 2/xx, 26, 64, 205, 364, 454, 457
In-place selection 335, 1178f.
Included file, superseded by module 940
Incomplete beta function 219ff., 1098ff.
for F-test 613, 1271
routine for 220f., 1097
for Student's t 610, 613, 1269
Incomplete Cholesky conjugate gradient method (ICCG) 824
Incomplete gamma function 209ff., 1089ff.
for chi-square 615, 654, 657f., 1272, 1285
deviates from 282f., 1153
in mode estimation 610
routine for 211f., 1089
Increment of linear congruential generator 268
Indentation of blocks 9
Index 934ff., 1446ff.
this entry 1464
Index loss 967f., 1038
Index table 320, 329ff., 1173ff., 1176
Inequality constraints 423
Inheritance 8
Initial value problems 702, 818f.
see also Differential equations;
Partial differential equations
Initialization of derived data type 2/xv
Initialization expression 943, 959, 1012, 1127
Injection operator 864, 1337
Instability see Stability
Integer model, in Fortran 90 1144, 1149,
1156
Integer programming 436
Integral equations 779ff.
adaptive stepsize control 788
block-by-block method 788
correspondence with linear algebraic equa-
tions 779ff.
degenerate kernel 785
eigenvalue problems 780, 785
error estimate in solution 784
Fredholm 779ff., 782ff., 1325, 1331
Fredholm alternative 780
homogeneous, second kind 785, 1325
ill-conditioned 780
infinite range 789
inverse problems 780, 795ff.
kernel 779
nonlinear 781, 787
Nyström method 782ff., 789, 1325
product Nyström method 789, 1328ff.
with singularities 788ff., 1328ff.
with singularities, worked example 792,
1328ff.
subtraction of singularity 789
symmetric kernel 785
unstable quadrature 787f.
Volterra 780f., 788ff., 1326f.
wavelets 782
see also Inverse problems
Integral operator, wavelet approximation of 597, 782
Integration of functions 123ff., 1052ff.
cosine integrals 250, 1125
Fourier integrals 577ff., 1261
Fourier integrals, infinite range 583
Fresnel integrals 248, 1123
Gauss-Hermite 147f., 1062
Gauss-Jacobi 148, 1063
Gauss-Laguerre 146, 1060
Gauss-Legendre 145, 1059
integrals that are elliptic integrals 254
path integration 201ff.
sine integrals 250, 1125
see also Quadrature
Integro-differential equations 782
INTENT attribute 1072, 1092
Interface (Fortran 90) 939, 942, 1067
Index to Volumes 1 and 2

conversion

elemental 946
central 940, 942, 946ff., 951, 1083, 1364
generic 939, 1083ff., 1364
circular 952
numeric inquiry 2xiv, 1107, 1231, 1343
numerical 946, 951f.
numerical representation 951
pack used for sorting 1171
random number 1143
real 1254
top 10 945
truncation 946f.
see also Fortran 90
Inverse hyperbolic function 178, 255
Inverse iteration see Eigensystems
Inverse problems 779, 795ff.
Backus-Gilbert method 806ff.
Bayesian approach 799, 810ff., 816f.
central idea 799
constrained linear inversion method 799ff.
data inversion 807
deterministic constraints 804ff.
growth 809
Gerchberg-Saxton algorithm 805
incomplete Fourier coefficients 813
integral equations 780
linear regularization 799ff.
maximum entropy method (MEM) 810, 815f.
MEM demystified 814
principal solution 797
regularization 796ff.
regularizing operator 798
stabilizing functional 798
Tikhonov-Miller regularization 799ff.
trade-off curve 795
trade-off curve, Backus-Gilbert method 809
two-dimensional regularization 803
use of conjugate gradient minimization 804, 815
use of convex sets 804
use of Fourier transform 803, 805
Van Cittert’s method 804
Inverse quadratic interpolation 353, 395ff., 1204
Inverse response kernel, in Backus-Gilbert method 807
Inverse trigonometric function 255
IORT intrinsic function 951
ISBN (International Standard Book Number) 894
ISHT (intrinsic function 951
ISHT (intrinsic function 951
ISO (International Standards Organization) 894
Iterated integrals 155
Iteration 9f.
function 740f.
to improve solution of linear algebraic equations 47ff., 195, 1022
for linear algebraic equations 26
Legendre polynomials 246, 1122
fitting data to 674, 1291f.
recurrence relation 172
shifted monic 151
see also Associated Legendre polynomials;
Spherical harmonics
Lemher-Schur algorithm 369
Lemarie’s wavelet 593
Lentz’s method for continued fraction 165,
212
Lepage, P. 309
Lepthart distribution 606
Levenberg-Marquard algorithm 386, 678ff.,
816, 1292
advanced implementation 683
Levinson’s method 86, 1038
Lewis, H.W. 275
Lexical comparison functions 952
LGT, defined 937
License information 1/xx, 2/xviiff.
Limbo 356
Limit cycle, in Laguerre’s method 365
Line minimization see Minimization, along a
ray
Line search see Minimization, along a ray
Linear algebra, intrinsic functions for paral-
elization 969f., 1026, 1040, 1200,
1326
Linear algebraic equations 22ff., 1014
band diagonal 43ff., 1019
biconjugate gradient method 77, 1034ff.,
cholesky decomposition 89f., 423, 455,
668, 1038f.
complex 41
computing $A^{-1} \cdot B$ 40
conjugate gradient method 77ff., 599,
1034
cyclic tridiagonal 67, 1030
direct methods 26, 64, 1014, 1030
Fortran 90 vs. library routines 1016
Gauss-Jordan elimination 27ff., 1014
Gaussian elimination 33f., 1014f.
Hilbert matrix 83
Hotelling’s method 49, 598
and integral equations 779ff., 783, 1325
iterative improvement 47ff., 195, 1022
iterative methods 26, 77ff., 1034
large sets of 23
least squares solution 53ff., 57f., 199f.,
671, 1081, 1290
LU decomposition 34ff., 195, 386, 732,
783, 786, 801, 1016, 1022, 1325f.
non-singular 23
overdetermined 25f., 199, 670, 797
partitioned 70
QR decomposition 91f., 382, 386, 668,
1039f., 1199
row vs. column elimination 31f.
Schultz’s method 49, 598
Sherman-Morrison formula 65ff., 83
singular 22, 53, 58, 199, 670
singular value decomposition (SVD) 51ff.,
199f., 670ff., 797, 1022, 1081, 1290
sparse 23, 43, 63ff., 732, 804, 1020f.,
1030
summary of tasks 25f.
Toeplitz 82, 85ff., 195, 1038
tridiagonal 26, 42f., 64, 109, 150, 453f.,
462ff., 469ff., 888, 839f., 853, 861f.,
1018f., 1227f.
Vandermonde 82ff., 114, 1037, 1047
wavelet solution 597ff., 782
Woodbury formula 68ff., 83
see also Eigensystems
Linear congruential random number generator
267ff., 1142
choice of constants for 274ff.
Linear constraints 423
Linear convergence 346, 393
Linear correlation (statistics) 630ff., 1276
Linear dependency
constructing orthonormal basis 58, 94
of directions in N-dimensional space 409
in linear algebraic equations 22f.
Linear equations see Differential equations;
Integral equations; Linear algebraic
equations
Linear inversion method, constrained 799f.
Linear prediction 557ff.
characteristic polynomial 559
coefficients 557ff., 1256
compared to maximum entropy method 558
compared with regularization 801
contrasted to polynomial extrapolation 560
related to optimal filtering 558
removal of bias in 563
stability 559f., 1257
Linear predictive coding (LPC) 563f.
Linear programming 387, 423ff., 1216ff.
artificial variables 429
auxiliary objective function 430
basic variables 426
composite simplex algorithm 435
constraints 423
convergence criteria 432
degenerate feasible vector 429
dual problem 435
equality constraints 423
feasible basis vector 426
feasible vector 424
fundamental theorem 426
inequality constraints 423
left-hand variables 426
nonbasic variables 426
normal form 426
objective function 424
optimal feasible vector 424
pivot element 428f.
primal-dual algorithm 435
primal problem 435
reduction to normal form 429ff.
restricted normal form 426f.
revised simplex method 435
right-hand variables 426
simplex method 402, 423ff., 431ff., 1216ff.
slack variables 429
tableau 427
vertex of simplex 426
Index to Volumes 1 and 2

Linear recurrence see Recurrence relation
Linear regression 655ff., 660ff., 1285ff.
see also Fitting
Linear regularization 799ff.
LINPACK 26
Literal constant 937, 1361
Little-endian 293
Local extrapolation 709
Local extremum 387ff., 437
Localization of roots see Bracketing
Logarithmic function 255
Lomb periodogram method of spectral analysis 569ff., 1258ff.
fast algorithm 574ff., 1259
Loops 9f.
Lorentzian probability distribution 282, 696ff.
Low-pass filter 551, 644ff., 1285ff.
Lower subscript 944
lower, triangle() utility function 989, 1007, 1200
L.P. coefficients see Linear prediction
LPC (linear predictive coding) 563ff.
LU decomposition 34ff., 47ff., 51, 55, 64, 97, 374, 667, 732, 1016, 1022
for $A^{-1} \cdot B$ 40
backsubstitution 39, 1017
band diagonal matrix 43ff., 1020
complex equations 41ff.
Crout’s algorithm 36ff., 45, 1017
for integral equations 783, 786, 1325ff.
for inverse iteration of eigenvectors 488
for inverse problems 801
for matrix determinant 41
for matrix inverse 40, 1016
for nonlinear sets of equations 374, 386, 1196
operation count 36, 39
outer product Gaussian elimination 1017
for Padé approximant 195, 1080
pivoting 37ff., 1017
repeated backsubstitution 40, 46
solution of linear algebraic equations 40, 1017
solution of normal equations 667
for Toeplitz matrix 87
Lucifer 290

M&R (Metcalf and Reid) 935
M-estimates 694ff.
how to compute 697ff.
local 695ff.
see also Maximum likelihood estimate
Machine accuracy 19ff., 881ff., 1189, 1343
Macintosh, see Apple Macintosh
Maehly’s procedure 364, 371
Magic in MEM image restoration 814
in Padé approximation 195
Manitissa in floating point format 19, 882, 909, 1343
Marginals 624
Marquardt method (least squares fitting) 678ff., 816, 1292ff.
Marsaglia shift register 1142, 1148ff.
Marsaglia, G. 1142, 1149
mask 1006ff., 1102, 1200, 1226, 1305, 1333ff., 1368, 1378, 1382
optional argument 948
optional argument, facilitates parallelism 967ff., 1038
Mass, center of 295ff.
MasterCard checksum 894
Mathematical Center (Amsterdam) 353
Mathemtical intrinsic functions 946, 951ff.
matmul() intrinsic function 945, 949, 969, 1026, 1040, 1050, 1076, 1200, 1216, 1290, 1326
Matrix 23ff.
add vector to diagonal 1004, 1234, 1366, 1381
approximation of 58ff., 598ff.
band diagonal 42ff., 64, 1019
band triangular 64
banded 26, 454
bidiagonal 52
block diagonal 64, 754
block triangular 64
block tridiagonal 64
bordered 64
characteristic polynomial 449, 469
Cholesky decomposition 89ff., 423, 455, 668, 1038ff.
column augmented 28, 1014
complex 41
condition number 53, 78
create unit matrix 1006, 1382
curvature 677
cyclic banded 64
cyclic tridiagonal 67, 1030
defective 450, 476, 489
of derivatives see Hessian matrix; Jacobian
determinant design (fitting) 645, 665, 801, 1082
determinant of 25, 41
diagonal of sparse matrix 1033ff.
diagonalization 452ff., 1225ff.
elementary row and column operations 28f.
finite differencing of partial differential equations 821ff.
get diagonal 985, 1005, 1226ff., 1366, 1381ff.
Hermitian 450, 454, 475
Hermitian conjugate 450
Hessian see Hessian matrix
hierarchically band diagonal 598
Hilbert 83
identity 25
ill-conditioned 53, 56, 114
indexed storage of 71ff., 1030
and integral equations 779, 783, 1325
inverse 25, 27, 34, 40, 65ff., 70, 95ff., 1014, 1016ff.
inverse, approximate 49
inverse by Hotelling’s method 49, 598
inverse by Schult’s method 49, 598
inverse multiplied by a matrix 40
iteration for inverse 49, 598
Index to Volumes 1 and 2

