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1
Elements of probability theory

1.1 Definitions

The concept of probability is of considerable importance in optics, as in any
situation in which the outcome of a given trial or measurement is uncertain.
Under these conditions it is desirable to be able to associate a measure with the
likelihood of the outcome or the event in question; such a measure is called the
probability of the event.

Several different definitions of probability have been adopted at various times
in the past. The classical definition is based on an exhaustive enumeration of the
possible outcomes of an experiment or trial. If the trial has N distinguishable,
mutually exclusive outcomes, which are equally likely to occur, and if » out of
these N possible outcomes have an attribute or characteristic that we call
‘success’, then the probability of success in any one trial is given by the ratio n/N.
For example, if we roll a die, and if each of the six digits is equally likely to be on
top when the die comes to rest, there are N = 6 distinguishable outcomes. If we
identify success with an even number, for example, then since there are three
different ways in which success can be achieved, it follows that the probability of
success when the die is rolled is given by 3/6 = 1/2. Unfortunately, an exhaustive
enumeration of all possibilities is not always feasible.

Another common definition of probability is based on the notion of relative
frequency of success. If in a large number of N independent trials the successful
attribute appears n times, then the relative frequency of success is n/N. When N
becomes very great, we identify this ratio with the probability of success in any
one trial. However, n/N does not have a limit as N — « in the mathematical
sense.

Alternatively, the concept of probability can be introduced in an axiomatic
way, in which we simply associate measures p(A), p(B), p(C), ... that we call
probabilities with all possible outcomes or events A, B, C, ... of a trial. If the
total event space is denoted by £, then A € Q, B € £, etc. It is convenient to
introduce the following notation which is illustrated geometrically by the Venn
diagrams in Fig. 1.1:

AUB=A+ B

denotes the combination or union of the two events A and B, which implies
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2 Elements of probability theory

Z

(@) ® Q) (d)

Fig. 1.1 Venn diagrams for certain combinations of events A and B. The
shaded area illustrates the notion of (a) A or B or both; (b) both A and B; (¢)
not A; (d) A but not B.

either A, or B, or both (see Fig. 1.1(a));
ANB=A,B

denotes the intersection of the two events A and B, which implies both A and B
(see Fig. 1.1(b));

A=-A4A
denotes the complement of the event A, which implies not A (see Fig. 1.1(c));
ANB=A-B

denotes the intersection of event A with the complement of B, which implies A
but not B (see Fig. 1.1(d)). The null event (J is the complement of Q. In all cases
the notation on the right is the one customary in probability theory, and that on
the left is the usual set theoretic notation. Figures 1.1(a) to 1.1(d) illustrate the
notions of union of two events, intersection of two events, etc., etc., geometric-
ally. Two events A and B are said to be disjoint or mutually exclusive if they do
not overlap at all, or the intersection A, B is the null event .

The following three axioms suffice to determine the properties of the probabil-
ity p(A) of a given event:

(a) p(A)=0, (1.1-1)
(b) p(Q) =1, (1.1-2)
(c) if Ay, A,, As, ... are mutually exclusive events, then

P(Al + A2 + A3 + .. ) = P(Al) + p(Az) + p(Ag,) + ..., (11—3)

Equation (1.1-2) may be interpreted to mean that the probability of an outcome
that is certain is unity. As A + A = Q, and A and A are mutually exclusive, it
follows from Eq. (1.1-3) that

p(A) + p(A) = p(A + 4) = p(),
and from Egs. (1.1-1) and (1.1-2)
0=<plA)=1. (1.1-4)

The bounds on any probability are therefore zero from below and unity from
above.
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1.2 Properties of probabilities 3

1.2 Properties of probabilities

Several important corollaries follow immediately from these relations. If the
events A;, A;, As, ..., Ay are mutually exclusive and represent the set of all
possible outcomes, so that A; + A, + ... + Ay = £, then from Egs. (1.1-2) and
(1.1-3) it follows that

N N
le(Ai) = p(ZlAi) =p(Q) =1 (1.2-1)

Also, if A is a subset of B, or A C B, as illustrated by the Venn diagram in Fig.
1.2, then A and B — A are mutually exclusive, and their union is B, so that by
Eq. (1.1-3)

p(A) + p(B — A) = p(B),
or
p(A) = p(B) when A C B. (1.2-2)

Finally, we note that an event that cannot occur has probability zero, because
D+ 2= Q, so that

p(@) + p(2) = p(£2),

and

p() =0. (1.2-3)
Thus if A and B are mutually exclusive, then the probability of both A and B
p(A, B)=0.

