Light and plant responses

Light and plant responses

A study of plant photophysiology and the natural environment

T.H. Attridge

Senior Lecturer, School of Science, Polytechnic of East London, England

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521427487

© 1990 T.H. Attridge

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1990 Digitally reprinted by Cambridge University Press 2006

A catalogue record for this publication is available from the British Library

ISBN-13 978-0-521-42748-7 paperback ISBN-10 0-521-42748-7 paperback

Contents

Abbreviations Preface		
1	Introduction	1
2	The natural light environment Light, its nature Solar radiation The earth's atmosphere Atmospheric modification of solar radiation Variations in atmospheric modifications	6 6 8 9 12
3	Light-absorbing pigments Introduction Photosynthetic pigments Phytochrome, its nature Blue-light-absorbing pigment (BAP) BAP and phototropism	23 23 23 25 34 37
4	Seed germination Introduction Light within seeds Perception of light quality and quantity by seeds Light effects on the maturing seed Light and seed burial Germination in canopy shade Germination and sunflecks Light and temperature interactions	48 48 49 54 55 57 58 59
5	Seedling development Patterns of seedling development Light within the hypocotyl and the coleoptile The Thomson hypothesis Control of mesocotyl and coleoptile development BAP and straight growth in cereal seedlings The role of the coleoptile apex Phytochrome control of ethylene biosynthesis in etiolated seedlings Cell elongation Leaf unrolling in cereals Control of hypocotyl development Development of the cotyledon	65 65 66 67 67 70 71 72 72 73 73 73

Cambridge University Press
0521427487 - Light and Plant Responses: A Study of Plant Photophysiology and the
Natural Environment
T. H. Attridge
Frontmatter
More information

vi Contents

	Cotyledon as a light trap	75
	Effect of light on radicle and root development	76
	Hypocotylar and plumular hook openings Epicotyl (first internode) development	78 78
	Photocontrol of epicotyl and subsequent internodes	78
	Effects of reflected radiation	82
	Tiller formation in grasses	83
	Petioles	83
	Leaves as light traps	84
	Light and lamina development	84
	Sun and shade leaves	85
	Light and chloroplast development	89
	Photocontrol of chlorophyll synthesis Chloroplast membrane organisation	91 92
	Adaptation of photosynthetic apparatus	92
	Chloroplast movement	94
	Leaf orientation	96
	Stomata	98
	Leaf abscission	101
6	The flowering process	114
	Introduction	114
	Response types	115
	Flowering and experimentation	115
	Juvenility	116
	Photoperception	116
	A universal flowering hormone? Hormone purification	117 117
	Growth substances and flowering	117
	The importance and relationship of dark and light periods	118
	Vernalisation	120
	Moonlight effects on flowering	121
7	Endogenous rhythms	124
	Introduction	124
	The influence of light on circadian rhythms	124
	Circadian measurement of time	125
	Photoperiodism	127
8	Special situations	131
	Aquatic	131
	Tropical rain forests	132
	Climbing mechanisms and shade adaptation	133 134
	Light and buds Tuberisation of potatoes	134
	Bulbing	135
	Tap root	135
	Tendrils	136
	CAM metabolism	136
	Frost tolerance	137
In	dex	141

Abbreviations

The abbreviations used in this book are specified here and the first time they are used within the text. Not specified are SI units, which are used wherever possible throughout this book.

Abbreviation	Meaning
ABA	Abscisic acid
A _{meso} /A	mesophyll to leaf area ratio
ATP	adenosine triphosphate
В	blue light
BAP	blue-light-absorbing pigment(s)
B-HIR	blue-light – high-irradiance response
CAM	Crassulacean acid metabolism
Chl-a	chlorophyll-a
Chl-b	chlorophyll-b
Chlide-a	chlorophyllide-a
CFC	chlorofluorohydrocarbon
C-W	Cholodny-Went model
DN	day neutral
DNP	day neutral plant(s)
EPP	phytochrome typical of etiolated material
FR	far-red light
FR-HIR	far-red – high irradiance
GA	gibberellic acid
GLI	gap light index
GPP	phytochrome typical of green tissue
HIR	high irradiance response
IAA	indol-3-acetic acid (auxin)

viii Abbreviations	
LAI	leaf area index
LD	long day
LDP	long-day plant
LFR	low fluence response
LHCI	light-harvesting complex I
LHCII	light-harvesting complex II
LHCP	light-harvesting chlorophyll-a/b binding protein
m-RNA	messenger RNA
LVDT	linear variable displacement transducer
n	refractive index
NAD	nicotinamide adenine dinucleotide
NADH	reduced form of NAD
NADP	nicotinamide adenine dinucleotide phosphate
NADPH	reduced form of NADP
PAR	photosynthetic active radiation (400 to 700 nm)
p-Chl	protochlorophyll
p-Chlide	protochlorophyllide
Pfr	far-red-absorbing form of phytochrome
Pfr/Ptot	photoequilibrium of phytochrome
phi	proportion of phytochrome in the Pfr form
PIR	per cent incident radiation
Pr	red-absorbing form of phytochrome
P700	reaction centre of photosynthetic unit
PSI	photosystem I
PSII	photosystem II
R	red light
R : FR	ratio of R to FR
Rubisco	ribulose 1,5 bisphosphate carboxylase/oxygenase

CAMBRIDGE

Cambridge University Press 0521427487 - Light and Plant Responses: A Study of Plant Photophysiology and the Natural Environment T. H. Attridge Frontmatter More information

Abbreviations ix

SD	short day
SDP	short day plant(s)
SOX	low-pressure sodium lamps
UV	ultra-violet light
UV-A	320 to 400 nm
UV-B	280 to 320 nm
VLFR	very low fluence response
WEX	cell wall extensibility
WL	white light
zeta	ratio of R to FR

We trained hard, but every time we were beginning to form up into teams, we would be reorganised. I was to learn in later life that we tend to meet any new situation by reorganising and a wonderful method it can be for creating the illusion of progress while only producing inefficiency and demoralization.

Petronious Arbiter (AD 66)

Preface

Progress in any area of science can be limited by a number of factors, but cannot advance faster than the techniques available to tackle the problems. It would seem that research has two phases to its cycle. In the first a new technique surfaces or, as is often the case in plant sciences, a recent technique is applied to a new discipline. This leads to the elucidation of long-standing problems and often the establishment of new problems which were not previously apparent. This is followed by a phase of fact collection where these techniques are applied more widely, often with greater ingenuity, and the established models and hypotheses are modified or expanded.

The revolution that has occurred in the techniques of molecular biology has greatly encouraged those seeking an understanding of the mechanisms of plant development and this is an unimpeachable pursuit. Such enquiry leads to specialisation and the acquisition of detailed knowledge and it would be possible to lose sight of the way in which the whole plant develops. I thought I might start this book with the quotation 'Lo, though they stand before the pyramids they speak only of the heat of the desert', but after an extensive search of the literature, lasting several minutes, I was unable to make an attribution. Before these new approaches were thrust upon us, research workers tended to be associated with one or another aspect of light-plant interactions, and indeed some areas are so complex it is difficult to see how it could have been otherwise. Here, I have tried to draw together an understanding of how higher plants respond to the natural light environment throughout their life cycle in the hope that in our efforts to understand plant development we can continue the current tendency to take the more integrated approach required by the complex stimuli of the natural situation.

My thanks are due to John Melmoth for his pergamosian endeavours, to Professor Mike Black for reading the chapter on seeds and to my family for their patience during the preparation of this manuscript.

> T.H. Attridge March 1989