Jacobi transformation 453, 456ff., 462, 1225f.
Jacobi 731, 1309
logical dimension 24
lower triangular 34f., 89, 781, 1016
lower triangular mask 1007, 1200, 1382
multiplication denoted by dot 23
multiplication, intrinsic function 949, 969, 1026, 1040, 1050, 1200, 1326
norm 50
normal 450ff.
nullity 53
nullspace 25, 53f., 449, 795
orthogonal 91, 450, 463ff., 587
orthogonal transformation 452, 463ff., 469, 1227
orthonormal basis 58, 94
outer product denoted by cross 66, 420
partitioning for determinant 70
partitioning for inverse 70
pattern multiply of sparse 74
physical dimension 24
positive definite 26, 89f., 668, 1038
QR decomposition 91f., 382, 386, 668, 1039, 1199
range 53
rank 53
residual 49
row and column indices 23
row vs. column operations 31f.
self-adjoint 450
set diagonal elements 1005, 1200, 1366, 1382
similarity transform 452ff., 456, 476, 478, 482
singular 53f., 58, 449
singular value decomposition 26, 51ff., 797
sparse 23, 63ff., 71, 598, 732, 754, 804, 1030ff.
special forms 26
splitting in relaxation method 856f., spread 808
square root of 423, 455
symmetric 26, 89, 450, 454, 462ff., 668, 785, 1038, 1225, 1227
threshold multiply of sparse 74, 1031
toepiliz 82, 85ff., 195, 1038
transpose() intrinsic function 950
transpose of sparse 73f., 1033
triangular 453
tridiagonal 26, 42f., 64, 109, 150, 453f., 462f., 469f., 488, 839f., 853, 861f., 1018f., 1227f.
tridiagonal with fringes 822
unitary 450
updatig 94, 382, 386, 1041, 1199
upper triangular 34f., 91, 1016
upper triangular mask 1006, 1226, 1305, 1382
Vandermonde 82ff., 114, 1037, 1047
see also Eigensystems
Matrix equations see Linear algebraic equations
Matterhorn 606
maxexpnent() intrinsic function 1107
Maximization see Minimization
Maximum entropy method (MEM) 565ff., 1258
algorithms for image restoration 815f.
Bayesian 816f.
Cornwell-Evans algorithm 816
demystified 814
historic vs. Bayesian 816f.
image restoration 809ff.
intrincis correlation function (ICF) model 817
for inverse problems 809ff.
operation count 567
see also Linear prediction
Maximum likelihood estimate (M-estimates) 690, 694ff.
and Bayes’ Theorem 811
chi-square test 690
defined 652
how to compute 697f.
mean absolute deviation 696, 698, 1294
relation to least squares 652
maxloc() intrinsic function 949, 992f., 1015
modified in Fortran 95 961
maxval() intrinsic function 945, 948, 961, 1016, 1273
Maxwell’s equations 825f.
Mean(s) of distribution 604f., 608f., 1269
statistical differences between two 609ff., 1269f.
Mean absolute deviation of distribution 605, 696, 1294
related to median 698
Measurement errors 650
Median 320
calculating 333
distribution 605, 608f.
as L-estimate 694
role in robust straight line fitting 698
by selection 698, 1294
Median-of-three, in Quicksort 324
MEM see Maximum entropy method (MEM)
Memory leak 953, 956, 1071, 1327
Memory management 938, 941f., 953ff., 1327, 1336
merge construct 945, 950, 1099f.
for conditional scalar expression 1010, 1094f.
contrasted with where 1023
parallelization 1011
Merg-with-dummy-values idiom 1090
Merit function 650
in general linear least squares 665
for inverse problems 797
nonlinear models 675
for straight line fitting 656, 698
for straight line fitting, errors in both coordinates 660, 1286
Mesh-drift instability 834f.
Mesokurtic distribution 606
Metcalf, Michael 2/viii
see also M&R
Method of regularization 799ff.
Metropolis algorithm 437f., 1219
Microsoft 1xxii, 2xxix
Microsoft Fortran PowerStation 2/viii
Midpoint method see Modified midpoint method;
Semi-implicit midpoint rule
Mikado, or Town of Tipu 714
Miller’s algorithm 175, 228, 1106
MIMD machines (Multiple Instruction Multiple
Data) 964, 985, 1071, 1084
Minimal solution of recurrence relation 174
Minimax polynomial 186, 198, 1076
Minimax rational function 198
Minimization 387ff.
along a ray 77, 376f., 389, 406ff., 412f.,
415f., 418, 1195f., 1211, 1213
annealing, method of simulated 387f.,
436ff., 1219ff.
bracketing of minimum 390ff., 402, 1201ff.
Brent’s method 389, 395ff., 399, 660f.,
1204ff., 1286
Broyden-Fletcher-Goldfarb-Shanno algo-
rithm 390, 418ff., 1215
chi-square 653ff., 675ff., 1285, 1292
choice of methods 388ff.
combinatorial 436f., 1219
conjugate gradient method 390, 413ff.,
804, 815, 1210, 1214
convergence rate 393, 409
Davidon-Fletcher-Powell algorithm 390,
418ff., 1215
degenerate 795
direction-set methods 389, 406ff., 1210ff.
downhill simplex method 389, 402ff.,
444, 697f., 1208, 1222ff.
finding best-fit parameters 650
Fletcher-Reeves algorithm 390, 414ff.,
1216
functional 795
global 387f., 443f., 650, 1219, 1222
globally convergent multidimensional 418,
1215
golden section search 390f., 395, 1202ff.
multidimensional 388f., 402ff., 1208ff.,
1214
in nonlinear model fitting 675f., 1292
Polak-Ribiere algorithm 389, 414ff., 1214
Powell’s method 389, 402, 406ff., 1210ff.
quasi-Newton methods 376, 390, 418f.,
1215
and root finding 375
scaling of variables 420
by searching smaller subspaces 815
steepest descent method 414, 804
termination criterion 392, 404
use in finding double roots 341
use for sparse linear systems 77ff.
using derivatives 389f., 390ff., 1205ff.
variable metric methods 390, 418f., 1215
see also Linear programming
Minimum residual method, for sparse system
76
mink() intrinsic function 939, 942f.
modified in Fortran 95 961
MINPACK 683
minv() intrinsic function 948, 961
MIPS 886
Missing data problem 569
Mississippi River 438f., 447
MMP (massively multiprocessor) machines
965ff., 974, 981, 984, 1016ff., 1021,
1045, 1226ff., 1250
Mode of distribution 605, 609
Modeling of data see Fitting
Model-trust region 386, 683
Modes, homogeneous, of recursive filters 554
Modified Bessel functions see Bessel func-
tions
Modified Lentz’s method, for continued frac-
tions 165
Modified midpoint method 716ff., 720, 1302f.
Modified moments 152
Modula-2 7
Modular arithmetic, without overflow 269, 271, 275
Modular programming 2/xiii, 7f., 956ff.,
1209, 1293, 1296, 1346
MODULE facility 2/xiii, 936f., 939f., 957,
1067, 1298, 1330, 1322, 1334, 1330,
1346
initializing random number generator 1144ff.
in nr,90 936, 941f., 1362, 1384ff.
in nrtype,90 936f., 1361f.
in nrutil,90 936, 1070, 1362, 1364ff.
sparse matrix 1031
undefined variables on exit 953, 1266
Module subprogram 940
module() intrinsic function 946, 1156
Modulus of linear congruential generator 268
Moments
of distribution 604ff., 1269
filter that preserves 645
modified problem of 151f.
problem of 83
and quadrature formulas 791, 1328
semi-invariants 608
Monic polynomial 142f.
Monotonicity constraint, in upwind differenc-
ing 837
Monte Carlo 155ff., 267
adaptive 306ff., 1116ff.
bootstrap method 686f.
comparison of sampling methods 309
exploration of binary tree 290
importance sampling 306f.
integration 124, 155ff., 295ff., 306ff.,
1161
integration, recursive 314ff., 1164ff.
integration, using Sobol’ sequence 304f.
inclusion, VEGAS algorithm 309ff., 1161
and Kolmogorov-Smirnov statistic 622, 640
partial differential equations 824
quasi-random sequences in 299ff.
quick and dirty 686f.
recursive 306f., 314ff., 1161, 1164ff.
significance of Lomb periodogram 570
simulation of data 654, 684ff., 690
stratified sampling 308f., 314, 1164
Index to Volumes 1 and 2

Moon, calculate phases of 1f., 14f., 936, 1010f.
Mother functions 584
Mother Nature 684, 686
Moving average (MA) model 566
Moving window averaging 644
Mozart 9
MS 1/xii, 2/xi
Muller’s method 364, 372
Multidimensional confidence levels of fitting 688f.
data, use of binning 623
Fourier transform 515ff., 1241, 1246, 1251
Fourier transform, real data 519ff., 1248f.
initial value problems 844ff.
interpolation 116ff., 1049ff.
Kolmogorov-Smirnov test 640, 1281
least squares fitting 675
minimization 402ff., 406ff., 413ff., 1208ff., 1214f., 1222ff.
Monte Carlo integration 295ff., 306ff., 1161ff.
normal (Gaussian) distribution 690
optimization 388f.
partial differential equations 844ff.
search using quasi-random sequence
senset method 373, 382ff., 1199f.
wavelet transform 595, 1267f.
Multigrid method 824, 862ff., 1334ff.
avoid SOR 866
boundary conditions 868f.
choice of operators 868
coarse-to-fine operator 864, 1337
coarse-grid correction 864f.
cycle 865
dual viewpoint 875
fine-to-coarse operator 864, 1337
full approximation storage (FAS) algorithm
874, 1339ff.
full multigrid method (FMG) 863, 868, 1334ff.
full weighting 867
Gauss-Seidel relaxation 865f., 1338
half weighting 867, 1337
importance of adjoint operator 867
injection operator 864, 1337
interpolation operator 864, 1337
line relaxation 866
local truncation error 875
Newton’s rule 874, 876, 1339, 1341
nonlinear equations 874ff., 1339ff.
nonlinear Gauss-Seidel relaxation 876, 1341
odd-even ordering 866, 869, 1338
operation count 862
prolongation operator 864, 1337
recursive nature 865, 1009, 1336
relative truncation error 875
relaxation as smoothing operator 865
restriction operator 864, 1337
speeding up FMG algorithm 873
stopping criterion 875f.
straight injection 867
symbol of operator 866f.
use of Richardson extrapolation 869
V-cycle 865, 1336
W-cycle 865, 1336
zebra relaxation 866
Multiple precision arithmetic 906ff., 1352ff.
Multiple roots 341, 362
Multiplication, complex 171
Multiplication, multiple precision 907, 909, 1353f.
Multiplier of linear congruential generator
268
Multistep and multivalue methods (ODEs)
740ff.
see also Differential Equations; Predictor–corrector methods
Multivariate normal distribution 690
Murphy’s Law 407
Musical scores 5f.

