Contents

Preface xiii

1 An introduction to the simulation of electronic systems 1
1.1 Introduction 1
1.2 Four aims of simulation 2
1.2.1 Functional correctness 2
1.2.2 Speed of the system 4
1.2.3 Hazard detection 5
1.2.4 Expected outputs for test and fault simulation 6
1.3 Components of a simulator 6
1.4 Levels of simulation 7
1.4.1 System design 7
1.4.2 High level 9
1.4.3 Gate level 9
1.4.4 Circuit level 10
1.4.5 Switch level 11
1.4.6 Mixed mode 12
1.5 Models 13
1.6 Test program generation 14
1.7 Fault simulation 17
1.8 Timing verification 18
1.9 Conclusion 18

2 Electronic computer aided design (ECAD) systems 20
2.1 The design process 20
2.1.1 Specification 20
# Table of Contents

## 2.1.2 Partitioning the design

## 2.1.3 Test strategy

## 2.1.4 Constructional issues

## 2.1.5 Logical design

## 2.1.6 ASIC design

## 2.1.7 Interfaces and pin limitation

## 2.2 Design capture

## 2.3 Simulation

## 2.4 Test program generation

## 2.5 Placement and routing

## 2.6 Wiring delays

## 2.7 Silicon compilation

## 2.8 Conclusion

## 3 Design for testability

### 3.1 Cost of testing

### 3.1.1 Advantages and penalties

### 3.1.2 Problem size

### 3.1.3 Combinational and sequential logic

### 3.1.4 Design for testability

### 3.2 Initialisation and resetting

### 3.3 Scan design

### 3.4 Boundary scan

### 3.5 Self-testing

### 3.5.1 Dedicated test logic

### 3.5.2 Signature analysis

### 3.5.3 Built-in logic block observation (BILBO)

### 3.6 Controllability and observability

#### 3.6.1 Concepts

#### 3.6.2 Controllability

#### 3.6.3 Observability

#### 3.6.4 Testability

## 4 Exercising the design in simulation and test

### 4.1 Objectives and approaches

### 4.1.1 Objective

### 4.1.2 Modelling faults

### 4.1.3 Assessment of test coverage

### 4.2 Testing for design faults

### 4.3 Testing for manufacturing faults
## Contents

4.4 The D-algorithm .............................................. 73
4.4.1 Basic ideas ............................................. 73
4.4.2 Primitive D-cubes of failure ......................... 76
4.4.3 Primitive D-cubes of a logic block (propagation D-cubes) ........................................... 79
4.4.4 Example of use of D-cubes ......................... 82
4.4.5 Enhancements to the D-algorithm ................. 85
4.5 Reducing the number of test vectors ............... 88
4.6 The MOS stuck open fault ............................ 90
4.7 High level testing ........................................ 93

5 Input/output of simulation and specification of models ........................................... 96
5.1 Input and output of simulation ....................... 96
5.2 Simple driver ............................................. 98
5.3 Simulation output ....................................... 100
5.4 Operation in parallel and in sequence ............ 102
5.5 More general modelling facilities ............... 107
5.5.1 WAIT .................................................. 107
5.5.2 The LOOP statement .............................. 108
5.5.3 CASE statement ................................... 109

6 Simulation algorithms .................................................. 111
6.1 Introduction ................................................ 111
6.2 Compiled code simulation ............................. 113
6.2.1 Basic procedures .................................. 113
6.2.2 Simulator structures ................................ 115
6.2.3 Detailed example .................................. 116
6.2.4 Handling feedback ................................. 118
6.2.5 Some comments ..................................... 121
6.3 Event driven simulation ............................... 122
6.3.1 Introduction ......................................... 122
6.3.2 Basic procedures .................................. 124
6.4 An example – a four-gate not equivalence circuit ........................................... 131
6.5 Some refinements ......................................... 140
6.5.1 Affected component list and memory ........ 140
6.5.2 Time wheel overflows ............................. 142
6.5.3 Wiring delays ........................................ 143
6.6 Groups of signals ........................................ 144
6.6.1 Usefulness and problems ......................... 144
6.6.2 User-defined values ............................... 145
## Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6.3</td>
<td>Group splitting</td>
<td>146</td>
</tr>
<tr>
<td>6.6.4</td>
<td>Group combination</td>
<td>148</td>
</tr>
</tbody>
</table>

