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Introduction

Differential equations are used throughout the sciences to model dy-
namic processes. They provide the most simple models of any phe-
nomenon in which one or more variables depend continuously on time
without any random influences. They are also fascinating mathemati-
cal objects in their own right. If a differential equation is derived from
some physical situation it is clearly desirable to know something about
solutions to the equation. Indeed, there is little point deriving a model
if it is then impossible to gain any information from it! This poses a
big problem. Whilst most differential equations in university courses
have closed form solutions, typical nonlinear differential equations do
not have solutions which can be written down in terms of familiar spe-
cial functions such as sines and cosines. This means that when faced
with general (nonlinear) differential equations we need to change our
approach. We will rarely solve differential equations, instead we will try
to obtain qualitative information about the long term, or asymptotic,
behaviour of solutions: are they periodic? eventually periodic? attract-
ing? and so on. This shift from the quantitative to the qualitative is
reflected in a shift in the mathematical techniques which are used to
analyse equations: much of the analysis will be geometric rather than
analytic.

Initially we will concentrate on hyperbolic solutions. Roughly speak-
ing a solution is hyperbolic if all sufficiently small perturbations of the
defining differential equation have similar behaviour close to that solu-
tion (this is not simply a statement about continuity). This leads on
to the idea of differential equations which depend on a parameter. For
example, if the differential equation models some physical situation then
a coefficient in the equation may depend upon temperature. In such a
case it may be useful to know the dependence of solutions on the am-
bient temperature, i.e. to analyse the differential equation for several
different values of the coefficient. If at some value of this coefficient a
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2 1 Introduction

solution is hyperbolic, then a small change in the coefficient, and hence a
small change in the ambient temperature, does not alter the qualitative
behaviour of the system near that solution. The second half of this book
introduces ideas from bifurcation theory, which describes the qualitative
changes that can occur near non-hyperbolic solutions. This corresponds
to situations in which small changes in the coefficients of the defining
equations can lead to qualitatively different behaviour of solutions.
Before these terms are given more precise definitions it is worth think-
ing about the possible behaviour we might expect to meet. A standard
introductory example in physics is the model of the ideal pendulum (Fig.
1.1). A simple application of Newton’s laws of motion shows that the
angle 6 of the pendulum changes with time satisfying an equation of the

form
2

?i—t?o +sinf =0 (1.1)

after rescaling time so as to make the various physical constants that
appear equal to unity.
If we consider only small amplitude oscillations then sin 6 ~ 6 and so
we obtain the simplified equation
d2e
Tl +60=0 (1.2)
which has solutions § = Asint + Bcost, where A and B are constants
determined by the initial position and angular velocity of the pendulum.
If A= B =0 then 8 =0 is a solution. This solution corresponds to the

Ceci n et pas

un pendude

Fig. 1.1 The ideal pendulum (with apologies to Magritte).
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1 Introduction 3

stationary pendulum, where it simply hangs directly downwards with no
oscillation. There is no motion. So, the first sort of dynamics that we
can identify is trivial: no motion. However, for more general choices of
initial conditions the solution Asint + Bcost is periodic: the position
and angular velocity of the solution is the same at time ¢t and time
t+2m. This is called periodic motion with period 27 and corresponds to
the simple periodic oscillations of the pendulum. By complicating the
equation a little we can get examples of more complicated dynamics.
For example, if

d%6
m = a(1 — w?) coswt, (1.3)
with w # %1, then solutions are
0(t) = Asint + Bcost + acoswt. (1.4)

Is this solution periodic? The first two terms are periodic with period 2w
and the third term is periodic with period 2—:— The solution is periodic
if there exists a time T such that both 6(0) = 6(T) and %(0) = 4(T),
i.e. if T is a multiple of both 2r and 2—-:,' So solutions are periodic if
there exist integers p and ¢ such that 2nq = 1—:2 orw = 5, a rational
number. If w is irrational then we say that the solution is quasi-periodic
with two independent frequencies. Although the solution is not periodic
it does have a regular structure (see Fig. 1.2).