INDEX 1/xii, 2/xx, 26, 64, 205, 454
Fortran 90 compiler 2/viii, 2/xiv
Named constant 940
initialization 1012
for Numerical Recipes 1361
Named control structure 959, 1219, 1305
National Science Foundation (U.S.) 1/xvii, 1/xii, 2/xx
Natural cubic spline 109, 1044f.
Navier-Stokes equation 830f.
nearest() intrinsic function 952, 1146
Needle, eye of (minimization) 403
Negation, multiple precision 907, 1353f.
Nentropy 811, 896
Nelder-Mead minimization method 389, 402, 1208
Nested iteration 868
Neumann boundary conditions 820, 840, 851, 858
Neutrino 640
Neville’s algorithm 102f., 105, 134, 182, 1043
Newton-Cotes formulas 125ff., 140
Newton-Raphson method see Newton’s rule
Newton’s rule 143f., 180, 341, 355ff., 362, 364, 469, 1059, 1189
with backtracking 376, 1196
cautions on use of numerical derivatives 356ff.
fractal domain of convergence 360f.
globally convergent multidimensional 373, 376ff., 382, 749f., 752, 1196, 1199, 1314f.
for matrix inverse 49, 598
in multidimensions 370, 372ff., 749f., 752, 754, 1194f., 1314ff.
in nonlinear multigrid 874, 876, 1339, 1341
nonlinear Volterra equations 787
for reciprocal of number 911, 1355
safe 359, 1190
scaling of variables 381

© in this web service Cambridge University Press www.cambridge.org
Index to Volumes 1 and 2

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>singular Jacobian</td>
<td>386</td>
</tr>
<tr>
<td>solving stiff ODEs</td>
<td>740</td>
</tr>
<tr>
<td>for square root of number</td>
<td>912, 1356</td>
</tr>
<tr>
<td>Niederreiter sequence</td>
<td>300</td>
</tr>
<tr>
<td>NL2SOL</td>
<td>683</td>
</tr>
<tr>
<td>Noise</td>
<td>889</td>
</tr>
<tr>
<td>--</td>
<td>889</td>
</tr>
<tr>
<td>effect on maximum entropy method</td>
<td>567</td>
</tr>
<tr>
<td>equivalent bandwidth</td>
<td>548</td>
</tr>
<tr>
<td>fitting data which contains</td>
<td>647ff., 650</td>
</tr>
<tr>
<td>model, for optimal filtering</td>
<td>541</td>
</tr>
<tr>
<td>Nominal variable (statistics)</td>
<td>623</td>
</tr>
<tr>
<td>Nonexpensive projection operator</td>
<td>805</td>
</tr>
<tr>
<td>Non-interfering directions</td>
<td>1339ff.</td>
</tr>
<tr>
<td>Conjugate directions</td>
<td>1339ff.</td>
</tr>
<tr>
<td>Nonlinear eigenvalue problems</td>
<td>455</td>
</tr>
<tr>
<td>Nonlinear elliptic equations, multigrid method</td>
<td>874ff., 1339ff.</td>
</tr>
<tr>
<td>Nonlinear equations, in MEM inverse problems</td>
<td>813</td>
</tr>
<tr>
<td>Nonlinear equations, roots of</td>
<td>340ff.</td>
</tr>
<tr>
<td>Nonlinear instability</td>
<td>831</td>
</tr>
<tr>
<td>Nonlinear integral equations</td>
<td>781, 787</td>
</tr>
<tr>
<td>Nonlinear programming</td>
<td>436</td>
</tr>
<tr>
<td>Nonnegativity constraints</td>
<td>423</td>
</tr>
<tr>
<td>Nonparametric statistics</td>
<td>633ff., 1277ff.</td>
</tr>
<tr>
<td>Nonpolynomial complete (NP-complete)</td>
<td>438</td>
</tr>
<tr>
<td>Norm, of matrix</td>
<td>50</td>
</tr>
<tr>
<td>Normal (Gaussian) distribution</td>
<td>267, 652, 682, 798, 1294</td>
</tr>
<tr>
<td>central limit theorem</td>
<td>562f.</td>
</tr>
<tr>
<td>deviates from</td>
<td>279ff., 571, 1152</td>
</tr>
<tr>
<td>kurtosis of</td>
<td>607</td>
</tr>
<tr>
<td>multivariate</td>
<td>690</td>
</tr>
<tr>
<td>semi-invariants of</td>
<td>608</td>
</tr>
<tr>
<td>tails compared to Poisson</td>
<td>653</td>
</tr>
<tr>
<td>two-dimensional (binormal)</td>
<td>631</td>
</tr>
<tr>
<td>variance of skewness of</td>
<td>606</td>
</tr>
<tr>
<td>Normal equations (fitting)</td>
<td>26, 645, 666ff., 795, 800, 1288</td>
</tr>
<tr>
<td>often are singular</td>
<td>670</td>
</tr>
<tr>
<td>Normalization</td>
<td>1343</td>
</tr>
<tr>
<td>of Bessel functions</td>
<td>175</td>
</tr>
<tr>
<td>of floating-point representation</td>
<td>19, 882, 1343</td>
</tr>
<tr>
<td>of functions</td>
<td>142, 765</td>
</tr>
<tr>
<td>of modified Bessel functions</td>
<td>232</td>
</tr>
<tr>
<td>not() intrinsic function</td>
<td>951</td>
</tr>
<tr>
<td>Notch filter</td>
<td>551, 555f.</td>
</tr>
<tr>
<td>NP-complete problem</td>
<td>438</td>
</tr>
<tr>
<td>nr.f90 (module file)</td>
<td>936, 1362, 1384ff.</td>
</tr>
<tr>
<td>nerror() utility function</td>
<td>989, 995</td>
</tr>
<tr>
<td>nrttype.f90 (module file)</td>
<td>936f.</td>
</tr>
<tr>
<td>named constants</td>
<td>1361</td>
</tr>
<tr>
<td>nrutil.f90 (module file)</td>
<td>936, 1070, 1362, 1364ff.</td>
</tr>
<tr>
<td>table of contents</td>
<td>1364</td>
</tr>
<tr>
<td>Null hypothesis</td>
<td>603</td>
</tr>
<tr>
<td>nullify statement</td>
<td>953f., 1070, 1302</td>
</tr>
<tr>
<td>Nullity</td>
<td>53</td>
</tr>
<tr>
<td>Nullspace</td>
<td>25, 53f., 449, 795</td>
</tr>
<tr>
<td>Number-theoretic transforms</td>
<td>503f.</td>
</tr>
<tr>
<td>Numeric inquiry functions</td>
<td>2/xiv, 1107, 1231, 1343</td>
</tr>
<tr>
<td>Numerical derivatives</td>
<td>180ff., 645, 1075</td>
</tr>
</tbody>
</table>

Numerical integration
- see Quadrature

Numerical intrinsic functions
- 946, 951f.

Numerical Recipes
- compatibility with First Edition | 4 |
- Example Book | 3 |
- Fortran 90 types | 936f., 1361 |
- how to get programs | 1/xx, 2/xvii |
- how to report bugs | 1/iv, 2/iv |
- interface blocks (Fortran 90) | 937, 941f., 1084, 1384ff. |
- no warranty on | 1/xx, 2/xvii |
- plan of two-volume edition | 1/xiii |
- table of dependencies | 921ff., 1434ff. |
- as trademark | 1/xiii, 2/xx |
- utility functions (Fortran 90) | 936f., 945, 968, 970, 972ff., 977, 984, 987ff., 1015, 1071f., 1361ff. |

Numerical Recipes Software
- 1/xx, 1/xxiif., 2/xxvifi. |
- address and fax number | 1/iv, 1/xii, 2/iv, 2/xii |
- Web home page | 1/xx, 2/xvii |
- Nyquist frequency | 494ff., 520, 543, 545, 569ff. |
- Nyström method | 782ff., 789, 1325 |
- product version | 789, 1331 |

Object extensibility
- 8 |

Objective function
- 424 |

Object-oriented programming
- 2/xvi, 2, 8 |

Oblateness parameter
- 764 |

Obsolete features
- see Fortran, Obsolete features |

Octal constant, initialization
- 959 |

Odd-even ordering
- allows parallelization | 1333 |
- in Gauss-Seidel relaxation | 866, 869, 1338 |
- in successive over-relaxation (SOR) | 859, 1332 |

Odd parity
- 888 |

OEM information
- 1/xxii |

One-sided power spectral density
- 492 |

ONLY option, for USE statement
- 941, 957, 1067 |

Operation count
- balancing | 476 |
- Bessel function evaluation | 228 |
- bisection method | 346 |
- Cholesky decomposition | 90 |
- coefficients of interpolating polynomial | 114f. |
- complex multiplication | 97 |
- cubic spline interpolation | 109 |
- evaluating polynomial | 168 |
- fast Fourier transform (FFT) | 498 |
- Gauss-Jordan elimination | 34, 39 |
- Gaussian elimination | 34 |
- Givens reduction | 463 |
- Householder reduction | 467 |
- interpolation | 100 |
- inverse iteration | 488 |
- iterative improvement | 48 |
- Jacobi transformation | 460 |
- Kendall's tau | 637 |
Index to Volumes 1 and 2

linear congruential generator 268
LU decomposition 36, 39
matrix inversion 97
matrix multiplication 96
maximum entropy method 567
multidimensional minimization 413f.
multigrid method 862
multiplication 909
polynomial evaluation 97f., 168
QL method 470, 473
QR decomposition 92
QR method for Hessenberg matrices 484
reduction to Hessenberg form 479
selection by partitioning 333
sorting 320ff.
Spearman rank-order coefficient 638
Toeplitz matrix 83
Vandermonde matrix 83
Operator overloading 2/xiiif., 7
Operator splitting 823, 847f., 861
Operator, user-defined 2/xii
Optimal feasible vector 424
Optimal (Wiener) filtering 535, 539ff., 558, 644
compared with regularization 801
Optimization see Minimization
Optimization of code 2/xiii
Optional argument 2/xiv, 947f., 1092, 1228, 1230, 1256, 1272, 1275, 1340
dim 948
mask 948, 968, 1038
testing for 952
Ordering Numerical Recipes 1/xxf., 2/xviif.
Ordinary variable (statistics) 623
Ordinary differential equations see Differential equations
Orthogonal see Orthonormal functions; Orthonormal polynomials
Orthogonal transformation 452, 463ff., 469, 584, 1227
Orthonormal basis, constructing 58, 94, 1039
Orthonormal functions 142, 246
Orthonormal polynomials
Chebyshev 144, 184ff., 1076ff.
construct for arbitrary weight 151ff., 1064
in Gauss-Hermite integration 147, 1062
and Gaussian quadrature 142, 1009, 1061
Gaussian weights from recurrence 150, 1064
Hermite 144, 1062
Jacobi 144, 1063
Laguerre 144, 1060
Legendre 144, 1059
weight function log x 153
Orthonormality 51, 142, 463
Outer product Gaussian elimination 1017
Outer product of matrices (denoted by cross) 66, 420, 949, 969f., 989, 1000ff., 1017, 1026, 1040, 1076, 1200, 1216, 1275
outerand() utility function 989, 1002, 1015
outerdiff() utility function 989, 1001
outerdir() utility function 989, 1001
outerprod() utility function 970, 989, 1000, 1017, 1026, 1040, 1076, 1200, 1216, 1275
outerrsum() utility function 989, 1001
Outgoing wave boundary conditions 820
Outlier 605, 653, 656, 694, 697
see also Robust estimation
Overcorrection 857
Overflow 982, 1343
how to avoid in modulo multiplication 269
in complex arithmetic 171
Overlap-add and overlap-save methods 536f.
Overloading
operator 2/xiiif.
procedures 940, 1015, 1083, 1094, 1096
Overrelaxation parameter 857, 1332
choice of 858
Pack() intrinsic function 945, 950, 964, 991, 1031
communication bottleneck 969
for index table 1176
for partition-exchange 1170
for selection 1178
for selective evaluation 1087
Pack-unpack idiom 1087, 1134, 1153
Padé approximant 194ff., 1080f.
Padé approximation 105
Parabolic interpolation 395, 1204
Parabolic partial differential equations 818, 830ff.
Parallel axis theorem 308
Parallel programming 2/xiv, 941, 958ff., 962ff., 965f., 968f., 987
array operations 964f.
array ranking 1278f.
band diagonal linear equations 1021
Bessel functions 1107ff.
broadcasts 965ff.
C and C++ 2/xii
communication costs 969, 981, 1250
counting do-loops 1015
cyclic reduction 974
deflation 977ff.
design matrix 1082
dimensional expansion 965ff.
eigensystems 1226, 1229f.
fast Fourier transform (FFT) 981, 1235ff., 1250
in Fortran 90 963ff.
Fortran 90 tricks 1009, 1274, 1278, 1280
function evaluation 986, 1009, 1084f., 1087, 1090, 1102, 1128, 1134
Gaussian quadrature 1009, 1061
geometric progressions 972
index loss 967f., 1038
index table 1176f.
interprocessor communication 981
Kendall's tau 1280
linear algebra 969f., 1000ff., 1018f., 1026, 1040, 1200, 1232
linear recurrence 973f., 1073ff.
logo 2/xii, 1009
masks 967f., 1066f., 1038, 1102, 1200, 1226, 1305, 1333f., 1368, 1378, 1382
merge statement 1010

