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Chapter 0

PRELIMINARIES

This introductory chapter provides a brief survey of basic concepts
and facts from the theory of varieties of group representations which will
be necessary for reading the main body of the book. The presentation is
concise but, in general, self-contained: only a few standard and routine
proofs are omitted. For a more detailed exposition of the foundations of the

theory the interested reader is referred to Chapter 1 of [80].

0.1. Representations

Let K be an arbitrary but fixed commutative ring with unit which will
usually be referred to as the ground ring. Consider a linear representation of
a group G on a (left unitary) K-module V, that is, a group homomorphism
p: G — AutgV. We suppose that elements of AutxV act on V on the
right; then, denoting foranyv € V, g € G

vog=uv p(g),

we obtain an action of G on V,ie. amap (v,g) —vogfromV xGtoV
satisfying the following conditions:

(i) for every g € G the map v — v o g is an automorphism of V;

(i) (vog1)ogz =vo(g192) for every v € V, g1,92 € G.
Conversely, suppose there is given an action o of a group G on a K-module
V. Denoting for every g € G the map v — vog by p(g), we evidently obtain

a representation p: G — Aut V.
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2 0. PRELIMINARIES

Thus from the standpoint of many-sorted universal algebra, a represen-
tation of a group over K can be treated as a two-sorted algebraic structure
(V,G,0), where V is a K-module, G a group, and o an action of G on V.
We will not adopt this standpoint in the present book, although it might
be useful to keep it in mind, at least with respect to possible analogies,
perspectives and generalizations.

Throughout these notes, a representation p : G — AutV is usually
denoted by p = (V, G); V is the module and G is the acting group of p. If p =
(V,G) is a representation, then its kernel Kerp = Ker(V,G) is the kernel
of the corresponding homomorphism p : G — AutV; p is called faithful if
Kerp = {1}. In this case G can be considered as a subgroup of AutV.
A representation p = (V,G) is called trivial , or a unit representation, if
Kerp = G. If V = {0}, then p is said to be a zero representation.

In general,let p = (V, G) be an arbitrary representation and H = Ker p.
Then the group G/H = G acts on V by the rule vogH = vog. We obtain a
representation 5 = (V,G) which is certainly faithful; it is called the faithful
tmage of p .

The group algebra of G over K is denoted by KG. The group G
acts on KG by right multiplication giving the (right) regular representation
(KG,G) which is denoted by RegrG. If p = (V,G) is any representation,
then the action of G on V induces the action of KG on V by the natural
rule: for arbitrary v € V and v = > A\ig: € KG

vou:Z/\i(vogi).

Therefore V' can be regarded as a right KG-module (when it is clear from
the context, we often say “G-module” instead of “K G-module”). Con-
versely, a K G-module structure on V determines an action of G on V, i.e.
a representation (V, G).

Let p = (V,G) and o = (W, H) be arbitrary representations over K.
A homomorphism p : p — o i1s a pair consisting of a homomorphism of
K-modules p : V — W and a homomorphism of groups p : G — H (it is

convenient to denote both these maps by a single letter) such that

YveV,g€G: (vog)h =v"ogh (1)
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0.1. REPRESENTATIONS 3

The class of all group representations over K together with all homomor-
phisms forms a category denoted by REP-K. It is easy to verify that a
homomorphism g : (V,G) — (W, H) is a monomorphism (epimorphism,
isomorphism) in REP-K if and only if both g : V — W and ¢ : G — H are
monomorphisms (epimorphisms, isomorphisms). If p = (V, @) is a represen-
tation, H a subgroup of G and W an H-submodule of V, then there natu-
rally arises a representation (W, H) called a subrepresentation of p. Clearly
o is a subrepresentation of p if and only if there exists a monomorphism
T — p.

Let p: (V,G) — (W, H) be a homomorphism and let Vp = Ker(V —
W), Gy = Ker(G — H). It is easy to see that (V;,Gy) is subrepresentation
of (V,G), and that the following conditions are satisfied:

(i) Go«@G ;

(ii) Vp is a Gy-submodule of V;

(iii) the induced action of G¢ on V/V; is trivial.

The subrepresentation (Vg, Gy) is said to be the kernel of the homomorphism
4 and is denoted by Ker .

On the other hand, let pg = (Vg,Go) be a subrepresentation of p =
(V,G) satisfying (i)-(iii). Then the group G/Gq acts on the module V/Vj
by the rule

(v+Vo)o(gGe) =vog+T,

and we obtain a factor-representation p/py = (V/Vy,G/Gg). There exists
a canonical epimorphism & : p — p/po whose kernel is pg, and usual ar-
guments show that every epimorphic image of p can be realized in such a
way.