1.2.1 Joint probabilities

Events that are obtained by compounding other events are known as joint events,
and the corresponding probabilities are joint probabilities. Thus p(A, B) is the
joint probability of both events A and B, or the probability of the intersection of
A with B. The order in which the events A and B are listed is immaterial. As the
compound event A, B is a subset of the event A (see Fig. 1.1(b)), it follows from
Eq. (1.2-2) that

p(A, B) < p(A),
and similarly (1.2-4)
p(A, B) < p(B).

Fig. 1.2 Illustrating 4 as a subset of B.
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4 Elements of probability theory

The joint probability for two events is therefore always less than or equal to the
probability for one of the events alone.

If By, By, ..., By is aset of all possible mutually exclusive events, then
M
2 P(A, B) = p(4, Q) = p(A). (1.2-5)

i=1

This result follows immediately from the fact that A, B; A, B, ... is also a set of
mutually exclusive events spanning the whole space (see Eq. (1.1-3)). More
generally, joint probabilities may involve more than two events. If C;, C,, ...,
Cy is a complete set of mutually exclusive events, then

N
>p(A,B,C,D,...)=p(A,B,D,...). (1.2-6)
k=1

Let us now consider the situation in which two events A and B are not
necessarily mutually exclusive (see Fig. 1.1(a)), and let us calculate the probabil-
ity p(A + B) of the union A + B. We cannot apply the summation law (1.2-6) to
A and B directly. However, we note that the two events A and B — A (cf. Figs.
1.1) are mutually exclusive, and their union is A + B. Then according to Eq.
(1.1-3),

p(A) + p(B - A) = p(A + B). (1.2-7)
Also, B — A and A, B are mutually exclusive with union B, so that
p(B) = p(B - A) + p(A, B).
If we substitute for p(B — A) in Eq. (1.2-7), we obtain immediately
p(A + B) = p(A) + p(B) — p(A, B), (1.2-8)
so that
p(A + B) < p(A) + p(B). (1.2-9)

Equation (1.2-8) is known as the composition law for two events that are not
necessarily mutually exclusive. The relation is readily generalized to N events A,

A,, ..., Ay, for which it may be proved by induction that
N N N N N N
P(Ai + Ay + ...+ AN) = ZP(A:') - 22 p(A;, A)) + ZZEP(Ai, Aj, Ap)
=t (év;:;irs li]etk
(7)) triplets
— .+ (DN Ip(Aq, Ay, L, AR). (1.2-10)

Also, by repeated application of the inequality (1.2-9), one readily finds that
p(Ai+ A+ ...+ AN < p(A1+ A+ ...+ Ay_1) + p(AN)
< p(Ar+ Ay + ...+ Ay2) + p(An-1) + P(AN)
< p(Ay) + p(Ay) + ... + p(Ap), (1.2-11)

with the equality sign holding for the special case of mutually exclusive events.
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1.2 Properties of probabilities 5

1.2.2 Conditional probabilities

The probability of some event A conditioned on some other event B is known as
the conditional probability of A given B, and it is frequently denoted by P(A|B).
It is given by the ratio

P(A[B) = p(A, B)/p(B), (1.2-12)

and it is, of course, defined only when B is not a null event. From Eq. (1.2-4) it
follows immediately that

0<®(A|B) <1, (1.2-13)

so that a conditional probability is a true probability, with all the properties given
earlier. If A, A,, ..., Ay is a complete set of mutually exclusive possible
outcomes, then by virtue of the property (1.2-5) we have

N
SP(AB) = 1. (1.2-14)
i=1

If the conditional probability of A given B is equal to the unconditional
probability of A, or
P(A|B) = p(4), (1.2-15)

then it evidently does not matter whether event B occurs, or not, so far as event
A is concerned. Events A and B are then described as being statistically
independent. From Eqs. (1.2-15) and (1.2-12) we see that

p(A, B) = p(A)p(B) (1.2-16)

whenever A and B are statistically independent, and this is sometimes taken to be
the defining relation for statistical independence. More generally, the necessary

and sufficient condition for N events A;, A,, ..., Ay to be statistically
independent is that the joint probability factorizes in the form
p(Ay, Az, ..., Ay) = p(A1)p(Ay) . .. p(AN). (1.2-17)

A similar relation then holds for any subset of the N events. Needless to say,
events that are mutually exclusive cannot be statistically independent, because the
joint probability for mutually exclusive events is zero (except for the trivial case in
which one or more of the events cannot happen at all).

A simple example may be helpful. Suppose that a die is rolled, and the number
ending up on top is registered. We are interested in events of type A in which the
number is divisible by 2, events B in which the number is divisible by 3, and
events C in which the number is prime. These events are described by the
following sets, with the indicated probabilities:

A=(2,4,6), p(A)=3;
B=(3,6), p(B)=3% (1.2-18)
C=(23,5), p(C)=51
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6 Elements of probability theory

The intersections among these sets are given by
(4,B)=(6), p(A,B)=5
(4,0 =@, p(4,0) =3
(B,C)=(3), p(B.C) =3

(1.2-19)

It follows that

p(A, B) = p(A)p(B)
(A, C) # p(A)p(C) (1.2-20)

p(B, C) = p(B)p(0),

so that A and B are statistically independent, as are B and C, but A and C are
not statistically independent.