© in this web service Cambridge University Press
www.cambridge.org
Index to Volumes 1 and 2

MIMD (multiple instruction, multiple data) 964, 985ff., 1084
MMP (massively multiprocessor) machines 965ff., 974, 984, 1016ff., 1226ff., 1250
nu titl.f90 (module file) 1364ff.
odd-even ordering 1333
one-dimensional FFT 982ff.
parallel note icon 1009
partial differential equations 1333
in-place selection 1178ff.
polynomial coefficients from roots 980
polynomial evaluation 972ff., 977, 998
random numbers 1009, 1141ff.
recursive doubling 973ff., 976ff., 979, 988, 999, 1071ff.
scatter-with-combine 984, 1002ff., 1032ff.
second order recurrence 974ff., 1074
SIMD (Single Instruction Multiple Data) 964, 985ff., 1009, 1084ff.
singular value decomposition (SVD) 1026
sorting 1167ff., 1171, 1176ff.
special functions 1009
SSF (small-scale parallel) machines 965ff., 984, 1010ff., 1016ff., 1059ff, 1226ff., 1250
subvector scaling 972, 974, 996, 1000
successive over-relaxation (SOR) 1333
supercomputers 2viii, 962
SVD algorithms 1026
synthetic division 977ff., 999, 1048, 1071ff., 1079, 1192
tridiagonal systems 973ff., 977, 1018, 1229ff.
utilities 1364ff.
vector reduction 972ff., 977, 998
vs. serial programming 965, 987
PARAMETER attribute 1012
Parameters in fitting function 651, 684ff.
Parity bit 888
Park and Miller minimal standard random generator 269, 1142
Parkinson’s Law 328
Parseval’s Theorem 492, 544
discrete form 498
Partial differential equations 818ff., 1332ff.
advective equation 826
alternating-direction implicit method (ADI) 847, 861ff.
amplification factor 828, 834
analyze/factorize/operate package 824
artificial viscosity 831, 837
biconjugate gradient method 824
boundary conditions 819ff.
boundary value problems 819, 848
Cauchy problem 818ff.
caution on high-order methods 844ff.
Cayley’s form 844
characteristics 818
Chebyshev acceleration 859ff., 1332
classification of 818ff.
comparison of rapid methods 854
conjugate gradient method 824
Courant condition 829, 832ff., 836
Courant condition (multidimensional) 846
Crank-Nicolson method 840, 842, 844, 846
cyclic reduction (CR) method 848ff., 852ff.
diffusion equation 818, 838ff., 846, 855
Dirichlet boundary conditions 508, 820, 840, 850, 856, 858
elliptic, defined 818
error, varieties of 831ff.
explicit vs. implicit differencing 827
FACR method 854
finite difference method 821ff.
finitesimal methods 824
flux-conservative initial value problems 825ff.
forward Euler differencing 826ff.
Forward Time Centered Space (FTCS) 827ff., 839ff., 843, 855
Fourier analysis and cyclic reduction (FACR) 848ff., 854
Gauss-Seidel method (relaxation) 855, 864ff., 876, 1334, 1341
Godunov’s method 837
Helmholtz equation 852
hyperbolic 818, 825ff.
imPLICIT differencing 840
incomplete Cholesky conjugate gradient method (ICCG) 824
inhomogenous boundary conditions 850ff.
initial value problems 818ff.
initial value problems, recommendations on 838ff.
Jacobi’s method (relaxation) 855ff., 864
Laplacé’s equation 818
Lax method 828ff., 836, 845ff.
Lax method (multidimensional) 845ff.
matrix methods 824
mesh-drift instability 834ff.
Monte Carlo methods 824
multidimensional initial value problems 844ff.
multigrid method 824, 862ff., 1009, 1334ff.
Neumann boundary conditions 508, 820, 840, 851, 858
nonlinear diffusion equation 842
nonlinear instability 831
numerical dissipation or viscosity 830
operator splitting 823, 847ff., 861
outgoing wave boundary conditions 820
parabolic 818, 838ff.
parallel computing 1333
periodic boundary conditions 850, 858
piecewise parabolic method (PPM) 837
Poisson equation 818, 852
rapid (Fourier) methods 808ff., 824, 848ff.
relaxation methods 823, 854ff., 1332ff.
Schrödinger equation 842ff.
second-order accuracy 833ff., 840
shock 831, 837
sparse matrices from 64
spectral methods 825
spectral radius 856ff., 862
stability vs. accuracy 830
stability vs. efficiency 821
staggered grids 513, 852
staggered leapfrog method 833ff.
strongly implicit procedure 824
Index to Volumes 1 and 2

successive over-relaxation (SOR) 857ff.
862, 866, 1332ff.
time splitting 847ff., 861
two-step Lax-Wendroff method 835ff.
upwind differencing 832ff., 837
variational methods 824
varieties of error 831ff.
von Neumann stability analysis 827ff.,
830, 833ff., 840
wave equation 818, 825ff.
see also Elliptic partial differential equations;
Finite-difference equations (FDEs)
Partial pivoting 29
Partition-exchange 323, 333
and pack() intrinsic function 1170
Partitioned matrix, inverse of 70
Party tricks 95ff., 168
Parzen window 547
Pascal, Numerical Recipes in 2/x, 2/xvii, 1
Pass-the-buck idiom 1102, 1128
Path integration, for function evaluation 201ff.,
263, 1138
Pattern multiply of sparse matrices 74
PBCG (preconditioned biconjugate gradient
method) 78f., 824
PC methods see Predictor-corrector methods
PCGPACK 71
PDEs see Partial differential equations
Pearson’s r 630ff., 1276
PECE method 741
Pentagon, symmetries of 895
Percentile 320
Period of linear congruential generator 268
Periodic boundary conditions 850, 858
Periodogram 543ff., 566, 1258ff.
Lomb’s normalized 569ff., 574ff., 1258ff.
variance of 544ff.
Perl (programming language) 1/xvi
Perron’s theorems, for convergence of recurrence
relations 174ff.
Perturbation methods for matrix inversion
65ff.
Phase error 831
Phase-locked loop 700
Phi statistic 625
Pi, computation of 906ff., 1352ff., 1357ff.
Piecwise parabolic method (PPM) 837
Pincherle’s theorem 175
Pivot element 29, 33, 757
in linear programming 428ff.
Pivoting 27, 29ff., 46, 66, 90, 1014
full 29, 1014
implicit 30, 38, 1014, 1017
in LU decomposition 37ff., 1017
partial 29, 33, 37ff., 1017
and QR decomposition 92
in reduction to Hessenberg form 478
in relaxation method 757
as row and column operations 32
for tridiagonal systems 43
Pixel 519, 596, 803, 811
PL/I 2/x
Planck’s constant 842
Plane rotation see Givens reduction; Jacobi
transformation (or rotation)
Platykurtic distribution 606
Plotting of functions 342, 1182ff.
POCS (projection onto convex sets) 805
Poetry 5f.
Point (Fortran 90) 2/xiiiff., 938ff., 944ff.,
953ff., 1197, 1212, 1266
as alias 939, 944ff., 1286, 1333
allocating an array 941
allocating storage for derived type 955
for array of arrays 956, 1336
array of, forbidden 956, 1337
associated with target 938ff., 944ff., 952ff.,
1197
in Fortran 9 961
in function, forbidden 1067, 1210
initialization to null 2/xv, 961
return array of unknown size 955ff.,
1184, 1259, 1261, 1327
undefined status 952ff., 961, 1070, 1266,
1302
Poisson equation 519, 818, 852
Poisson probability function
cumulative 214
deviates from 281, 283ff., 571, 1154
semi-invariants of 608
tails compared to Gaussian 653
Poisson process 278, 282ff., 1153
Polak-Ribiere algorithm 390, 414ff., 1214
Poles see Complex plane, poles in
Polishing of roots 356, 363ff., 370ff., 1193
poly() utility function 973, 977, 989, 998,
1072, 1096, 1192, 1258, 1284
Polymorphism 8
Polynomal interpolation 99, 102ff., 1043
Aitken’s algorithm 102
in Bulirsch-Stoer method 724, 726, 1305
coefficients for 113ff., 1047ff.
Lagrange’s formula 84, 102f.,
multidimensional 116ff., 1049ff.
Neville’s algorithm 102ff., 105, 134, 182,
1043
pathology in determining coefficients for
116
in predictor-corrector method 740
smoothing filters 645
see also Interpolation
Polynomials 167ff.
algebraic manipulations 169, 1072
approximate roots of Hermite polynomials
1064
approximate roots of Jacobi polynomials
1064
approximate roots of Laguerre polynomials
1061
approximating modified Bessel functions
230
approximation from Chebyshev coefficients
191, 1078ff.
AUTODINII 890
CCITT 889ff.
characteristic 368, 1193
characteristic, for digital filters 554, 559,
1257
Index to Volumes 1 and 2

characteristic, for eigenvalues of matrix 449, 469
Chebyshev 184ff., 1076ff.
coefficients from roots 980
CRC-16 890
cumulants of 977, 999, 1071ff., 1192, 1365, 1378ff.
deflation 362ff., 370ff., 977
derivatives of 167, 978, 1071
division 84, 169, 362, 370, 977, 1072
evaluation of 889
exponential of 167, 972, 977, 998ff., 1071, 1258, 1365, 1376ff.
evaluation of derivatives 167, 978, 1071
extrapolation in Bulirsch-Stoer method 724, 726, 1305ff.
evaluating in Romberg integration 134
fitting 83, 114, 191, 645, 665, 674, 1078ff., 1291

generator for CRC 889
ill-conditioned 362
masked evaluation of 1378
matrix method for roots 368, 1193
maximun 186, 198, 1076
monic 142ff.
multiplication 169
operation count for 168
orthonormal 142, 184, 1009, 1061
parallel operations on 977ff., 998ff., 1071ff., 1192
primitive modulo 2 287ff., 301ff., 889
roots of 178ff., 362ff., 368, 1191ff.
shifting of 192ff., 978, 1079
stopping criterion in root finding 366
polyterm utility function 974, 977, 998, 999, 1071ff., 1192
Port, serial data 892
Portability 3, 963
Portable random number generator see Random number generator
Positive definite matrix, testing for 90
Positivity constraints 423
Postal Service (U.S.), barcode 894
PostScript 1/xvi, 1/xviii, 2/xx
Powell’s method 389, 402, 406ff., 1210ff.
Power (in a signal) 492ff.
Power series 159ff., 167, 195
economization of 192ff., 1061, 1080
Padé approximant of 194ff., 1080ff.
Power spectral density see Fourier transform; Spectral density
Power spectrum estimation see Fourier transform; Spectral density
PowerStation, Microsoft Fortran 2/ix
PPM (piecewise parabolic method) 837
Precision
converting to double 1362
floating point 882, 937, 1343, 1361ff.
multiple 906ff., 1352ff., 1362
Preconditioned biconjugate gradient method (PCG) 78ff.
Preconditioning, in conjugate gradient methods 824
Predictor-corrector methods 702, 730, 740ff.
Adams-Bashforth-Moulton schemes 741
adaptive order methods 744
compared to other methods 740
fallacy of multiple correction 741
with fixed number of iterations 741
functional iteration vs. Newton’s rule 742
multivalued compared with multistep 742ff.
starting and stopping 742, 744
stepsize control 742ff.
present() intrinsic function 952
Prime numbers 915
Principal polynomials modulo 2 287ff., 301ff., 312ff.
Principal directions 408ff., 1210
Principal solution, of inverse problem 797
PRIVATE attribute 957, 1067
Prime, $1000 offered 272, 1141, 1150ff.
Probability see Random number generator; Statistical tests
Probability density, change of variables in 278ff.
Procedure see Program(s); Subprogram
Process loss 548
produce() intrinsic function 948
Product Nystrom method 789, 1331
Program(s)
as black boxes 1/xviii, 6, 26, 52, 205, 341, 406
dependencies 921ff., 1434ff.
encapsulation 7
interfaces 2, 8
modularization 7f.
organization 5ff.
type declarations 2
typography of 2f., 12, 937
validation 3f.
Programming, serial vs. parallel 965, 987
Projection onto convex sets (POCS) 805
Projection operator, nonexpansive 805
Prolongation operator 864, 1337
Protocol, for communications 888
PSD (power spectral density) see Fourier transform; Spectral density
Pseudo-random numbers 266ff., 1141ff.
PUBLIC attribute 957, 1067
Puns, particularly bad 167, 744, 747
PUP utility function 985, 990, 1005, 1200
Pyramidal algorithm 586, 1264
Pythagoreans 392