One of the most exciting developments in the recent theory of differen-
tial equations is the discovery that relatively simple differential equations
can have solutions which are much more complicated than these peri-
odic and quasi-periodic solutions. Very roughly, a differential equation
is said to be chaotic if there are bounded solutions which are neither
periodic nor quasi-periodic and which diverge from each other locally.
The existence of chaotic solutions has had a profound effect on thinking
in many disciplines. One immediate corollary of the local divergence
of nearby solutions is that one loses predictive power in practical situ-
ations. The solutions of differential equations are deterministic in the
sense that if the initial conditions are precisely specified then the solu-
tion is completely determined and so, in principle, we should be able
to predict the value of the solution at some later time. Of course, in
practice the initial condition can only be known to some finite precision
and so if the equation is chaotic we rapidly lose information about the
system since our solution through the approximate initial condition does
not stay close to the desired solution. In experiments this can manifest
itself in an apparent unrepeatability of the results: many physicists have
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Fig. 1.2 Time series for differential equations. (a) No motion; (b) periodic
motion; (c) quasi-periodic motion; (d) possibly chaotic motion.

dusted off experiments which were rejected in the 1960s on the grounds
that results were not repeatable. At the time it was assumed that there
was some sort of background noise or random fluctuation which had
not been eliminated, but these are now recognised as being examples
of chaotic behaviour. The results are repeatable, but only if looked at
from the right point of view. A useful example is the pinball machine:
imagine trying to reproduce a sequence of scores! Yet there is no ran-
dom element, it is all just Newton’s laws in action (assuming that the
table is not being jiggled overvigorously). The source of this complexity
lies in the rounded buffers: small differences in the trajectory of the
ball are magnified each time the ball strikes a buffer. Another, more
mathematical, example is the difference equation

Z,,y = 10z, (mod 1). (1.5)

Given an initial number, z,, with decimal expansion 0.ay0,a,..., this
difference equation generates a new number z; = 0.a,a,0a3 ... which gen-
erates a new number z, and so on. Now consider the sequence (z;);5o-
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1 Introduction 5

We say the sequence is eventually periodic of period p if z,, = z,,,
for all n > N. Since z,, is obtained from z,_; by simply deleting the
first term in the decimal expansion of the number we can see that every
rational number is eventually periodic, since the decimal expansion of a
rational number is eventually periodic, and every irrational number is
aperiodic. Furthermore, suppose you wanted to predict the motion of a
given point on the interval but the number is only known to a finite pre-
cision (7 decimal places, say). Then you would know z, to six decimal
places, z, to five decimal places, z; to four decimal places, z, to three
decimal places . ..and z, could be anywhere! This illustrates the loss in
predictive power which also seems to be at work in weather forecasting
and many other situations.

We will now begin to describe the framework which will be the basis
of this book. A differential equation is an equation of the form

drz dx iz
%—F(t,l‘,a,...,a—tﬁ) (1.6)

and (modulo some technical assumptions described in Section 1.2) these
equations have solutions given some set of initial conditions at t = ¢,

dz d~lz
z(te) = c1, 25 (t) = €2r-- s Zmmy (o) = Cu- (1.7)
Throughout this book we shall choose to consider differential equations
in the form
y=f(y,t), yeR", f:R"xR - R", (1.8)

where the dot denotes differentiation with respect to time. We shall
not be overly concerned about optimal smoothness conditions on f for
results to hold, but will assume that f is sufficiently smooth for the
Taylor expansions and other techniques used to be valid. Note that any
equation of the form (1.6) can be rewritten as (1.8) by setting

dkz
ik = Ykt (1.9)
for 0 < k < n —1, in which case
Uk =Ygprr 1Sk<n-—1 (1.10a)
Un =F(ty1:- 1 9,) (1.10b)

ie. ify=(y1,¥2..-,Y,) and
F@w.t) =W Y F(& Y15+ 1Y)
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6 1 Introduction

then y = f(y,t). The number n is called the order of the differential
equation, and an n** order differential equation needs n initial conditions
to specify a solution. These can be thought of as the n constants which
arise in the n integrations required to solve the equation.