1.2.3 Bayes’ theorem on inverse probabilities

From the definition (1.2-12) of conditional probability the following two relations
follow:

p(A, B) = ?'(A|B)p(B)
p(A, B) = P(B|A)p(A).

On equating both expressions for p(A, B) we obtain for mutually exclusive
events A and B

P(B|A)p(A) _ _P(BlA)p(A)
p(B) S @(Bla)p(a)
allA
where we have made use of Eq. (1.2-5) in the last expression. This relation is
known as Bayes’ theorem. If we call P(B|A) the conditional probability of B
given A, we may think of ?'(A|B) as the inverse probability of A given B.
Bayes’ theorem then allows the inverse probability to be determined from the
forward conditional probability together with p(A). In practice the theorem is
often applied to experimental situations in which A is to be determined from
measurements of B, but little or nothing is known about the a priori probability
p(A). Some assumption about the a priori characteristics of p(A) then has to be
made before Eq. (1.2-21) can be used, and this introduces a certain arbitrariness
into the procedure, which has been criticized.

Let us illustrate the problem by a simple example. A vessel contains N balls,
which are either black or white, in unknown proportion. A ball is picked at
random and is found to be white. We wish to determine the inverse probability
that the vessel contained n (0 < n < N) white balls originally in the light of the
experiment. Let P(1|n) be the conditional probability that a white ball is picked
when the vessel actually contains n white balls (n =0, 1, ..., N). From the
nature of the problem it is evident that P(1|n) = n/N. Then from Eq. (1.2-21)
the inverse probability %’(n|1) that the vessel originally contained n white balls,

P'(A|B) = (1.2-21)
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1.3 Random variables and probability distributions 7

given that a white ball is picked, is given by
g)/(nll) — N@(lln)p(n) _— (n/N)p(n) ,

N
S 2lmp(n) % (4/N)p(n)

where p(n) is the a priori probability that the vessel contains n white balls.
Unfortunately, nothing is known about p(n), so that, strictly speaking, Eq.
(1.2-22) cannot be applied. However, in the absence of further information, if we
arbitrarily assign equal weights to all values of n from 0 to N a priori, then
p(n) =1/(N + 1) and Eq. (1.2-22) leads to the solution

(1.2-22)

n

M i i oy

n
= (1.2-23)
>n
n=0
By making some assignment to the a priori probabilities p(n), we have been able
to calculate the inverse probabilities ?'(n|1). Although it may not be possible to
give a formal justification for this procedure, it nevertheless leads to quantitative
estimates that are often valuable.

1.3 Random variables and probability distributions

When the possible outcomes A of a trial or experiment are numbers, then the
outcomes are automatically mutually exclusive. It is convenient to regard these
numbers as the values of some variable x, which is known as a random variable or
variate. 1If the possible values of x consist of the countable set of numbers x;, x;,
X3, ..., then x is known as a discrete random variable, whereas if the possible
values are any numbers in some interval (a, b) (which may be infinite), x is
known as a continuous random variable. The set of all possible outcomes is
known as the ensemble of x. Usually the random variable is taken to be real, but
complex random variables z = x + iy, whose real and imaginary parts x, y are
both random variables, will also be encountered.

With each of the possible outcomes or values x;, x;, .. . of the discrete variate
we may associate a probability p; (i =1, 2, .. .), and as the different values are
mutually exclusive, the corresponding probabilities must sum to unity, by virtue
of Eq. (1.2-1),

Spi=1 (1.3-1)
all §
A graph of the probability p; versus x; as in Fig. 1.3(a) consists of a series of
points or lines, and illustrates the distribution of probability over the interval. In
the special case in which one value x; is certain, and none of the other values x,,
X3, . .. occurs, the form of p; is

pi = 8o, (1.3-2)

where §;; is the Kronecker delta symbol, i.e. §; = 1if i = j and §; = 0 otherwise.
If x is a continuous variate in the interval (a, b), it is convenient to associate a
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8 Elements of probability theory
px)} P
I l L - X - X
Xy Xx; X3 Xq4 X5 X5 X7 a b

(@) b
Fig. 1.3 Illustrating (a) discrete, (b) continuous probability distributions.

probability density p(x) with the ensemble of x, such that p(x)dx gives the
probability for x to be found in the infinitesimal interval from x to x + dx. Then,
corresponding to Eq. (1.3-1), we have the normalization condition

f bp(x)dx =1 (1.3-3)

