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Over the last few years, Arthur has formulated some extremely precise
conjectures generalising Jacquet’s conjectures for GL(n), on the descrip-
tion of square integrable automorphic forms (see [J], [A2], [A3], [A4]).
The origin of these conjectures can be found in his work on the trace
formula and their point of departure goes back to Langlands’ work (see
Arthur’s Corvallis talk [Al]). It is probable that the full force of the
constructions of these automorphic forms as residues of Eisenstein series
has not been exploited. It is thus important to fully understand the
basic book [L}]; this was our main motivation. Since Langlands wrote
the material of [L] (around 1967), several authors have already given
personal presentations (Godement [G], Harish-Chandra [HC], Osborne-
Warner [OW]). Morris extended Langlands’ results to the function field
case ([M1] and [M2]).

The following notes are a reworking of the book [L] and an ameliorated
(and unified) version of talks which we gave in the ‘automorphic’ seminar
(Paris 7/ENS). A seminar cannot exist without critical auditors: we wish
to thank P. Barrat, J.-P. Labesse, P. Perrin (who also gave some talks
on this subject), A.-M. Aubert, C. Blondel, L. Clozel, G. Henniart, G.
Laumon (for whom the goal of the seminar was to render entirely obscure
what was already not particularly clear), M.-F. Vignéras and D. Wigner.
We also thank Y. Colin de Verdiéres who gave a talk on his proof of the
meromorphic continuation of Eisenstein series [C], K. Lai for his remarks
on a first version of the manuscript, P. Deligne who communicated to us
the proof of Appendix I and finally, most particularly, H. Jacquet who
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explained to us the proof of the meromorphic continuation of Eisenstein
series given in Chapter IV.
Here is a more precise description of the different chapters.

The first chapter is a general discussion of automorphic forms and
their constant terms. Our goal is not to give a complete description of
their properties, but only to formulate these properties in the framework
which we need, with particular emphasis on those properties resulting
from the principle according to which an automorphic form is determined
by its constant terms. In particular, we use without proof some results of
reduction theory and of the theory of cuspidal automorphic forms. We
are mainly inspired by Harish-Chandra [HC], Godement [G], Borel and
Jacquet [BJ]} and of course Langlands [L], Chapters 1, 2, 3 and 5.

Let k be a global field, G a connected reductive group defined over k,
G(A) the group of its adelic points. We take a group G which is a finite
central covering of G(A) in which the group G(k) of rational points lifts
to a group also denoted by G(k). This framework allows us to include
the metaplectic groups. After a long paragraph devoted to the properties
of these objects, we introduce the notion of constant term of a function
on G(kN\G: let P = MU be a standard parabolic subgroup of G and
let ¢ be a function, let us say continuous, on G(k)\G; its constant term
along P is the function ¢p on U(A)M(k)\G defined by

$r(g) = / Plug)du,
URN\UA)

see 1.2.6. We explain how a function with moderate growth can be
approximated by a linear combination of its constant terms along the
different standard parabolic subgroups of G (see 1.2.7 to 1.2.16; the
paragraphs 1.2.13 to 1.2.16 come from [A2]). We then introduce the
notions of automorphic form and cuspidal automorphic form on G(k)\G,
or more generally on U(A)M(k)\G, P = MU being a standard parabolic
subgroup, see 1.2.17, 1.2.18.

Suppose for a moment that the center Zg of G is trivial, and let
¢ be an automorphic form on G(k)\G. We easily define the ‘cuspidal
component’ of ¢: it is the unique cuspidal automorphic form ¢? on
G(k)\G such that

{0, §*P) = (o, &)

for every cuspidal automorphic form ¢, where we have set

(0. 6) = / Fo(2)b(e)dz.
GkN\G

This definition extends to the case of an arbitrary group G and an
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automorphic form on U(A)M(kNG, see 12,18 and [L], p. 55 In
particular, if ¢ is an automorphic form on G(k)\G, we define the cuspidal
component ¢35 of the constant term of ¢ along P. When P runs
through the standard parabolic subgroups, these functions determine ¢
(Proposition 1.3.4, [L] Lemma 3.7).