A particularly simple example, which can be solved in general, is the
linear differential equation

where A is an n X n matrix with constant coefficients. If the initial
condition at ¢ = 0 is y, then this equation has solutions

y = ety,. (1.12)

So provided we understand the exponential of a matrix we can solve
this differential equation exactly. Unfortunately, these are about the
only equations which can be solved exactly, and bitter experience has
taught scientists that the world is not linear. Hence, to understand more
complicated (nonlinear) models we must learn how to treat nonlinear
equations which we are unable to solve. Before doing this we should
think a little harder about what it means to solve a differential equation.

1.1 Solving differential equations

Let’s start with a simple example and see how some of the standard
techniques for solving differential equations work. Consider the equation

E+z=0 (1.13)

with initial conditions z(0) = e and £(0) = b. This equation should
be familiar; it is the equation for simple harmonic motion, (1.2), with
solution

z(t) = acost + bsint. (1.14)

This solution is meaningless unless the properties of the functions sine
and cosine of ¢ are well known, which, of course, they are. So, how did
we solve this equation? We shall sketch three different methods, at least
one of which is, I hope, familiar to you.
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1.1 Solving differential equations 7

Method 1

Note that if we set y = & then (1.13) becomes

t\ _ (0 1 T
(5)-(50)()
with initial conditions £(0) = a and y(0) = b. In matrix notation with
w = (z,y)T and the matrix on the righthand side of this equation de-
noted by A, this becomes @ = Aw, with w(0) = (a,b). As pointed out
in the preamble to this chapter, in equation (1.12), this has solutions

exp(tA)w(0) and so we need to calculate the matrix exp(tA), which we
do by means of the series definition

o t" A"
exp(tA) = Z —

k=0

It is a simple exercise to show that

A% ((—;)n (—?l)") and AZPH! = ((_1())1;+1 (—;)")

and so

(S X, e (-1)7(2n 4 1))
ww4) = (2 B sy )’

which we recognise as being series solutions for sine and cosine of ¢ to
give
cost sint
tA) = .
exp(t4) (—sint cost)

Hence z(t) = acost + bsint and y(t) = —asint + bcost.

Method 2

Try a trial solution of the form = e® and solve for c. Then note that
since (1.13) is linear, if x; and z, are independent solutions then the
general solution is a sum of z, and z,. Substituting z = e°* into the
differential equation gives (c? + 1)e® = 0 so ¢ = %i. The solution is
therefore z(t) = ¢, + cpe™* where the complex coefficients ¢, and ¢,
are determined from the initial conditions.
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8 1 Introduction

Method 8

Note that the differential equation can be written as

(5+) (5-1)==o0

Set v(t) = (& ~ i)z so
d . .\, _ —it 4 ity _
(dt-%-z)v-—Oore dt(ve)—O.

Hence ve® = ¢;, or v = c;e~*. Now replace v by the definition of v in
terms of & and solve another linear first order differential equation to
obtain z as a sum of e as in method 2.

In all three methods we have assumed and used properties of the
exponential function and of sine and cosine in order to solve integrals or
guess solutions. But what happens if the differential equation is more
complicated and, in particular, if it is nonlinear? As an example consider

i+z—23=0. (1.15)

It does not take much effort to see that none of the methods described
above can be applied to this equation; in all cases we are either unable
to start or end up with integrals that we cannot solve. Nonetheless
these equations do have solutions (snoidal functions, which are defined
in terms of elliptic integrals). So, if you knew about elliptic functions
you could solve the differential equation (i.e. write down the solution in
terms of these functions). To what extent is this useful? Old fashioned
books of mathematical functions will often have elliptic functions in
tabulated form, so in principle it would be possible to find the solution
at a given time approximately using these. There are also formulae for
these functions which are valid in particular regimes. However, because
we are not familiar with these functions the closed form solution is not,
on its own, very helpful.
As a further example consider

i+z+z34+2"=0. (1.16)

Once again, these have solutions given initial values of x and & although
to the best of my knowledge they are not tabulated anywhere. So,
instead of writing this book I could define the solutions of these equations
to be the functions Gi(t) (Gl for Glendinning, perhaps) and write a
book exploring the properties of these functions and giving tabulated
approximations. I fear that such a book would bring me neither fame nor
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1.1 Solving differential equations 9

fortune. The problem is that the functions would not have sufficiently
wide application to be interesting and, as we shall see, many properties
of solutions can be deduced without resorting to the tiresome exercise
of solving the differential equation either numerically or in certain limits
to obtain approximations to exact solutions.