The form of p(x) gives the probability distribution of the variate x (see Fig.
1.3(b)). The probability P(x < X) for x to be equal to or below X (a< X <b)is
given by the integral

X
Px<X)= f p(x)dx. (1.3-4)

a

Corresponding to Eq. (1.2-2) we have the relation
P(ngl)gp(XSX2) when Xngz. (1.3'—5)

P(x < X) is therefore an increasing function of X that is bounded by unity, and
its derivative is the probability density

dP(x < X) _
dx

The probability density p(X) may not exist as an ordinary function when
P(x < X) is discontinuous, but it cannot be more singular than a Dirac delta
function. If the continuous random variable x takes on the value xo, with
certainty, then p(x) has the form

p(x) = 8(x — xo), (1.3-7)

which can be compared with Eq. (1.3-2) for a discrete random variable. The need
for delta functions to describe probability densities can be avoided by the use of
Stieltjes integrals (Yaglom, 1962, Chap. 2, Sec. 9), but we shall not hesitate to use
delta functions here. Indeed, by the introduction of delta functions we can
incorporate the treatment of discrete variates in the treatment of continuous
variates. If a discrete variate takes on the values xy, x,, . . . with probabilities p,,

p(X). (1.3-6)

D2, ..., then we can formally describe this situation by a continuous variate x
having the following probability density p(x):
p(x) = 2 pid(x — x). (1.3-8)

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521417112
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-41711-2 - Optical Coherence and Quantum Optics
Leonard Mandel and Emil Wolf

Excerpt

More information

1.3 Random variables and probability distributions 9

Because of this, and in order to avoid repetition, we shall henceforth formally
regard x as a continuous variate.

A cautionary note regarding notation may be in order here. If x and y are two
different random variables, their probability densities are sometimes denoted by
p(x) and p(y), respectively, without any implication that the functional forms of
the two probability distributions are equal. However, it is generally safer to use
different symbols, e.g. p(x) and P(y), for two probability densities that are not
necessarily equal.

1.3.1 Transformations of variates

Let x be a random variable defined on the interval (a, b) with probability density
p(x). It is sometimes necessary to make a transformation from x to a new
variable y, where

y=fx), Asy=<B, (1.3-9)

and we wish to determine the probability density P(y) of y. Let us first suppose
that the transformation (1.3-9) has a single-valued inverse,

x = g(y). (1.3-10)

Then if x and y correspond to each other, and the interval dx corresponds to the
interval dy, then evidently

P(y)|dy| = p(x)|dx|,

dy ‘

= plgWlg' ()|

_ _pley)] (1.3-11)
Lf'le

More generally, if the inverse is multivalued, and to a given y there correspond
several x’s

so that

P(y) = p(x)

x1 = g1(y)
X2 = ga(y) (1.3-12)

then we need to add the probabilities associated with these different, mutually
exclusive x’s, and we have in place of Eq. (1.3-11)

P(Y) = Sp(x)| -

Y [x=x;

= 2 pl&MNIgi(y)]

pl&i(»)]
1.3-13
2lf ‘a1l ( )
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10 Elements of probability theory

The same result can also be formally expressed in the more compact form

P(y) = [p()8ly = f())dx, (13-14)
if we expand the delta function in the usual way in terms of its zeros,
8(x — x;
oy - f()] = 2(—,—). (1.3-15)
A EH]

Equation (1.3-14) can be interpreted to mean that the probability density of y is
obtained by integrating the probability density p(x) of x over all those values of x
that correspond to y, i.e. those which are subject to the constraint y = f(x).

As an example we consider the change of probability under the transformation
y = x?, which has the double-valued inverse

x==xVy
L
dy 2y
In this case Eq. (1.3-14) gives
PGy = PV L POV ooy, (1.3-16)

2y 2y

Next we consider the more general situation in which we have a set of N

variates xi, X», . . . , Xy, With joint probability density p(xq, X2, ..., xy), and we
wish to transform to a new set yi, y,, ..., Yy, With probability density
P(yi, y2, ..., yn). If the transformation

y,=f,(x1,x2,...,xN), (r=1,2,...,N)

has a single-valued inverse

xr=gr()’1,)’2,---,)’N)’ (r=1’2’--->N)’
then
P(y1, y2, - - -» ymldy1dys ... dyn| = p(x1, x2, . . ., xy)| dxydx, . . . dxyl,
(1.3~17a)
and
P(.Yl’ Y2, )’N) = |J|p(xl9 X2y v ooy XN), (13—'17b)

where J is the Jacobian of the transformation

a(gl’ 825+ 40 gN)
a()’l’ Yas oo yN)

Once again we can express the transformation of the probability with the help of

17l =
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