Let P = MU be a standard parabolic subgroup and n an irredu-
cible cuspidal automorphic representation of M (:= the inverse image of
M(A) € G). We define the space AO(U(A)M (k)\G)n of cuspidal forms
of type = on U(A)M(k)\G, see 1.3.3.

Denote by Rat(M) the group of rational characters of M,
M) = () Kerlyl
1€Rat(M)

and by M! its inverse image in G. The abelian group M/M! is a real
finite-dimensional vector space if k is a number field, a finitely-generated
free Z-module if k is a function field. This allows us to define the space of
polynomials on M/M!, which we have reasons to denote by C[Re ap].
Such a polynomial defines a function on G, left invariant under M! U(A).

This being so, for = as above,
(1) C[Re ay] ®c 4o (U(B)M(K)\G),,
can be identified with a subspace of the space of cuspidal automorphic
forms on U(A)M(k)\G. This last is in fact the sum of these subspaces,
when 7 runs through all the irreducible cuspidal representations of M,
see 1.3.3.

This allows us to define the support of a cuspidal form ¢ as the smallest
set I1 of irreducible cuspidal representations of M such that ¢ belongs
to the sum of the spaces (1) for = € I1. In particular, if ¢ is automorphic
on G(k)\G, ¢5"F has a support which we denote by ITo(M, ¢).

Knowledge of this support, now as P runs through the standard
parabolic subgroups, determines upper bounds of the function ¢ (see
Lemma 1.4.1). Using arguments of [L], Lemmas 5.1 and 5.2, and an
argument of Waldschmidt (see Lemma 1.4.2), we obtain relatively precise
criteria for the convergence of a sequence of automorphic forms (Lemma
1.4.4) or for a function z — ¢, with values in the space of automorphic
forms (Lemma 1.4.10) to be holomorphic. These results are somewhat
stronger than those in Chapter 5 of [L]. Finally, if we suppose that ¢ has
a unitary central character, the fact that ¢ is or is not square integrable
(modulo Zg) can be read off the central characters of the elements of its
supports TIo(M, ¢) (see 1.4.11, [L] pp. 104 and 186).

In Chapter II, we introduce the basic objects, Eisenstein series and
what we call pseudo-Eisenstein seris (Godement calls them theta series

© Cambridge University Press www.cambridge.org
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and Langlands does not really call them by any precise name); they
are in fact integrals of Eisenstein series: their properties which we use
are proved in Chapter 4 of [L]. These objects have become classical
and we were largely inspired by Godement’s Bourbaki talk presenting
Langlands’ work. They depend first and foremost on the given standard
Levi subgroup M of G whose inverse image in G we denote by M. We
denote by X§ the set of (continuous) characters of M trivial on M! (see
above) and on the centre of G (a precise description of this group is
given in 1.3; if k is a number field, X$ is naturally a vector subspace of
Rat M ®z €). They also depend on an orbit of X$ in the set of (not
indispensably) irreducible automorphic subrepresentations of M, denoted
by B, ie. P is of the form:

Pi={A®m, 1€ X7},

where 7y is a representation of M into the space of automorphic forms
on M. Finally, they depend on sections of the fibre bundle over P
whose fibre over a point n of P is the space of automorphic forms on
MK)U(ANG of type = (see 11.1.1) (where U is the unipotent radical of
the standard parabolic of Levi M).

Note that if k is a number field, it is possible to fix my canonically
(requiring it to have a central character which is trivial on a subtorus
(in the sense of Lie groups) of M which is a supplementary of ZgM!).
Thus, in this case, we obtain a canonical identification of Xﬁ with B,
and the fibre bundle which interests us is canonically isomorphic to the
trivial fibre bundle on X$ whose fibre is the space of automorphic forms
on M(k)U(B)\G of type ng. On the other hand, if k is a function field,
there is in general no canonical choice of my and the fibre bundle which
interests us is isomorphic to a principal fibre bundle over X/ FixXg B
of fibre the space of automorphic forms on M{(k)U(AN\G of type .