QI see Eigensystems
QR see Eigensystems
QR decomposition 91ff., 382, 386, 1039ff., 1199
backsubstitution 92, 1040
and least squares 668
operation count 92
pivoting 92
updating 94, 382, 386, 1041, 1199
use for orthonormal basis 58, 94
Quadratic
convergence 49, 256, 351, 356, 409ff., 419, 906
equations 20, 178, 391, 457
<table>
<thead>
<tr>
<th>Index to Volumes 1 and 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>interpolation 353, 364</td>
</tr>
<tr>
<td>programming 436</td>
</tr>
<tr>
<td>Quadrature 123ff., 1052ff.</td>
</tr>
<tr>
<td>adaptive 123, 190, 788</td>
</tr>
<tr>
<td>alternative extended Simpson’s rule 128</td>
</tr>
<tr>
<td>arbitrary weight function 151ff., 789, 1064, 1328</td>
</tr>
<tr>
<td>automatic 154</td>
</tr>
<tr>
<td>Bode’s rule 126</td>
</tr>
<tr>
<td>change of variable in 137ff., 788, 1056ff.</td>
</tr>
<tr>
<td>by Chebyshev fitting 124, 189, 1078</td>
</tr>
<tr>
<td>classical formulas for 124ff.</td>
</tr>
<tr>
<td>Clements-Curtis 124, 190, 512f.</td>
</tr>
<tr>
<td>closed formulas 125, 127ff.</td>
</tr>
<tr>
<td>and computer science 881</td>
</tr>
<tr>
<td>by cubic splines 124</td>
</tr>
<tr>
<td>error estimate in solution 784</td>
</tr>
<tr>
<td>extended midpoint rule 129ff., 135, 1054f.</td>
</tr>
<tr>
<td>extended rules 127ff., 134f., 786, 788ff., 1326, 1328</td>
</tr>
<tr>
<td>extended Simpson’s rule 128</td>
</tr>
<tr>
<td>Fourier integrals 577ff., 1261ff.</td>
</tr>
<tr>
<td>Fourier integrals, infinite range 583</td>
</tr>
<tr>
<td>Gauss-Chebyshev 144, 512f.</td>
</tr>
<tr>
<td>Gauss-Hermite 144, 789, 1062</td>
</tr>
<tr>
<td>Gauss-Jacobi 144, 1063</td>
</tr>
<tr>
<td>Gauss-Kronrod 154</td>
</tr>
<tr>
<td>Gauss-Laguerre 144, 789, 1060</td>
</tr>
<tr>
<td>Gauss-Legendre 144, 783, 789, 1059, 1325</td>
</tr>
<tr>
<td>Gauss-Lobatto 154, 190, 512</td>
</tr>
<tr>
<td>Gauss-Radau 154</td>
</tr>
<tr>
<td>Gaussian integration, nonclassical weight function 151ff., 788ff., 1064f., 1328f.</td>
</tr>
<tr>
<td>for improper integrals 135ff., 789, 1055, 1328</td>
</tr>
<tr>
<td>for integral equations 781f., 786, 1325ff.</td>
</tr>
<tr>
<td>Monte Carlo 124, 155ff., 295ff., 306ff., 1161ff.</td>
</tr>
<tr>
<td>multidimensional 124, 155ff., 1052, 1065ff.</td>
</tr>
<tr>
<td>multidimensional, by recursion 1052, 1065</td>
</tr>
<tr>
<td>Newton-Cotes formulas 125ff., 140</td>
</tr>
<tr>
<td>open formulas 125ff., 129ff., 135</td>
</tr>
<tr>
<td>related to differential equations 123</td>
</tr>
<tr>
<td>related to predictor-corrector methods 740</td>
</tr>
<tr>
<td>Romberg integration 124, 134f., 137, 182, 717, 788, 1054f., 1065, 1067</td>
</tr>
<tr>
<td>semi-open formulas 130</td>
</tr>
<tr>
<td>Simpson’s rule 126, 133, 136f., 583, 782, 788ff., 1053</td>
</tr>
<tr>
<td>Simpson’s three-eighths rule 126, 789f.</td>
</tr>
<tr>
<td>singularity removal 137ff., 788, 1057ff., 1328f.</td>
</tr>
<tr>
<td>singularity removal, worked example 792, 1328ff.</td>
</tr>
<tr>
<td>trapezoidal rule 125, 127, 130ff., 134f., 579, 583, 782, 786, 1052ff., 1326f.</td>
</tr>
<tr>
<td>using FFTs 124</td>
</tr>
<tr>
<td>weight function log z 153</td>
</tr>
<tr>
<td>Quadrature mirror filter 585, 593</td>
</tr>
<tr>
<td>Quantum mechanics, Uncertainty Principle 600</td>
</tr>
<tr>
<td>Quarti value 320</td>
</tr>
<tr>
<td>Quasi-Newton methods for minimization 390, 418ff., 1215</td>
</tr>
<tr>
<td>Quasi-random sequence 299ff., 318, 881, 888</td>
</tr>
<tr>
<td>Halton’s 300</td>
</tr>
<tr>
<td>for Monte Carlo integration 304, 309, 318</td>
</tr>
<tr>
<td>Sobol’s 300ff., 1160</td>
</tr>
<tr>
<td>see also Random number generator</td>
</tr>
<tr>
<td>Quicksort 320, 323ff., 330, 333, 1169f.</td>
</tr>
<tr>
<td>Quotient-difference algorithm 164</td>
</tr>
</tbody>
</table>

R
- estimates 694
- Radioactive decay 278
- Radix for floating point arithmetic 476, 802, 907, 913, 1231, 1343, 1357
- Radix conversion 902, 906, 913, 1357
- radix() intrinsic function 1231
- Radix sort 1172
- Ramanujan’s identity for π 915
- Random bits, generation of 267ff., 1159f.
- Random deviates 266ff., 1141ff.
 - binomial 285f., 1151f.
 - exponential 278, 1151f.
 - gamma distribution 282f., 1153
 - Gaussian 267, 279ff., 571, 798, 1152f.
 - normal 267, 279ff., 571, 1152f.
 - Poisson 283ff., 571, 1154f.
 - quasi-random sequences 299ff., 881, 888, 1160f.
 - uniform 267ff., 1158f., 1166
 - uniform integer 270, 274ff.
- Random number generator 266ff., 1141ff.
 - bitwise operations 287
 - Box-Muller algorithm 279, 1152
- Data Encryption Standard 290ff., 1144, 1156ff.
 - good choices for modulus, multiplier and increment 274ff.
 - initializing 1144f.
 - for integer-valued probability distribution 283f., 1154
 - integer vs. real implementation 273
- L’Ecuyer’s long period 271f.
- lagged Fibonacci generator 1142, 1148ff.
- linear congruential generator 267ff., 1142
- machine language 269
- Marsaglia shift register 1142, 1148ff.
- Minimal Standard, Park and Miller’s 269, 1142
- nonrandomness of low-order bits 268f.
 - parallel 1009
 - perfect 272, 1141, 1150f.
 - planes, numbers lie on 268
 - portable 269ff., 1142
- primitive polynomials modulo 2 287ff.
 - pseudo-DES 291, 1144, 1156ff.
 - quasi-random sequences 299ff., 881, 888, 1160f.
- quick and dirty 274
- quicker and dirtier 275
- in Quicksort 324
- random access to nth number 293
Index to Volumes 1 and 2