A homomorphism p : (V,G) —» (W, H) is called right if u : V —
W is an isomorphism. Up to isomorphism, we may assume that a right
homomorphism acts identically on the left side of the representation. For
example, the canonical epimorphism of a representation p = (V,G) on its
faithful image p = (V, G/Ker p) is a right epimorphism. Furthermore, it is
clear that every right epimorphic image of p is isomorphic to some factor-
representation (V,G/H) where H C Ker p. Hence the faithful image of any
representation is its “smallest” right epimorphic image.

Two representations are said to be egquivalent if their faithful images
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4 0. PRELIMINARIES

are isomorphic. The fact that representations p and ¢ are isomorphic or

equivalent is denoted by p ~ o or p ~ ¢ respectively. In this notation
p~o = px7b.

Note. In the classical theory of group representations, two representa-
tions (V, G) and (W, G) of a fized group G are called equivalent if there exists
an isomorphism g : V — W such that (vog)* =v#ogforallve V,g e G
(cf. (1)) . In the category REP-K of representations of arbitrary groups
this notion becomes a particular case of isomorphism, and is not very use-
ful. The definition of equivalent representations adopted in these notes is
motivated by the following observation: any two representations with iso-
morphic faithful images originate from the same faithful representation, i.e.
from the same action. Therefore, as far as one is concerned with abstract
properties of group actions, two representations with isomorphic faithful

images should be treated as “equivalent” in some natural sense.

Let p; = (Vi, G}), © € I, be arbitrary representations. Denote by V =
ﬁVi the Cartesian product of the K-modules V; and by G = ﬁGi the
Cartesian product of the groups G;. Then G acts on V componentwise and
so there arises a representation (V, @) which is called the Cartesian product
of the representations p; and is denoted by ﬁpi. It is easy to see that p is the
product of the objects p; in the category REP-K. On the other hand, if we
take the (restricted!) direct sum of modules € V; and the direct product
of groups [] G;, then the naturally arising representation (€ V;,[[ G:) is
called the direct product of the p;’s and is denoted by [] p:.

An operation on classes of group representations is a function U assign-

ing to every class X of representations a class UX such that
XCUx Ccuy

whenever X C ). The product of operations is defined by the natural rule

(UV)X = U(VX). An operation U is called a closure operation if U? = U;

in this case the class UX is U-closed for every X, that is U(UX) = UX.
From now on we fix the notation of several closure operations. Namely,

if X is an arbitrary class of representations, then:
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0.2. IDENTITIES AND VARIETIES 5

SX is the class of all subrepresentations of X-representations (i.e. of
representations from X');

QX is the class of all homomorphic images of X'-representations;

CX is the class of Cartesian products of X-representations;

DX (DoX) is the class of direct products (of a finite number) of X-
representations;

VX is the class of all representations p such that there exists a right
epimorphic image of p belonging to X.

0.2. Identities and varieties

THE MAIN CONCEPTS AND EXAMPLES. Let F be the absolutely free
group of countable rank with free generators z1,z2,..., KF its group al-
gebra over the ground ring K, and u(z1,...,zn) = > Aifi(#1,...,2,) an
element of K F. Suppose there is given a representation p = (V,G) over K.
f g1,...,9n € G then u(g1,...,9n), being an element of the group algebra
K@, acts naturally on V. We say that the formula

you(zy,...,2,) =0
is an identity of the representation p if

vou(gi,...,gn) =0

foranyv € V and g1,...,9, € G. For brevity, the element v = u(z1,...,2,)
is also said to be an identity of p. In other words, u € K F is an identity of
p = (V,G) i, for arbitrary ¢1,...,9n € G,

u(p(g1),---,p0(gn)) =0

in EndgV. If X is a class of representations, then v € KF is called an

identity of X if it is an identity of every representation from X.

0.2.1. Definition. A4 class of group representations is called a variety

if 1t consists of all representations satisfying a certain set of identities.
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6 0. PRELIMINARIES

A two-sided ideal of the group algebra K F' is said to be fully invariant
(or completely invariant, or verbal), if it is invariant under all endomor-
phisms of KF induced by endomorphisms of the group F. Note that a
fully invariant ideal need not be invariant under all endomorphisms of the
K-algebra K F. For example, let A be the augmentation ideal of K F, that
is, the ideal generated by all elements f — 1, f € F. Clearly it is fully
invariant. On the other hand, A is not invariant under any endomorphism
of K F taking a free generator z; to an invertible element A # 1 of K.