It is not difficult to equip X and B with structures of complex
analytic manifolds such that for any choice of 7y € B the map:

lGXﬁHl®n0€‘B

is holomorphic. We then easily define the notion of holomorphic, mero-
morphic, Paley-Wiener, etc. sections of the above fibre bundle. Let ¢ be
a section: we classically define an Eisenstein series depending on P by
setting, when the series converges absolutely,

E@gmg)= Y, 6 ¢®0g);
y'inP(kN\G(k)
closely following Godement, we give the classical sufficient conditions
which ensure the absolute and uniform convergence on all compact

© Cambridge University Press www.cambridge.org
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subsets of G, conditions on the absolute value of the central character
of ©, denoted by Re .

In what follows, we fix a unitary character of the centre of G, denoted
by &, and we suppose that 8 consists of cuspidal representations of M,
the restriction of whose central character to the centre of G is &, and
we consider only the sections ¢ as above with values in the space of
cuspidal automorphic forms on M(k)U(A)\G. We then say that (M, B)
is a cuspidal datum relative to £. For B satisfying these hypotheses and
for m € P, the character Re mentioned above is in fact an element of
X&. We can define the pseudo-Eisenstein series for (M, B) fixed as above
and for ¢ a Paley-Wiener section, by setting:

04 :=/n€‘18 E(¢,m)dm,
Re =Xy

where Ao is a very positive real element of X§. We check that 6, is
well-defined (i.e. that convergence of the integral does not depend on
the choice of 4y and that the integral is a rapidly decreasing function
on G(k)\G (with compact support if k is a function field). One of the
properties of pseudo-Eisenstein series is the following ‘density’ theorem
(see 11.1.12):

Let y be a function on G(k)\G on which the center of G acts via &, and
which is either slowly increasing or L* modulo the centre, such that:

/ P(8)0o()dg = 0,
ZGGHNG

for every pseudo-Eisenstein series (we obviously allow any cuspidal datum
relative to £ ). Then v = 0.

This result is in fact a more or less immediate consequence of Chapter
I. The second part of Chapter II is devoted to the calculation of the scalar
product of two pseudo-Eisenstein series. This calculation is standard: it
is done by calculating the constant terms of either Eisenstein series ([L],
4.6(i1)) or of pseudo-Eisenstein series. It is the second point of view which
we adopt (IL2.1). The calculation of the constant terms of Eisenstein
series is done in I1.1.7 and that of the constant terms of pseudo-Eisenstein
series in 11.2.2; these calculations are similar and are done in a relatively
general framework, already used by Arthur. The calculation of the
scalar product gives in particular the first orthogonal decomposition of
L*(G(k)\G); (see [L], 4.6(1)):
Let (M, ) and (M',B') be cuspidal data relative to &; we say that (M, )
is equivalent to (M', ') if there exists y € G(k) such that yMy™' = M’
and yB = P'. Let X be an equivalence class of cuspidal data: we denote by
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LX(G(k)\G)x the closure of the subspace of LA(G(k)\G); generated by the
pseudo-Eisenstein series 04 corresponding to all the elements of X. Then
if X, X' are two distinct equivalence classes, L>(G(k)\®)x is orthogonal to
LYG(k)\®)x and LY G(k)\G)¢ is the completion of the orthogonal sum
®xL*(G(k)\®)x where X runs through the set of equivalence classes of
cuspidal data.

In fact, for what follows and essentially to solve convergence problems
in the case where k is a number field, Langlands remarked that it is
too restrictive to work only with pseudo-Fisenstein series coming from
Paley-Wiener sections ¢. Following Langlands, we introduce the notions
of R-Paley-Wiener (see I1.1.4), and for R large enough, we define 0, as
above. We then show that 6, is still square integrable modulo the centre
(11.1.10): there are no major obstacles to calculating the constant terms
of 84 under this hypothesis or to extending the scalar product formula
to this situation. Thanks to the density theorem, we immediately see that
65 € LA(G(k)\G)x if ¢ is R-Paley-Wiener and is defined from a cuspidal
datum belonging to X.