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>random bits</td>
<td>287ff., 1159f.</td>
</tr>
<tr>
<td>recommendations</td>
<td>276f.</td>
</tr>
<tr>
<td>rejection method</td>
<td>281ff.</td>
</tr>
<tr>
<td>serial</td>
<td>1141f.</td>
</tr>
<tr>
<td>shuffling procedure</td>
<td>270, 272 in simulated annealing method 438</td>
</tr>
<tr>
<td>spectral test</td>
<td>274</td>
</tr>
<tr>
<td>state space</td>
<td>1143f.</td>
</tr>
<tr>
<td>state space exhaustion</td>
<td>1141</td>
</tr>
<tr>
<td>subtractive method</td>
<td>273, 1143</td>
</tr>
<tr>
<td>system-supplied</td>
<td>267f.</td>
</tr>
<tr>
<td>timings</td>
<td>276ff., 1151</td>
</tr>
<tr>
<td>transformation method</td>
<td>277ff.</td>
</tr>
<tr>
<td>trick for trigonometric functions</td>
<td>280</td>
</tr>
<tr>
<td>Random numbers</td>
<td>see Monte Carlo; Random deviates</td>
</tr>
<tr>
<td>Random walk</td>
<td>20</td>
</tr>
<tr>
<td>random_number() intrinsic function</td>
<td>1141, 1143</td>
</tr>
<tr>
<td>random_number seeded intrinsic function</td>
<td>1141</td>
</tr>
<tr>
<td>RANDU, infamous routine</td>
<td>268</td>
</tr>
<tr>
<td>Range</td>
<td>53f.</td>
</tr>
<tr>
<td>Rank (matrix)</td>
<td>53</td>
</tr>
<tr>
<td>kernel of finite</td>
<td>785</td>
</tr>
<tr>
<td>Rank (sorting)</td>
<td>320, 332, 1176</td>
</tr>
<tr>
<td>Rank (statistics)</td>
<td>633ff., 694ff., 1277</td>
</tr>
<tr>
<td>Kendall’s tau</td>
<td>637ff., 1279</td>
</tr>
<tr>
<td>Spearman correlation coefficient</td>
<td>634ff., 1277ff.</td>
</tr>
<tr>
<td>sum squared differences</td>
<td>634, 1277</td>
</tr>
<tr>
<td>Ratio variable (statistics)</td>
<td>623</td>
</tr>
<tr>
<td>Rational Chebyshev approximation</td>
<td>197ff., 1081f.</td>
</tr>
<tr>
<td>approximation for Bessel functions</td>
<td>225</td>
</tr>
<tr>
<td>approximation for continued fraction</td>
<td>164, 211, 219ff.</td>
</tr>
<tr>
<td>Chebyshev approximation</td>
<td>197ff., 1081f.</td>
</tr>
<tr>
<td>evaluation of</td>
<td>170, 1072ff.</td>
</tr>
<tr>
<td>extrapolation in Bulirsch-Stoer method</td>
<td>71ff., 726, 1306f.</td>
</tr>
<tr>
<td>interpolation and extrapolation using</td>
<td>99, 104ff., 194ff., 718ff., 726</td>
</tr>
<tr>
<td>as power spectrum estimate</td>
<td>566</td>
</tr>
<tr>
<td>interpolation and extrapolation using</td>
<td>1043f., 1080ff., 1306</td>
</tr>
<tr>
<td>minimax</td>
<td>198</td>
</tr>
<tr>
<td>Re-entrant procedure</td>
<td>1052</td>
</tr>
<tr>
<td>real() intrinsic function, ambiguity of</td>
<td>947</td>
</tr>
<tr>
<td>Realizable (causal)</td>
<td>552, 554ff.</td>
</tr>
<tr>
<td>reallocates utility function</td>
<td>955, 990, 992, 1070, 1302</td>
</tr>
<tr>
<td>Rearranging see Sorting</td>
<td></td>
</tr>
<tr>
<td>Reciprocal, multiple precision</td>
<td>910f., 1355f.</td>
</tr>
<tr>
<td>Record, in data file</td>
<td>329</td>
</tr>
<tr>
<td>Recurrence relation</td>
<td>172ff., 971ff.</td>
</tr>
<tr>
<td>arithmetic progression</td>
<td>971f., 996</td>
</tr>
<tr>
<td>associated Legendre polynomials</td>
<td>247</td>
</tr>
<tr>
<td>Bessel function</td>
<td>172, 224, 227f., 234</td>
</tr>
<tr>
<td>binomial coefficients</td>
<td>209</td>
</tr>
<tr>
<td>Bulirsch-Stoer 105f.</td>
<td></td>
</tr>
<tr>
<td>characteristic polynomial of tridiagonal matrix</td>
<td>469</td>
</tr>
<tr>
<td>Clenshaw’s recurrence formula</td>
<td>176f.</td>
</tr>
<tr>
<td>and continued fraction</td>
<td>175</td>
</tr>
<tr>
<td>continued fraction evaluation</td>
<td>164f.</td>
</tr>
<tr>
<td>convergence</td>
<td>175</td>
</tr>
<tr>
<td>cosine function</td>
<td>172, 500</td>
</tr>
<tr>
<td>cyclic reduction</td>
<td>974</td>
</tr>
<tr>
<td>dominant solution</td>
<td>174</td>
</tr>
<tr>
<td>exponential integrals</td>
<td>172</td>
</tr>
<tr>
<td>gamma function</td>
<td>206</td>
</tr>
<tr>
<td>generation of random bits</td>
<td>287f.</td>
</tr>
<tr>
<td>geometric progression</td>
<td>972, 996</td>
</tr>
<tr>
<td>Golden Mean</td>
<td>21</td>
</tr>
<tr>
<td>Legendre polynomials</td>
<td>172</td>
</tr>
<tr>
<td>minimal vs. dominant solution</td>
<td>174</td>
</tr>
<tr>
<td>modified Bessel function</td>
<td>232</td>
</tr>
<tr>
<td>Neville’s</td>
<td>103, 182</td>
</tr>
<tr>
<td>orthonormal polynomials</td>
<td>142</td>
</tr>
<tr>
<td>Perron’s theorems</td>
<td>174f.</td>
</tr>
<tr>
<td>Pincherle’s theorem</td>
<td>175</td>
</tr>
<tr>
<td>for polynomial cumulants</td>
<td>977, 999, 1071f.</td>
</tr>
<tr>
<td>polynomial interpolation</td>
<td>103, 183</td>
</tr>
<tr>
<td>primitive polynomials modulo 2</td>
<td>287f.</td>
</tr>
<tr>
<td>random number generator</td>
<td>268</td>
</tr>
<tr>
<td>rational function interpolation</td>
<td>105f., 1043</td>
</tr>
<tr>
<td>recursive doubling</td>
<td>973, 977, 988, 999, 1071f., 1073</td>
</tr>
<tr>
<td>second order</td>
<td>974ff., 1074</td>
</tr>
<tr>
<td>sequence of trig functions</td>
<td>173</td>
</tr>
<tr>
<td>sine function</td>
<td>172, 500</td>
</tr>
<tr>
<td>spherical harmonics</td>
<td>247</td>
</tr>
<tr>
<td>stability of</td>
<td>21, 173ff., 177, 224ff., 227f., 232, 247, 975</td>
</tr>
<tr>
<td>trig functions</td>
<td>572</td>
</tr>
<tr>
<td>weight of Gaussian quadrature</td>
<td>144f.</td>
</tr>
<tr>
<td>Recursion</td>
<td></td>
</tr>
<tr>
<td>in Fortran 90</td>
<td>958</td>
</tr>
<tr>
<td>in multigrid method</td>
<td>865, 1009, 1336</td>
</tr>
<tr>
<td>Recursive doubling</td>
<td>973f., 979</td>
</tr>
<tr>
<td>cumulants of polynomial</td>
<td>977, 999, 1071f.</td>
</tr>
<tr>
<td>linear recurrences</td>
<td>973, 988, 1073</td>
</tr>
<tr>
<td>tridiagonal systems</td>
<td>976</td>
</tr>
<tr>
<td>RECURSIVE keyword</td>
<td>958, 1065, 1067</td>
</tr>
<tr>
<td>Recursive Monte Carlo integration</td>
<td>306ff., 1161</td>
</tr>
<tr>
<td>Recursive procedure</td>
<td>2/xiv, 958, 1065, 1067, 1166</td>
</tr>
<tr>
<td>as parallelization tool</td>
<td>958</td>
</tr>
<tr>
<td>base case</td>
<td>958</td>
</tr>
<tr>
<td>for multigrid method</td>
<td>1009, 1336</td>
</tr>
<tr>
<td>re-entrant</td>
<td>1052</td>
</tr>
<tr>
<td>Recursive stratified sampling</td>
<td>314ff., 1164f.</td>
</tr>
<tr>
<td>Red-black see Odd-even ordering</td>
<td></td>
</tr>
<tr>
<td>Reduction functions</td>
<td>948ff.</td>
</tr>
<tr>
<td>Reduction of variance in Monte Carlo integration</td>
<td>299, 306ff.</td>
</tr>
<tr>
<td>References (explanation)</td>
<td>4f.</td>
</tr>
<tr>
<td>References (general bibliography)</td>
<td>916ff., 1359f.</td>
</tr>
<tr>
<td>Reflection formula for gamma function</td>
<td>206</td>
</tr>
<tr>
<td>Regula falsi (false position)</td>
<td>347ff., 1185f.</td>
</tr>
<tr>
<td>Regularity condition</td>
<td>775</td>
</tr>
<tr>
<td>Regularization</td>
<td></td>
</tr>
<tr>
<td>compared with optimal filtering</td>
<td>801</td>
</tr>
<tr>
<td>constrained linear inversion method</td>
<td>799ff.</td>
</tr>
<tr>
<td>of inverse problems</td>
<td>796ff.</td>
</tr>
<tr>
<td>linear</td>
<td>799ff.</td>
</tr>
<tr>
<td>nonlinear</td>
<td>813</td>
</tr>
</tbody>
</table>
Index to Volumes 1 and 2

objective criterion 802
Tikhonov-Miller 799ff.
trade-off curve 799
two-dimensional 803
zerot order 797
see also Inverse problems
Regularizing operator 798
Reid, John 2/xiv, 2/xvi
Rejection method for random number gener-
tor 281ff.
Relaxation method
for algebraically difficult sets 763
automated allocation of mesh points 774ff., 777
computation of spherical harmonics 764ff., 1319ff.
for differential equations 746ff., 753ff., 1316ff.
elliptic partial differential equations 823, 854ff., 1332ff.
extreme 764ff., 1319ff.
Gauss-Seidel method 855, 864ff., 876, 1338, 1341
internal boundary conditions 775ff.
internal singular points 775ff.
Jacobi’s method 855ff., 864
successive over-relaxation (SOR) 857ff., 862, 866, 1332ff.
see also Multigrid method
Remes algorithms
exchange algorithm 553
for minimax rational function 199
reshape() intrinsic function 950
communication bottleneck 969
order keyword 1050, 1246
Residual 49, 54, 78
in multigrid method 863, 1338
Resolution function, in Backus-Gilbert method 807
Response function 531
Restriction operator 864, 1337
RESULT keyword 958, 1073
Reward, $1000 offered 272, 1141, 1150ff.
Richardson’s deferred approach to the limit 134, 137, 182, 702, 718ff., 726, 786, 869
see also Bulirsch-Stoer method
Richtmyer artificial viscosity 837
Ridders’ method, for numerical derivatives 182, 1075
Ridders’ method, root finding 341, 349, 351, 1187
Riemann shock problem 837
Right eigenvalues and eigenvectors 451
Rise/fall time 548ff.
Robust estimation 653, 694ff., 700, 1294
Andrew’s sine 697
average deviation 605
double exponential errors 696
Kalman filtering 700
Lorentzian errors 696ff.
mean absolute deviation 605
nonparametric correlation 633ff., 1277
Tukey’s biweight 697
use of a priori covariances 700
see also Statistical tests
Romberg integration 124, 134ff., 137, 182, 717, 788, 1054ff., 1065
Root finding 143, 340ff., 1089, 1059
advanced implementations of Newton’s rule 386
Bairstow’s method 364, 370, 1193
bisection 343, 346ff., 352ff., 359, 390, 469, 698, 1184ff.
Brent’s method 341, 349, 660ff., 1188ff., 1286
Broyden’s method 373, 382ff., 386, 1199
compared with multidimensional minimiza-
tion 375
complex analytic functions 364
in complex plane 204
convergence criteria 347, 374
definition of polynomials 362ff., 370ff., 1192
without derivatives 354
double root 341
eigenvalue methods 368, 1193
false position 347ff., 1185ff.
Jenkins-Traub method 369
Laguerre’s method 341, 366ff., 1191ff.
Lehmer-Schur algorithm 369
Maehly’s procedure 364, 371
matrix method 368, 1193
Muller’s method 364, 372
multiple roots 341
pathological cases 343, 356, 362, 372
polynomials 341, 362ff., 449, 1191ff.
in relaxation method 754, 1316
Ridders’ method 341, 349, 351, 1187
root-polishing 356, 363ff., 369ff., 1193
safe Newton’s rule 359, 1190
secant method 347ff., 358, 364, 399, 1186ff.
in shooting method 746, 749ff., 1314ff.
singular Jacobain in Newton’s rule 386
stopping criterion for polynomials 366
use of minimum finding 341
using derivatives 355ff., 1189
zero suppression 372
see also Roots
Root polishing 356, 363ff., 369ff., 1193
Roots
Chebyshev polynomials 184
complex nth root of unity 999ff., 1379
cubic equations 179ff.
Hermite polynomials, approximate 1062
Jacobi polynomials, approximate 1064
Laguerre polynomials, approximate 1061
multiple 341, 364ff., 1192
nonlinear equations 340ff.
polynomials 341, 362ff., 449, 1191ff.
quadratic equations 178
Index to Volumes 1 and 2

reflection in unit circle 560, 1257
square, multiple precision 912, 1356
see also Root finding
Rosenbrock method 730, 1308
compared with semi-implicit extrapolation 739
stepsize control 731, 1308f.
Roundoff error 20, 881, 1362
bracketing a minimum 399
compile time vs. run time 1012
conjugate gradient method 824
eigensystems 458, 467, 470, 473, 476, 479, 483
extended trapezoidal rule 132
general linear least squares 668, 672
graceful 883, 1343
hardware aspects 882, 1343
Householder reduction 466
IEEE standard 882f., 1343
interpolation 100
least squares fitting 658, 668
Levenberg-Marquardt method 679
linear algebraic equations 23, 27, 29, 47, 56, 84, 1022
linear predictive coding (LPC) 564
magnification of 20, 47, 1022
maximum entropy method (MEM) 567
measuring 881f., 1343
multidimensional minimization 418, 422
multiple roots 362
numerical derivatives 180f.
recurrence relations 173
reduction to Hessenberg form 479
series 164f.
straight line fitting 658
variance 607
Row degeneracy 22
Row-indexed sparse storage 71f., 1030
transpose 73f.
Row operations on matrix 28, 31f.
Row totals 624
RSS algorithm 314ff., 1164
RST properties (reflexive, symmetric, transitive) 338
Runge-Kutta method 702, 704ff., 731, 740, 1297f., 1308
Cash-Karp parameters 710, 1299f.
embedded 709f., 731, 1298, 1308
high-order 705
quality control 722
stepsize control 708ff.
Run-length encoding 901
Runge-Kutta method
high-order 1297
stepsize control 1298f.
Rybicki, G.B. 84ff., 114, 145, 252, 522, 574, 600