The significance of fully invariant ideals for our theory is illustrated by
the following theorem. For every class of representations X denote by X“
the set of all its identities in K F. Conversely, for every subset U of K F
denote by U? the class of all representations satisfying the identities from
this subset.

0.2.2. Theorem. The maps a and B determine a Galois correspon-
dence between classes of group representations and subsets of KF. The
closed elements under this correspondence are precisely the varieties of group

representations over K and the fully invariant ideals of KF.

Proof. It is evident that the maps « and 3 satisfy the following con-
ditions:

(i) X1 CA, => XD XS, Uy CU, = UPDUP

Gyx**>x, UPrDU.
This exactly means that the maps a and 8 determine a Galois correspon-
dence (see for example {12, Ch.2, §1]). From general properties of Galois
correspondences, it follows that a class of representations X is closed (i.e.
X = X*P) if and only if X = U® for some U C KF. Similarly, a subset
U of KF is closed (i.e. U = UP?)if and only if U = X* for some class
of representations X. Furthermore, if we restrict the maps a and 8 to the
systems of closed elements, they will be one-to-one and mutually inverse.

We now prove the second assertion of the theorem. By definition, a
class of representations X is a variety if and only if X = U? for some
U € KF. Hence varieties and closed classes are just the same.

Let U be a closed subset in KF. Then U = X for some class X, that
is, U is the set of all identities of X. It is easy to see that such a set must
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0.2. IDENTITIES AND VARIETIES 7

be a fully invariant ideal of K F. Conversely, suppose I is a fully invariant
ideal of KF and prove that it is closed, that is I#® = I. Consider first the
regular representation Reg F' = (K F, F) of F and its factor-representation
¢ = (KF/I,F). We will show that the set of all identities of the latter
coincides with I.

Let u(z1,...,zn) € I. Since I is fully invariant, for any fi,...,f. €
F we have u(f1,...,fn) € I, and so u(fi,..., fn) annihilates the module
KF/I. Hence u(z1,...,z,) is an identity of the representation ¢. On the
other hand, let u(z1,...,2,) be an identity of § = (KF/I,F). Take in
KF/I the element 1 + I; since

0=(1+IDou(z1,...,2n) = v(T1,...,2n) + I,

we see that u(zy,...,z,) must belong to I.

In particular, we have ¢ € I?. Let now u € I?*. This means that u is
an identity of the class I?, so it is satisfied in ¢. By the above, u € I. Thus
I=If O

For any variety X of group representations, the ideal X* of its identities
is denoted by Id X. By Theorem 0.2.2, the map X +— Id X is a bijection
between the varieties of group representations over K and the fully invariant
ideals of K F'. The set of varieties of group representations over K is denoted
by M(K). In view of the preceding remark, the behavior of this set is
controlled by the free group algebra K F.

Examples. 1. The class S of all trivial representations (recall that a
representation p = (V,G) is called trivial if each ¢ € G acts identically on

V') is a variety, for it can be determined by a single identity
yo(z—-1)=0.
It is easy to see that the ideal Id S of identities of S is precisely the aug-

mentation ideal A of K F'.

2. A representation p = (V,G) is called stable of class n, or simply
n-stable (this terminology goes back to Kaloujnine [38]) if there is a series
of G-modules

0=A4,C4 C...C4,=V
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8 0. PRELIMINARIES

such that G acts trivially on every factor A;41/4;.% A typical example of
an n-stable representation is the representation ut,(K) = (K*,UT,(K))
where K™ is the free K-module of rank » and UT,,(K) is the unitriangular
matrix group of degree n over K acting on K™ in the natural way. The
class 8™ of all n-stable representations is a variety because it is determined
by the identity

yo{zs —1)}{wz —1)...(zn—1)=0.

A straightforward verification shows that 1d(S™) = A™.

3. A representation is said to be n-unipotent if it satisfies the identity
yo(z—1)"=0.

The variety of all n-unipotent representations is denoted by U,,. Evidently
8™ C U,. On the other hand, suppose that K is a field, then a classical
theorem of Kolchin [42] states that if a finite-dimensional representation
p = (V,G) is unipotent, then it is stable (there is no need to speak here
about the class of stability and the class of unipotency because they both can
be chosen to coincide with dim V). In other words, in the finite-dimensional
case stable representations and unipotent representations are exactly the
same.