Chapter I1I introduces an algebra of operators. Let X be an equivalence
class of cuspidal data. For (M,B) € X, let fy g be a function on P,
say with values in €, to simplify. If certain properties of growth, of
regularity and of invariance are satisfied, the family f = (farg)mpjex
determines an operator A(f) on L%(G(k)\G)x. In particular, if (M, ) € X
and ¢ is a Paley-Wiener function on B, we have A(f)f, = 0y, where
¢ = fupd. The space HR of these operators appears as a global
analogue of the centre of the enveloping algebra of ®,. In particular,
it contains an auto-adjoint operator which plays an essential role in
Chapter IV to eliminate questions about convergence at infinity and
whose introduction by Langlands is one of his subtlest contributions.

These operators allow us to decompose the space of automorphic
forms in the following way. Let h be a conjugacy class of pairs (M, )
where M is a standard Levi and 7 an irreducible cuspidal representation
of M. Let us denote by A(G(k)\G), the space of automorphic forms ¢
on G(k)\G such that the set consisting of pairs (M,n), where M is a
standard Levi and n € |Pip(M, ¢) is contained in 1. Then when we let
1 vary, the spaces A(G(k)\G), generate the space of automorphic forms
on G(k)\G (see I11.2.6).

The chapter ends with a statement reformulating Lemma 7.3 of [L],
according to which if ¢ is an automorphic form on G(k)\G, with unitary
central character and square integrable modulo Zg, the central characters
X~ of the elements 7 of the cuspidal supports ITo(M, ¢) are not arbitrary.
To state the result simply, suppose that G = G(A) and Z¢ = {1}. Denote
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by Ty the largest split torus contained in the centre of M. We show that
there exists an integer N(G), depending only on G as indicated by the
notation, such that for = as above, the restriction to Ta(&) of ()@
has positive real values.

In Chapter IV we prove that the Eisenstein series coming from a pair
(M, B) consisting of a standard Levi and an orbit of irreducible cuspidal
automorphic representations of M can be meromorphically continued to
all of P. This is also true for the intertwining operators. The proof was
communicated to us by Jacquet. He actually attributes it to Selberg. The
idea of this proof can also be found in [E].

We start with the case where M is a proper maximal Levi of G. The
principle of the proof can then be applied, via induction, to all of M.
Suppose thus that M is proper and maximal, and suppose to simplify
things that k is a number field and Stab(M, B) consists of two elements
1 and w. We first show that the truncated Eisenstein series AT E(¢, 7),
defined in a positive half-plane, are solutions of functional equations in
which only compact operators occur (Lemma IV.3.4). The usual theory
of resolvents of compact operators then allows us to construct a function
E which is meromorphic on (nearly) all of %, such that in a positive
half-plane, we have the equality:

(**) E(¢,n) = E(¢,7) + E(M(w, 1), wr),
where M(w, ) is the intertwining operator. But E itself satisfies a

functional equation which E does not satisfy. Applying this equation, we
deduce from (**) the equality

0 = R(¢, ) + R(IM(w, ), wr),
see IV.3.9. From this, we deduce by inversion the meromorphic continu-
ation of M(w,n). We then continue E(¢, ) by the equality (**).

Using the lemmas of 1.4 and the operators of Chapter III, we prove
diverse properties of the singularities of Eisenstein series and intertwining
operators. We also obtain the functional equations which in the above
situation can be written

E(¢,n) = E(M(w, %), wn)
M(w,wn)M(w,n) = 1.
Finally, we reproduce an argument of Harder ([H] 1.6.6) which shows that,
if k is a function field, the operators M(w, ) and the values E(¢,m)(g)
(for fixed g and suitable ¢) are rational functions of .