S
S-box for Data Encryption Standard 1148
Sampling
importance 306f.
Latin square or hypercube 305f.
recursive stratified 314ff., 1164
stratified 308f.
even or irregular 569, 648ff., 1258
Sampling theorem 495, 543
for numerical approximation 600ff.
Sande-Tukey FFT algorithm 503
SAVE attribute 953f., 958f., 961, 1052, 1070, 1266, 1293
redundant use of 958f.
SAVE statements 3
Savitzky-Golay filters
for data smoothing 644ff., 1283f.
for numerical derivatives 183, 645
scale() intrinsic function 1107
Scallop loss 548
Scatter-with-combine functions 984, 1002f., 1032, 1366, 1380f.
scatter_add() utility function 984, 990, 1002, 1032
scatter_max() utility function 984, 990, 1003
Schonfelder, Lawrie 2/xi
Schrage’s algorithm 269
Schrödinger equation 842ff.
Schultz’s method for matrix inverse 49, 598
Scope 956ff., 1209, 1293, 1296
Scoping unit 939
SDLC checksum 890
Searching
with correlated values 111, 1046f.
an ordered table 110ff., 1045f.
selection 333, 1177f.
Secant method 341, 347ff., 358, 364, 399, 1186f.
Broyden’s method 382f., 1199f.
multidimensional (Broyden’s) 373, 382ff., 1199
Second Euler-Maclaurin summation formula 135f.
Second order differential equations 726, 1307
Seed of random number generator 267, 1146f.
select case statement 2/xiv, 1010, 1036
Selection 320, 333, 1177f.
find m largest elements 336, 1179f.
heap algorithm 336, 1179
for median 698, 1294
operation count 333
by packing 1178
parallel algorithms 1178
by partition-exchange 333, 1177f.
without rearrangement 335, 1178f.
timings 336
use to find median 609
Semi-implicit Euler method 730, 735f.
Semi-implicit extrapolation method 730, 735f., 1310f.
compared with Rosenbrock method 739
stepsize control 737, 1311f.
Semi-implicit midpoint rule 735f., 1310f.
Semi-invariants of a distribution 608
Sentinel, in Quicksort 324, 333
Separable kernel 785
Separation of variables 246
Serial computing
convergence of quadrature 1060
random numbers 1141
sorting 1167
Serial data port 892
Index to Volumes 1 and 2

Series 159ff.
 accelerating convergence of 159ff.
 alternating 160ff., 1070
 asymptotic 161
 Bessel function \(K_v \) 241
 Bessel function \(Y_v \) 235
 Bessel functions 160, 223
 cosine integral 250
 divergent 161
 economization 192ff., 195, 1080
 Euler’s transformation 160ff., 1070
 exponential integral 216, 218
 Fresnel integral 248
 hypergeometric 202, 263, 1138
 incomplete beta function 219
 incomplete gamma function 210, 1090ff.
 Laurent 566
 relation to continued fractions 163ff.
 roundoff error in 164f.
 sine and cosine integrals 250
 sine function 160
 Taylor 355f., 408, 702, 709, 754, 759
 transformation of 160ff., 1070
 van Wijngaarden’s algorithm 161, 1070
 Shaft encoder 886
 Shakespeare 9
 Shampine’s Rosenbrock parameters 732, 1308
 shape() intrinsic function 938, 949
 Shell algorithm (Shell’s sort) 321ff., 1168
 Sherman-Morrison formula 65ff., 83, 382
 Shifting of eigenvalues 449, 470f., 480
 Shock wave 831, 837
 Shooting method 270, 272
 computation of spheroidal harmonics 772, 1321ff.
 for differential equations 746, 749ff.,
 770ff., 1314ff., 1321ff.
 for difficult cases 753, 1315f.
 example 770ff., 1321ff.
 interior fitting point 752, 1315f., 1323ff.
 Shuffling to improve random number generator
 Side effects
 prevented by data hiding 957, 1209, 1293,
 1296
 and PURE subprograms 960
 Sidelobe fall-off 548
 Sidelobe level 548
 sign() intrinsic function, modified in Fortran 95
 961
 Signal, bandwidth limited 495
 Significance (numerical) 19
 Significance (statistical) 609f.
 one- vs. two-sided 632
 peak in Lomb periodogram 570
 of 2-d K-S test 640, 1281
 two-tailed 613
 SIMD machines (Single Instruction Multiple Data)
 964, 985f., 1009, 1084f.
 Similarity transform 452ff., 456, 476, 478,
 482
 Simplex
 defined 402
 method in linear programming 389, 402,
 423ff., 431ff., 1216ff.
 method of Nelder and Mead 389, 402ff.,
 444, 697f., 1208f., 1222ff.
 use in simulated annealing 444, 1222ff.
 Simpson’s rule 124ff., 128, 133, 136f., 583,
 782, 788f., 1053f.
 Simpson’s three-eighths rule 126, 789f.
 Simulated annealing see Annealing, method of
 simulated
 Simulation see Monte Carlo
 Sine function
 evaluated from tan(\(\theta /2 \)) 173
 recurrence 172
 series 160
 Sine integral 248, 250ff., 1123, 1125f.
 continued fraction 250
 series 250
 see also Cosine integral
 Sine transform see Fast Fourier transform
 (FFT); Fourier transform
 Singleton’s algorithm for FFT 525
 Singular value decomposition (SVD) 23, 25,
 51ff., 1022
 approximation of matrices 58ff.
 backsubstitution 56, 102ff.
 and bases for nullspace and range 53
 confidence levels from 693f.
 covariance matrix 693f.
 fewer equations than unknowns 57
 for inverse problems 797
 and least squares 54ff., 199f., 668, 670ff.,
 1081, 1290f.
 in minimization 410
 more equations than unknowns 57f.
 parallel algorithms 1026
 and rational Chebyshev approximation
 199f., 1081f.
 of square matrix 53ff., 1023
 use for ill-conditioned matrices 56, 58,
 449
 use for orthonormal basis 58, 94
 Singularities
 of hypergeometric function 203, 263
 in integral equations 788ff., 1328
 in integral equations, worked example
 792, 1328ff.
 in integrands 135ff., 788, 1055, 1328ff.
 removal in numerical integration 137ff.,
 788, 1057ff., 1328ff.
 Singularity, subtraction of the 789
 SIPSOL 824
 Six-step framework, for FFT 983, 1240
 size() intrinsic function 938, 942, 945, 948
 Skew array section 268, 945, 960, 985, 1284
 Skewness of distribution 606, 608, 1269
 Smoothing
 of data 114, 644ff., 1283f.
 of data in integral equations 781
 importance in multigrid method 865
 sn function 261, 1137f.
 Snyder, N.L. 154
 Sobol’s quasi-random sequence 300ff., 1160f.
 Sonata 9
 Sonnet 9
 Sorting 320ff., 1167f.
 bubble sort 1168
Index to Volumes 1 and 2

bubble sort cautioned against 321
compared to selection 333
covariance matrix 669, 681, 1289
eigenvectors 461ff., 1227
Heapsort 320, 327ff., 336, 117ff., 1179
index table 320, 329ff., 1170, 1173ff.,
1176
operation count 320ff.
by packing 1171
parallel algorithms 1168, 1171ff., 1176
Quicksort 320, 323ff., 330, 333, 1169ff.
radix sort 1172
rank table 320, 332, 1176
ranking 329, 1176
by reshaping array slices 1168
Shell's method 321ff., 1168
straight insertion 321ff., 461ff., 1167, 1227
SP, defined 937
SPARC or SPARCrstation 1/xii, 2/xix, 4
Sparse linear equations 23, 63ff., 732, 1030
band diagonal 43, 1019ff.
biconjugate gradient method 77, 599,
1034
data type for 1030
indexed storage 71ff., 1030
in inverse problems 804
minimum residual method 78
named patterns 64, 822
partial differential equations 822ff.
relaxation method for boundary value prob-
lems 754, 1316
row-indexed storage 71ff., 1030
wavelet transform 584, 598
see also Matrix
Spearman rank-order coefficient 634ff., 694ff.,
1277
Special functions see Function
Spectral analysis see Fourier transform; Peri-
odogram
Spectral density 541
and data windowing 545ff.
figures of merit for data windows 548ff.
normalization conventions 542ff.
one-sided PSD 492
periodogram 543ff., 566, 1258ff.
power spectral density (PSD) 492f.
power spectral density per unit time 493
power spectrum estimation by FFT 542ff.,
1254ff.
power spectrum estimation by MEM 565ff.,
1258
two-sided PSD 493
variance reduction in spectral estimation
545
Spectral lines, how to smooth 644
Spectral methods for partial differential equa-
tions 825
Spectral radius 856ff., 862
Spectral test for random number generator
274
Spectrum see Fourier transform
Spherical Bessel functions 234
routine for 245ff., 1121
Spherical harmonics 246ff.
orthogonality 246
routine for 247f., 1122
stable recurrence for 247
table of 246
see also Associated Legendre polynomials
Spheroidal harmonics 764ff., 770ff., 1319ff.
boundary conditions 765
normalization 765
routine for 768ff., 1319ff., 1323ff.
Spline 100
 cubic 107ff., 1044ff.
gives tridiagonal system 109
natural 109, 1044ff.
operation count 109
two-dimensional (bicubic) 120ff., 1050ff.
spread (intrinsic function 945, 950, 969,
1000, 1094, 1290ff.
 and dimensional expansion 966ff.
Spread matrix 808
Spread spectrum 290
Square root, complex 172
Square root, multiple precision 912, 1356ff.
Square window 546, 1254ff.
SSP (small-scale parallel) machines 965ff.,
972, 974, 984, 1011, 1016ff., 1021,
1059ff., 1226ff., 1250
Stability 20f.
of Clenshaw’s recurrence 177
Courant condition 829, 832ff., 836, 846
diffusion equation 840
of Gauss-Jordan elimination 27, 29
of implicit differencing 729, 840
mesh-shift in PDEs 834ff.
nonlinear 831, 837
partial differential equations 820, 827f.
of polynomial deflation 363
in quadrature solution of Volterra equation
787ff.
of recurrence relations 173ff., 177, 224ff.,
227f., 232, 247
and stiff differential equations 728ff.
von Neumann analysis for PDEs 827ff.,
830, 833ff., 840
see also Accuracy
Stabilized Kolmogorov-Smirnov test 621
Stabilizing functional 798
Staggered leapfrog method 833ff.
Standard (provable) errors 1288, 1290
Standard deviation
of a distribution 605, 1269
of Fisher’s z 632
of linear correlation coefficient 630
of sum squared difference of ranks 635,
1277
Standard (probable) errors 610, 656, 661,
667, 671, 684
Stars, as text separator 1009
Statement function, superseded by internal sub-
program 1057, 1256
Statement labels 9
Statistical error 653
Statistical tests 603ff., 1269ff.
Anderson-Darling 621
average deviation 605, 1269
bootstrap method 686ff.
contingency coefficient C 625, 1275
contingency tables 622ff., 638, 1275f.
correlation 603f.
Cramer’s V 625, 1275
difference of distributions 614ff., 1272
difference of means 609ff., 1269f.
difference of variances 611, 613, 1271
entropy measures of association 626ff., 1275f.
F-test 611, 613, 1271
Fisher’s z-transformation 631ff., 1276
general paradigm 603
Kendall’s tau 634, 637ff., 1279
Kolmogorov-Smirnov 614, 617ff., 640, 694, 1273f., 1281
Kuiper’s statistic 621
kurtosis 606, 608, 1269
L-estimates 694
linear correlation coefficient 630ff., 1276
M-estimates 694ff.
mean 603f., 608ff., 1269f.
measures of association 604, 624ff., 1275
measures of central tendency 604ff., 1269
median 605, 694
mode 605
moments 604ff., 608, 1269
nonparametric correlation 633ff., 1277
Pearson’s r 630ff., 1276
for periodic signal 570
phi statistic 625
R-estimates 694
rank correlation 633ff., 1277
robust 605, 634, 694ff.
semi-invariants 608
for shift vs. differenced signal 620f.
significance 609f., 1269ff.
significance, one- vs. two-sided 613, 632
skewness 606, 608, 1269
Spearman rank-order coefficient 634f., 694f., 1277
standard deviation 605, 1269
strength vs. significance 609ff., 622
Student’s t 610, 631, 1269
Student’s t for correlation 631
Student’s t, paired samples 612, 1271
Student’s t, Spearman rank-order coefficient 634, 1277
Student’s t, unequal variances 611, 1270
sum squared difference of ranks 635, 1277
Tukey’s trimmean 694
two-dimensional 640, 1281ff.
variance 603ff., 607f., 612f., 1269ff.
Wilcoxon 694
see also Error; Robust estimation
Steak, without sizzle 809
Steed’s method
Bessel functions 234, 239
continued fractions 164f.
Steepest descent method 414
in inverse problems 804
Step
doubling 130, 708f., 1052
tripling 136, 1055
Stieljes, procedure of 151
Stiff equations 703, 727ff., 1308ff.
Kaps-Rentrop method 730, 1308
methods compared 739
predictor-corrector method 730
t.h.s. independent of x 729ff.
Rosenbrock method 730, 1308
scaling of variables 730
semi-implicit extrapolation method 730,
1310ff.
semi-implicit midpoint rule 735f., 1310f.
Stiff functions 100, 39f.
Stirling’s approximation 206, 812
Stoermer’s rule 726, 1307
Stopping criterion, in multidgrid method 875f.
Stopping criterion, in polynomial root finding
366
Storage
band diagonal matrix 44, 1019
sparse matrices 71f., 1030
Storage association 2xiv
Straight injection 867
Straight insertion 321ff., 461ff., 1167, 1227
Straight line fitting 655ff., 667f., 1285ff.
errors in both coordinates 660ff., 1286ff.
robust estimation 698, 1294ff.
Strassen’s fast matrix algorithms 96f.
Stratified sampling, Monte Carlo 308f., 314
Stride (of an array) 944
communication bottleneck 969
Strongly implicit procedure (SIPSOL) 824
Structure constructor 2xii
Structured programming 5ff.
Student’s probability distribution 221f.
Student’s t-test
for correlation 631
for difference of means 610, 1269
for difference of means (paired samples) 612, 1271
for difference of means (unequal variances) 611, 1270
for difference of ranks 635, 1277
Spearman rank-order coefficient 634, 1277
Sturman sequence 469
Sub-random sequences see Quasi-random se-
quencc
Subprogram 938
for data hiding 957, 1209, 1293, 1296
internal 954, 957, 1057, 1067, 1226, 1256
in module 940
undefined variables on exit 952f., 961,
1070, 1266, 1293, 1302
Subscript triplet (for array) 944
Subtraction, multiple precision 907, 1353
Subtractive method for random number genera-
tor 273, 1143
Subvector scaling 972, 974, 996, 1000
Successive over-relaxation (SOR) 857ff., 862,
133f.
bad in multigrid method 866
Chebyshev acceleration 859f., 1332f.
choice of overrelaxation parameter 858
with logical mask 1333f.
parallelization 1333
sum intrinsic function 945, 948, 966
Index to Volumes 1 and 2