Let us pause to take stock for a minute. I hope that these examples
illustrate the point that closed form solutions are not always possible to
find, and that even when they can be found they may not be particularly
useful. This suggests that we need an alternative way of looking at the
solutions of differential equations. To develop this possibility we need
to be clear about what we consider to be the truly important feature of
solutions. Perhaps the most important feature of the linear differential
equation # + z = 0 is that all solutions are periodic; that is, they repeat
themselves after each period of 2w (we can see this from the 27 peri-
odicity of the functions sine and cosine). There is one special case. If
the initial condition is (a,b) = (0,0) then z = 0 for all time. Hence the
qualitatively useful information which we deduce from the exact solu-
tions is that if « and & are initially both zero then they remain zero for
all time (this is called a stationary point) whilst otherwise the solutions
are periodic. Since we don’t know enough about elliptic functions or
Glendinning functions we cannot say what we might consider to be im-
portant for the other two examples. It may seem reasonable to look at
the asymptotic behaviour, i.e. what happens as t — co and see whether
we can understand that motion in some way. For example, if a solution
to some equation gives z(t) = 3/(2 + zye*t) then, as t — oo, z tends to
the constant value 3/2, and the way in which it approaches this constant
value is, for many purposes, less important than the fact that for large
enough values of ¢ the solution is arbitrarily close to 3/2. Thus we might
transfer attention from the exact solution to having a general picture of
the type of behaviour observed after some time has elapsed.

Another way of looking at the equations described above is to multiply
through by & and note that (by the chain rule)

d . d
Ez(%:i:z) =% and a(%mn) =gz™ 1,
Hence for the linear equation of simple harmonic motion we find

(& +2) =0 = %(%@2 +122). (1.17)

Therefore we can integrate once to obtain

132+ 12 =C (1.18)
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10 1 Introduction

for some positive constant C' which depends upon the initial conditions.
This implies that solutions plotted in the (z,£) plane lie on concentric
circles centred at the origin as shown in Figure 1.3a, which is called a
phase portrait or phase space diagram of the system. These concentric
circles represent the periodic solutions, and the arrows on the curves
indicate the direction of time. The arrows of time can easily be deduced
by noting that the equation can be written as £ = y, y = —z and so
£>0iny>0and £ <0 in y < 0. Hence the z coordinate increases on
solutions when y > 0, and z decreases when y < 0. In this description
then, we have lost the precise parametrization by time, but we retain
the important geometric information that solutions lie on closed curves
(periodic orbits) unless C = 0, which gives the single point at the origin.
Note that we could go on (Method 4) to solve for the solution explicitly
by solving

z—:=\/20—x2, C >0,

that is,

z(t) dz t
/mo o= /0 dr, (1.19)
which can be solved without a great deal of sophistication. However, this
final step is, at least to some extent, unnecessary, since we have already
been able to deduce the important features of the solutions from the
structure of solution curves in the (z, %) plane.

The function %:i:z + %:1:2 is called a first integral of the problem, and
it is (again, unfortunately) rare to be able to obtain first integrals with
such ease. However, both the nonlinear examples of this section can be
approached in this way. Multiplying # + z — 2% = 0 by % gives

and so solutions lie on the curves
122+ 12— 22t =C (1.20)

in the (z, £) plane. These are sketched in Figure 1.3b, from which we see
immediately that there is a bounded family of periodic solutions about
the origin, and a family of unbounded solutions. We shall describe the
limiting solutions which separate these two families of solutions later on.
If we wanted to give the complete solution of these equations we would
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