The objective of Chapters V and VI is to give the ‘spectral’ decompo-
sition of L%(G(k)\G)x where X is an equivalence class of cuspidal data
relative to the character & (see above). For these chapters, we follow
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practically word for word Chapter VII and Appendix II of Langlands.
Thus we fix X and for (M, P) € X, we define Sar,p) (see V.1.1) to be a set
of ‘affine subspaces’ of B which contains all the singular hyperplanes of
the intertwining operators:
- M(w™!, —WT)P(—wT),

where w is an element of the Weyl group of G of minimal length in its
right coset modulo the Weyl group of M and such that wMw™! is still
a standard Levi of G (we denote this set by W(M); it is evidently not a
group), —7 is the Hermitian contragredient of = and ¢ is a holomorphic
section of the fibre bundle over —w¥ which is the obvious analogue of
the one described above.

We suppose moreover that S, is stable under intersection and under
conjugation in the following sense:

Yw € W(M), WS(M,GB) = S(wa—l,wsB).

We set Sx = U pexSim,p)- Let ®', ®” € Sx; we say that & and 6" are
equivalent if ® € Sy gy, ©” € S gy wWith (M, '), (M",P") € X and
if there exists w € W(M’) such that w®' = &” (which also implies that
wM'w™! = M” and w' = P”). We denote by [Sx] the set of equivalence
classes. We note that Sy is a locally countable set and that it becomes
locally finite if we fix a finite number of K-types &, and we require that
the action on ¢ above be via one of these K-types. This is the point
of view of Langlands, which we have also adopted, following him, but
we do not develop it in this introduction in order to keep the notation
reasonable. The goal is to associate with every element € of [Sg] a closed
subspace of L*(G(k)\G)x, denoted by L?(G(k)\G)s and possibly zero,

such that

(1) L%(G(k)\G)g is orthogonal to L%(G(k)\G)s if € is different from
«,

(2) L*G(k)\G)zx is the completion of the orthogonal sum of the

L(G(k)\G)g,
the discrete spectrum of L*(G(k)\G)z is the completion of the
orthogonal sum of L?(G(k)\G)s when € consits of elements of
dimension 0, i.e. points.

These results from [L] do not have the abstract form given here, but
[L] gives at the same time a very explicit method for constructing the
orthogonal projection of L%(G(k)\G)x onto L*(G(k)\G)s. We denote this
projection by projg. For this, we describe projg 64 when ¢ is R-Paley-
Wiener. This projection is an integral of residues of Eisenstein series.
Thus there are several problems to solve:
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(a) These residues must be defined: we do this with, as our only tool,
the classical residue theorem generalised to several variables. For
us the definitions and the residue theorem form the object of V.1.5
and the description of the residues is in V.2.2. These residues are
denoted by Res$, E(¢,n) for &' € € and = € &'. (These references
correspond to [L], 7.1, which is more precise than V.1.5 as we
explain there, and to [L], proof of 7.7).

(b) The set over which we integrate must be defined: for this we fix
® € € (everything that follows is independent of this choice) and
we integrate over the imaginary axis of ® defined as follows: we
recall that Re ® := {Ren,n € ®} is an affine subspace (in the
usual sense) of Rat M ®z R; we write (Re ®)° for its vector part
and we set:

o(6G) = (Re )** NRe G,

where the orthogonal is taken for an invariant scalar product with
which we equip Rat M ®z IR. The imaginary axis is then:

{n € ® | Re n = 0o(®)}.

(¢) The function to be integrated must be defined: we must show that
it is holomorphic at every point of the set of integration and that
the integral converges in an appropriate sense. For the function, let
® be as above and (M, P) € € such that G € Sy 4): we take

{ne®|Rem=0(6G)}— Y (ResSsE($,n),_, =:*ec(¢,n),
weW (M)

where * is a suitable scalar.