The Kolchin Theorem led naturally to the problem of whether every
(not necessarily finite-dimensional) unipotent representation over a field is
stable, i.e. whether U, C SV for some N = N(n). If the ground field K
is of prime characteristic, a negative answer can be obtained immediately.
But for char K = 0 the problem has remained unsolved for about 35 years.

We will return to this question in § 1.6.

4. For any variety of groups © denote by w® the class of all represen-
tations p = (V, @) such that G/Kerp € ©. This class is a variety because if
© is determined by a set of group identities {f;}, then w® is determined by
the set {f; —1}. Note that the map © — w0 is injective, for if G € O \ O,
then it is clear that RegG = (KG,F) € wO; \ wO;. Thus there exists a

1The word “stable” is overused in today’s mathematics and, probably, is not optimal
here. But this term is already quite common in the field, so we decided not to change it.
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0.2. IDENTITIES AND VARIETIES 9

natural embedding of the set of varieties of groups into the set M(K). The
varieties of group representations of the form w® will be sometimes called
the varieties of group type.

It is not hard to identify the ideal Id(w®) of identities of w®. It is
generated, as a right ideal, by all f — 1, where f belongs to the ©-verbal
subgroup ©(F) of F. Equivalently, Id(w®) is the kernel of the natural
epimorphism KF — K[F/O(F)l.

5. This example complements the preceding one and demonstrates
that there is an essential difference between identities of abstract groups and
identities of their representations. Take the special linear group SL2(K) over
a field K of characteristic zero. Since SLy(K) contains free nonabelian sub-
groups, it has no nontrivial group identities. Therefore from the standpoint
of group identities the classical group SLy(K) is not an “interesting” object.
Consider now another classical object: the canonical two-dimensional repre-
sentation sl(K) = (K?%,SLy(K)). This representation has many interesting

identities, for example, an elementary verification shows that
(21 + 27" )22 — 22(21 +277) (1

is an identity of sl(K).2

A similar phenomenon is valid for other classical matrix groups over
an infinite field: as abstract groups, they usually have no nontrivial identi-
ties, while their canonical representations certainly do (for instance, by the
Amitsur-Levitzki Theorem, every n-dimensional representation satisfies the

so-called standard polynomial identity of degree 2n).

6. Evidently the class O of all representations over K and the class £
of all zero representations are varieties; they are called trivial varieties. The

corresponding fully invariant ideals in KF are {0} and K F respectively.

0.2.3. Proposition. If K is a field, then every proper (i.e. # KF)
fully invariant ideal of K F is contained in the augmentation ideal A.

ZMoreover, it was proved in [51] that every identity of sl;(K) is a consequence of

(1).
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10 0. PRELIMINARIES

Proof. Let I be such an ideal and u(zy,...,z,) = Y, Xifi(z1,...,245)

an element from I. Since I is completely invariant,

u(ly.es1) = > Nifi(L,.., 1) =) N €EL

If >>A; # 0, then 1 € I, that is I = KF, which is impossible. Hence
>Ai=0,andso I CA. O

Equivalently: Every nonzero (i.\e. # &) variety of group representa-

tions over a field contains S.

Let X be a variety and p = (V, G) an arbitrary representation. It is easy
to see that if A; (¢ € I) are G-submodules of V' such that the corresponding
factor-representations (V/A;, G) belong to X, then (V/ N A;, G) belongs to
X as well. Therefore there exists the smallest G-submodule 4 of V such that
(V/A,G) € X. This submodule is called the X -verbal of p and is denoted
by X*(p) = X*(V,G).

0.2.4. Lemma. Let X be a variety. Then the following assertions are
valid:

() If p =1 pi, then X*(p) = [T X*(p:).

(it) If p C o, then X*(p) C X*(0).

(ili) If p : p — o is a homomorphism, then X™*(p*) = (X*(p))*.

Proof isroutine. For example, let us prove the last assertion. Recall
that two representations are said to be equivalent (see Section 0.1) if their
faithful images are isomorphic. It is evident that every representation has
the same identities as its faithful image, and therefore if a representation ¢
belongs to a variety X, then all representations equivalent to ¢ belong to X
as well.

Now let p = (V,G), o = (W, H), and let u : p — o be an epimorphism.
Denote X*(p) = A and X*(g) = B. We will show that A* = B. Note first

that the epimorphism p induces an epimorphism of factor-representations

(V/A,G) — (W/A*, H).
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