Sum squared difference of ranks 634, 1277
Sums see Series
Sun 1/xxii, 2/xxix, 886
SparCstation 1/xxii, 2/xxix, 4
Supernova 1987A 640
SVD see Singular value decomposition (SVD)
swap() utility function 987, 990f, 1015, 1210
Symbol, of operator 866f.

Synthetic division 84, 167, 362, 370
parallel algorithms 977ff., 999, 1048, 1071ff., 1079, 1192
repeated 978f.
Systematic errors 653

Tableau (interpolation) 103, 183
Tangent function, continued fraction 163
Target, for pointer 938f., 945, 952f.
Taylor series 180, 355f., 408, 702, 709, 742, 754, 759
Test programs 3
Thermodynamics, analogy for simulated annealing 437
Thinking Machines, Inc. 964
Threshold multiply of sparse matrices 74, 1031
Tides 560f.
Tikhonov-Miller regularization 799f.
Time domain 490
Time splitting 847f., 861
tiny() intrinsic function 952
Toeplitz matrix 82, 858f., 195, 1038
LU decomposition 87
new, fast algorithms 88f.
nonsymmetric 86ff., 1038
Tongue twisters 333
Torus 297f., 304
Trade-off curve 795, 809
Trademarks 1/xxii, 2/xxixf.
Transformation
Gauss 256
Landen 256
method for random number generator 277ff.
Transformational functions 948ff.
Transforms, number theoretic 503f.
Transport error 831f.
transpose() intrinsic function 950, 960, 969, 981, 1050, 1246
Transpose of sparse matrix 73f.
Trapezoidal rule 125, 127, 130ff., 134ff., 579, 583, 782, 786, 1052, 1326ff.
Traveling salesman problem 438ff., 1219ff.
Tridiagonal matrix 42, 63, 150, 453f., 488, 839f., 1018f.
in an alternating-direction implicit method (ADI) 861f.
from cubic spline 109
cyclic 67, 1030
in cyclic reduction 853
eigenvalues 469ff., 1228
with fringes 822
from operator splitting 861f.
parallel algorithm 975, 1018, 1229f.
recursive splitting 1229f.
reduction of symmetric matrix to 462ff., 470, 1227f.
serial algorithm 1018f.
see also Matrix
Trigonometric functions, linear sequences 173
functions, recurrence relation 172, 572
functions, tan(π/2) as minimal 173
interpolation 99
solution of cubic equation 179f.

Truncation error 20f., 399, 709, 881, 1362
in multigrid method 875
in numerical derivatives 180
Tukey’s biweight 697
Tukey’s trimean 694
Turbo Pascal (Borland) 8
Twin errors 895
Two-dimensional see Multidimensional
Two-dimensional K–S test 640, 1281ff.
Two-pass algorithm for variance 607, 1269
Two-point boundary value problems 702, 745ff., 1314ff.
automated allocation of mesh points 774ff., 777
boundary conditions 745ff., 749, 751f., 771, 1314ff.
difficult cases 753, 1315f.
free boundary problem 748, 776
grid (mesh) points 746f., 754, 774ff., 777
internal boundary conditions 775ff.
internal singular points 775f.
linear requires no iteration 751
multiple shooting 753
problems reducible to standard form 748
regularity condition 775
relaxation method 746f., 753ff., 1316ff.
relaxation method, example of 764ff., 1319
shooting to a fitting point 751ff., 1315f., 1323ff.
shooting method, example of 770ff., 1321ff.
singular endpoints 751, 764, 771, 1315f., 1319ff.
see also Elliptic partial differential equations
Two-sided exponential error distribution 696
Two-sided power spectral density 493
Two-volume edition, plan of 1/xxiii
Two’s complement arithmetic 1144
Type declarations, explicit vs. implicit 2

Ubond() intrinsic function 949
ULTRIX 1/xxiii, 2/xxix
Uncertainty coefficient 628
Uncertainty principle 600
Undefined status, of arrays and pointers 952f., 961, 1070, 1266, 1293, 1302
Underflow, in IEEE arithmetic 883, 1343
Underrelaxation 857
Uniform deviates see Random deviates, uniform
Index to Volumes 1 and 2

Unary (function) 843f.
Unary (matrix) see Matrix
unlmmatrix() utility function 985, 990, 1006,
1216, 1226, 1325
UNIX 1/xiiii, 2/viii, 2/xii, 4, 17, 276, 293,
386
Upper Hessenberg matrix see Hessenberg ma-
trix
U.S. Postal Service barcode 894
unpack() intrinsic function 950, 964
communication bottleneck 969
Upper subscript 944
upper_triangle() utility function 990, 1006,
1226, 1305
Upwind differencing 832f., 837
USE statement 936, 939f., 954, 957, 1067,
1384
USES keyword in program listings 2
Utility functions 987ff., 1364ff.
add vector to matrix diagonal 1004, 1234,
1366, 1381
alphabetical listing 988ff.
argument checking 994f., 1370f.
articulation progression 996, 1072, 1127,
1365, 1371f.
array reallocation 992, 1070f., 1365, 1368f.
assertion of numerical equality 995, 1022,
1365, 1370f.
compared to intrinsics 990ff.
complex nth root of unity 999f., 1379
copying arrays 991, 1034, 1327f., 1365f.
create unit matrix 1006, 1382
cumulative product of an array 997f.,
1072, 1086, 1375
cumulative sum of an array 997, 1280ff.,
1365, 1375
data types 1361
elemental functions 1364
error handling 994f., 1036, 1370f.
genetic functions 1364
geometric progression 996f., 1365, 1372ff.
get diagonal of matrix 1005, 1226f., 1366,
1381f.
length of a vector 1008, 1383
linear recurrence 996
location in an array 992ff., 1015, 1017ff.
location of first logical “true” 993, 1041,
1369
location of maximum array value 993,
1015, 1017, 1365, 1369
location of minimum array value 993,
1369f.
logical assertion 994, 1086, 1090, 1092,
1365, 1370
lower triangular mask 1007, 1200, 1382
masked polynomial evaluation 1378
masked swap of elements in two arrays
1368
moving data 990ff., 1015
multiply vector into matrix diagonal 1004f.,
1366, 1381
nutil.f90 (module file) 1364ff.
outer difference of vectors 1001, 1366,
1380
outer logical and of vectors 1002
outer operations on vectors 1000ff., 1379f.
outer product of vectors 1000f., 1076,
1365f., 1379
outer quotient of vectors 1001, 1379
outer sum of vectors 1001, 1379f.
overloading 1364
partial cumulants of a polynomial 999,
1071, 1192f., 1365, 1378f.
polynomial evaluation 996, 998f., 1258,
1365, 1376ff.
scaiter-with-add 1002f., 1032f., 1366,
1380f.
scaiter-with-combine 1002ff., 1032f., 1380f.
scaiter-with-max 1003f., 1366, 1381
set diagonal elements of matrix 1005,
1200, 1366, 1382
skew operation on matrices 1004ff., 1381ff.
swap elements of two arrays 991, 1015,
1385ff.
upper triangular mask 1006, 1226, 1305,
1382
V-cycle 865, 1336
vabs() utility function 990, 1008, 1290
Validation of Numerical Recipes procedures
3f.
Valley, long or narrow 403, 407, 410
Van Cittert’s method 804
Van Wijngaarden-Dekker-Brent method see
Brent’s method
Vandermonde matrix 82ff., 114, 1037, 1047
Variable length code 896, 1346ff.
Variable metric method 390, 418ff., 1215
compared to conjugate gradient method
418
Variable step-size integration 123, 135, 703,
707ff., 720, 726, 731, 737, 742ff., 1298ff.,
1303, 1308ff., 1311ff.
Variance(s)
correlation 605
of distribution 603ff., 608, 611, 613, 1269
pooled 610
reduction of (in Monte Carlo) 299, 306ff.
statistical differences between two 609,
1271
two-pass algorithm for computing 607,
269
see also Covariance
Variational methods, partial differential equa-
tions 824
VAX 275, 293
Vector(s)
length 1008, 1383
norms 1036
outer difference 1001, 1366, 1380
outer operations 1000ff., 1379f.
outer product 1000f., 1076, 1365f., 1379
Vector reduction 972, 977, 998
Vector subscripts 2/xif., 984, 1002, 1032,
1034
communication bottleneck 969, 981, 1250
VEGAS algorithm for Monte Carlo 309ff.,
1161
Verhoeff’s algorithm for checksums 894f.,
1345
Index to Volumes 1 and 2

W

-cycle 865, 1336
Warranty, disclaimer of 1/xx, 2/xvii
Wave equation 246, 818, 825f.
Wavelet transform 584ff., 1264ff.
appearance of wavelets 590ff.
approximation condition of order p 585
coefficient values 586, 589, 1265
contrasted with Fourier transform 584,
594
Daubechies wavelet filter coefficients 584ff.,
588, 590f., 594, 598, 1264ff.
detail information 585
discrete wavelet transform (DWT) 586f.,
1264
DWT (discrete wavelet transform) 586f.,
1264ff.
eliminating wrap-around 587
fast solution of linear equations 597ff.
filters 592f.
and Fourier domain 592f.
image processing 596f.
for integral equations 782
inverse 587
Lemarie’s wavelet 593
of linear operator 597ff.
mother-function coefficient 587
mother functions 584
multidimensional 595, 1267f.
smoothness of wavelets 591
pyramidal algorithm 586, 1264
quadrature mirror filter 585
smooth information 585
truncation 594f.
wavelet filter coefficient 584, 587
wavelets 584, 590ff.
Wavelets see Wavelet transform
Weber function 204
Weighted Kolmogorov-Smirnov test 621
Weighted least-squares fitting see Least squares fitting

X

25 protocol 890
X3J3 Committee 2/xvii, 2/xvii, 2/xxv, 947, 959,
964, 968, 990
XMODEM checksum 889
X-ray diffraction pattern, processing of 805

Y

Yale Sparse Matrix Package 64, 71

Z

-transform 554, 559, 565
Z-transformation, Fisher’s 631ff., 1276
Zaman, A. 1149
Zealots 814
Zebra relaxation 866
Zero contours 372
Zero-length array 944
Zeroh-order regularization 796ff.
Zip code, barcode for 894
Ziv-Lempel compression 896
zroots() utility function 974, 990, 999