The study of this integral is delicate in the number field case because
it does not seem to converge absolutely. Suppose thus that k is a number
field. We consider the operator A(fg) (see Chapter III) associated with
the function fo, element of HE, defined by fo(r) = (i, Az) Where 4, is the
unique element of Rat M ®z € such that A, ® nyp ~ 7 (g is the canonical
element of B) and where (,) is the C-linear continuation of an invariant
scalar product on Rat M ®z R. The spectrum of this operator is real,
and for a point of continuity T of this spectrum we write g7 for the
projection onto the spectral part greater than or equal to — 7. In fact we
begin by describing:

LAG(k\G)e N qrLHG(\G); =: LX(G(k)\G)g.r

which is neither more nor less than g7 L?(G(k)\G)g. For this, we give an
ad hoc definition ([L] first notation in 7.6 and V.2.3) of L*(G(k)\G)s 1 :
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we write projg ¢ for the orthogonal projection onto this space. We then
easily check that removing a subset of measure zero from

(**) {n€®|Ren=0(®) and | Im 1> < T + [o(®)]?},
the map = +— eg(¢, ), for a fixed, R-Paley-Wiener ¢, is holomorphic: we
write Ag, for the vector space generated as ¢ varies. Still removing a set

of measure zero, we show that Ag, is equipped with a Hilbertian scalar
product characterised by the formula:

{ec(p, ), ec(@, 7)) = (03, ec(d', 1)),
for every Paley-Wiener ¢ and R-Paley-Wiener ¢’ (see V.3.9 which is
‘greatly inspired’ by [L], 7.5).

We thus show that n — Ag, is a preHilbertian field which we easily
transform, by completion, into a Hilbertian field. We then have a
‘spectral’ description of L*(G(k)\G)g,r (see V.3.11), and it is with the
help of this description and simple arguments from linear algebra that
we show that 7 — eg(¢, 7) is holomorphic at every point of the set (**)
above (see [L], proof of 7.6 and V.3.11). It is then no longer very difficult
(see V.3.11) to prove the formula:

projg 1 0 =/ 2€6, Re 5—o(5) ec(p,m)dn.
1 Im A 12 <T+{o(6))?

We then prove that:
qrls = ) projgr by,
Ce[Sx)

almost all the terms which occur are zero since we are supposing that ¢
is K-finite in the definition of R-Paley-Wiener. For this, it is necessary to
compare, and thus in particular to compute, the scalar product of gr8,
and projgr 04 against all the pseudo-Eisenstein series (see V.2.9 and
V.3.4): this uses Corollary 1 of [L], 7.4, which becomes Lemmas V.2.10 and
V.3.5 below. We thus decompose not L2(G(k)\G)x but qrL*(G(k)\G)x
(see [L] 7.6 and V.3.12). Finally, letting T tend to infinity, we check
that the slowly decreasing functions projg r 4 (for ¢ fixed and R-Paley-
Wiener) on G(k)\G, possess a limit in L>(G(k)\G)x ([L] 7.6 and 7.7
and V.3.14); the closed space generated by these limits is L(G(k)\G)g
and we obtain the desired decomposition. It is more or less immediate
that L?(G(k)\G)g meets the discrete spectrum if and only if the elements
of € are reduced to a point (i.e. projgr is defined without integration).
This space is then entirely contained in the discrete spectrum and we
say that € is the singular class attached to this space. In general, as a
representation of G, this space is not irreducible, it is even of infinite
length (see the example of G,).
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The goal of Chapter VI is to describe L*(G(k)\G)¢ when this space
does not belong to the discrete spectrum, with the help of a part of the
discrete spectrum of a standard Levi of G. To avoid non-conceptual
difficulties, we continue to suppose here that k is a number field. The
result is then as follows.

We show that there exists a pair (L, 3), unique up to association, where
L is a standard Levi of G and § is a subspace of the spectrum of L of the
form L*(L(k)\L)s, (where € is a singular class, as above) characterised
by:

V&, € &, B, is reduced to a point (see above), denoted by 7y,
and 7, ® X¢ is an element of € (where X¥ is the analogue of
X§, defined at the beginning of the introduction) (see ([L], 7.2) and
VL1.9).