### 7 Models and model design

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Some simple models</td>
<td>150</td>
</tr>
<tr>
<td>7.2</td>
<td>Delays</td>
<td>150</td>
</tr>
<tr>
<td>7.3</td>
<td>Model of a buffer</td>
<td>152</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Development of the algorithm</td>
<td>153</td>
</tr>
<tr>
<td>7.3.2</td>
<td>State machine representations</td>
<td>158</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Model of a simple gate</td>
<td>162</td>
</tr>
<tr>
<td>7.4</td>
<td>Inertial delay</td>
<td>163</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Equal rise and fall delays</td>
<td>163</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Unequal rise and fall delays</td>
<td>164</td>
</tr>
<tr>
<td>7.5</td>
<td>A three-value model</td>
<td>167</td>
</tr>
<tr>
<td>7.6</td>
<td>A five-value model</td>
<td>169</td>
</tr>
<tr>
<td>7.7</td>
<td>Logical combinations and non-logical values</td>
<td>170</td>
</tr>
<tr>
<td>7.8</td>
<td>Signal strengths</td>
<td>171</td>
</tr>
<tr>
<td>7.9</td>
<td>Towards a model for a flip-flop</td>
<td>175</td>
</tr>
<tr>
<td>7.9.1</td>
<td>More complex models</td>
<td>175</td>
</tr>
<tr>
<td>7.9.2</td>
<td>The 74xx74 style flip-flop</td>
<td>175</td>
</tr>
<tr>
<td>7.9.3</td>
<td>The preset / clear (P.C) mode</td>
<td>177</td>
</tr>
<tr>
<td>7.9.4</td>
<td>The clock controlled mode</td>
<td>179</td>
</tr>
<tr>
<td>7.9.5</td>
<td>Timing errors</td>
<td>181</td>
</tr>
<tr>
<td>7.10</td>
<td>High level modelling</td>
<td>183</td>
</tr>
<tr>
<td>7.10.1</td>
<td>Behavioural models</td>
<td>183</td>
</tr>
<tr>
<td>7.10.2</td>
<td>Hierarchical models – structural</td>
<td>184</td>
</tr>
<tr>
<td>7.11</td>
<td>Wire gates</td>
<td>186</td>
</tr>
<tr>
<td>7.12</td>
<td>Hard models</td>
<td>187</td>
</tr>
<tr>
<td>7.12.1</td>
<td>Non-memory devices</td>
<td>187</td>
</tr>
<tr>
<td>7.12.2</td>
<td>Memory</td>
<td>190</td>
</tr>
</tbody>
</table>

### 8 Timing verification

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>192</td>
</tr>
<tr>
<td>8.2</td>
<td>Computing the critical path</td>
<td>192</td>
</tr>
<tr>
<td>8.3</td>
<td>Methods of timing verification</td>
<td>193</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Path enumeration</td>
<td>195</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Block orientated path trace</td>
<td>196</td>
</tr>
<tr>
<td>8.4</td>
<td>Description of the network</td>
<td>196</td>
</tr>
</tbody>
</table>
Table of Contents

9 Fault simulation

9.1 Introduction 207
9.2 Reducing the problem size 209
9.2.1 Static reduction of tests 210
9.2.2 Dynamic reduction of the Nishida cube 211
9.3 Parallel methods of fault simulation 212
9.3.1 Single fault propagation 213
9.3.2 Extension to include faults in the wiring 214
9.3.3 Assessment 215
9.3.4 Parallel pattern single fault propagation (PPSFP) 216
9.3.5 Extension to wiring faults 218
9.3.6 Evaluation 218
9.3.7 Multiple values 219
9.3.8 Parallel fault simulation 220
9.3.9 Fault dropping 221
9.4 Concurrent fault simulation 223
9.4.1 General description 223
9.4.2 Detailed example 225
9.4.3 Change of input 228
9.5 Parallel value list (PVL) 230
9.5.1 Detailed example 231
9.5.2 Change of input 233
9.5.3 Comment 234
9.6 Assessment of simulation methods 235
9.6.1 Parallel methods of fault simulation 235
9.6.2 Concurrent fault simulation 236
9.6.3 Deductive fault simulation 237
9.7 Some alternatives to fault simulation 238
9.7.1 Critical path tracing 238
9.7.2 Statistical methods 239
9.7.3 Block orientated fault simulation 240
9.8 Timing in fault simulation 240
9.8.1 Delay faults 240
9.8.2 Oscillations and hyperactivity 241

8.5 False paths 198
8.6 Use of timing verification 202
8.7 More complex models 205
Table of Contents

10 Simulator features and extensions 243
  10.1 Desirable features of a simulator 243
  10.2 Getting value from the simulator 246
  10.2.1 Computer aided design 246
  10.2.2 Models 247
  10.2.3 Testing functionality 248
  10.3 Wires in high speed logic 250
  10.4 Simulation accelerators 251
  10.4.1 Point acceleration 251
  10.4.2 Zycad engines 252
  10.4.3 Dazix Gigalogician 253
  10.4.4 IBM machines 254
  10.4.5 Assessment 255
  10.5 Whither now? 255

Appendix 258

References 260

Index 270