Then we show that L?*(G(k)\G)s is generated by the integrals over
the imaginary axis of X of Eisenstein series of L to G associated
with automorphic forms for L contained in . The integral is just a
limit in the L? sense explained above (see V1.2.2 and the formulation
given by Arthur at Corvallis ([A1]) of Langlands’ results). In fact, this
description of L%(G(k)\G)s is, as Langlands explains in Appendix II
of his description, a consequence for all general © of the spaces Ag,
introduced above (see [L], 7.4 and V1.2.4) and of the functional equation
for the residues of Eisenstein series (see VI.1.5). We show in particular
that Ag, (for general n) can be identified with the space of Eisenstein
series from L to G constructed from automorphic forms contained in
8. For this, we use relatively precise information about the locations of
the poles of the residues of Eisenstein series, Res$ E(¢, n) defined above,
which is [L], corollary to 7.6 and V1.1.2. Langlands uses this information
in the proof of 7.7; we use it in the ‘reduction’ to the Levi (see VI.1.4)
which is implicit in ([L], 7.4 and after).

In Appendix I, we show that the covering G — G(4) is split over
every subgroup U(A), where U is the unipotent radical of a parabolic
subgroup of G. This is easy to prove if the characteristic of k does not
divide the number of sheets of the covering. It is much less easy in the
general case. The proof was communicated to us by P. Deligne.

In Appendix II we show that if k is a function field, every automorphic
form on G(k)\G is a linear combination of derivatives of Eisenstein series
(see 1.4). The reasoning is as follows. Let ¢ be an automorphic form on
G(k)\G. For every pseudo-Eisenstein series 8¢, the integral

1(,®) = / $(2)00(g) dg
GING
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is convergent. It is easy enough to express this by means of cuspidal
components of constant terms of ¢ (see 2.2). Then the implication
0o =0=I(¢,) =0

imposes on these components the condition that they satisfy a system of
linear equations. In particular, the cuspidal components of derivatives of
Eisenstein series are solutions of this system. We show that every solution
of this system comes from such a function. The argument is algebraic:
it is here that we use the hypothesis that k is a function field. The final
result is an easy consequence of this.

Appendix III studies the part of the discrete spectrum of a group
of type G, coming from a minimal Levi and its trivial representation.
Langlands showed that the subspace of vectors of this spectrum invariant
under the maximal compact subgroup is of dimension 2. We remove this
hypothesis of invariance (we do keep it for the archimedean places; we
suppose k is a number field). The result is bizarre...

In Appendix 1V, we study the modifications necessary to the theory
when G is no longer supposed (algebraically) connected. We are thinking,
for example, of the case of the orthogonal group. Essentially, we can say
that the results are exactly the same as in the connected case, as long
as the split ranks of the center of G and of its connected component
of the identity G° are equal. In order to perform the inductions, we
are led to define the notion of Levi subgroup in such a way that these
subgroups satisfy these conditions. For this, if M? is a Levi subgroup of
G° we associate with it a Levi subgroup M of G which is by definition
the commutator in G of the largest split central torus in M® With
these definitions, the results of Chapters 5 and 6 can be extended to the
non-connected case. There are however some problems which must be
resolved. For example, over a local field, there does not always exist
a compact maximal subgroup intersecting every connected component.
There is no Iwasawa decomposition in this case. But we show that this
does not seriously perturb the proofs. If G does not satisfy the condition
mentioned above, we must introduce the group ¢/, the commutator in G
of the largest split central torus in G°. This group satisfies the desired
condition and the spectral decomposition for the group G can be deduced
by induction from the one for G’. Note, for example, that for such a
group, the ‘discrete spectrum’ is reduced to {O}!

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521418933
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521418933 - Spectral Decomposition and Eisenstein Series
C. Moeglin and J. -L. Waldspurger

Frontmatter

More information

Notation

k, A, Aoo, Af, q, G, K, G, i(; 111

Py, My, Zg, K, M, Zg, Rat(M), M!, M}, |y, a};, Rea},, ap,
Reay, Xy, X5, ReXy, ImXy, «: a3 — Xy, logy,

mp : G > M\M L.14

ZL 115

To, R(To,G), R¥(To,G), Ao, R(To,M), AY, Tu, R(Tu,G), Au,
(a})*, 116 '

W, Wy, W(M) 1.1.7

& o L1.11

po, pp L.1.13

Am, MY, S, ST 121

lgll 1.2.2

o, U123

LYG(k)\G); 1.2.5

¢p 1.2.6

My(P,t) 1.2.7

s¢ 1.2.9

zp, AT 1.2.13

3 3™, ¢, A(UBIM(K\G), A(UBIM(K)\G); 1.2.17

PP Ag(U(A)M(K\G): 1.2.18

Xum(Am), 3(Am; A, N), C[Reay], qp 1.3.1

A(UBIMKNG)z 1.3.2

IIo(M)e, Ho(M), Ag(U(LYMKNG)z, xz, Ren, Imn, —n, —% 1.3.3
D(M, ¢), TIH(M, ¢) 1.3.3 and 1.3.5
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Co(U(B)M(K)\G) 1.3.4
3P 135

A(d,R,Y) 142

s(ep,r) 143
A((Vp,Tp,Np)p,cpcg) 14.4

w; 14.11

A(UBYM(K)\G), 1L1.1

Fix ¢ 9 11.1.1

Pospy 1112

eF(¢) 11.1.3

PR g 1114

E(¢,m) 1115

M(w,n) I1.1.6

W(M, M) 11.1.7

6, 11.1.10

(M, ) ~ (M, B) 11.2.1

B Py, 122

©%, L%, HE, X%, HE¢, fm. 1111
Ag(f) IIL1.2

HE, 11114

A(f) 1I1.1.4 and TI1.2.1

Az, ATILLS

pr, 4t III.1.6 and V.2.8

©F, HE, ©;, HY,, HR: 11117
0% 111.2.3

H{® 111.2.4

AX(G(k)\G), 111.3.1

N(G) 11132
§ Ae, L% LY,
%y IV.1.7

% 1vV2.1

kn, ATk, IV.2.5
ET 1V32

FT 1v33

Vi, €T, Vis IV35
E1v3e

X, V.11
Stab(M, ) V.11
6°, &° V1.1
H, V.11

S, Sx V.1.1

#B1V.1.1
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s vl

G.r =T V.1.5(a)

Az V.1.5(a)

p¥vat

R, P5E, V2.1

o(®) V.2.1

T — §-general point V.2.1

A(¢',¢) V.2.1 and V.3.1

Norm®, Res$ V.2.2

HR V29

®g, z(®) V.3.1

®~ 6 Vil

[Sx], [S%] V31

re(¢’, ¢), mgr(¢’,¢) V3.1

proj§ V.32 and V.3.3

eg(¢, n), Aen V.32

Lg% V32

Pe V.33

P(”,, P‘ET, V33

€>¢ V33

[S¥] V.33

Hllbe r Fp V.3.10 or 11

SmgT"’, Sing %% v.3.12

LZ(G(k)\G)x,g V.3.12 corollary

Sing® V.3.14

Hilbg V.3.14 corollary

¢, PBr, VL1 introduction

Mg VL1.1

Xr, [Sx,] V1.1.4(a)

Resg, VI.14(b)

WL VI.2.1(iv)

Der X Appendix II, 1.3
Y, P% Appendix II, 2.1

N(w, 7:) Appendlx II, 2 3

SM, SM, SM » SMzs SM,t, SM,[, smx Appendix II, 2.4
(., .) Appendix II, 2.5

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521418933
http://www.cambridge.org
http://www.cambridge.org

