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I. BASIC RESULTS FROM DESIGNS

In this first chapter, we collect together and review some basic
definitions, notation, and results from design theory. All of these are
needed later on. Further details or proofs not given here may be
found, for example, in Beth, Jungnickel and Lenz [15], Dembowski [61],
Hall [74], Hughes and Piper [95] , or Wallis [177]. We mention also the
monographs of Cameron and van Lint [49], Biggs and White [18], and
the very recent one by Tonchev [175].

Let X = {x;, x,, ..., x} be a finite set of elements called points or
treatments and 8 = {Bl, B,, ..., Bb} be a finite family of distinct k-
subsets of X called blocks. Then the pair D = (X, f) is called a t-(v,

k, ) design if every t-subset of X occurs in exactly A blocks. The
integers v, k, and A are called the parameters of the t-design D.

The family consisting of all k-subsets of X forms a k-(v, k, 1) design
which is called a complete design. The trivial design is the v-(v, v, 1)
design. In order to exclude these degenerate cases we assume always
thatv >k >t>1and A21. We use the term finite incidence
structure to denote a pair (X, §), where X is a finite set and fBis a
finite family of not necessarily distinct subsets of X. In most of the
situations of interest in the later chapters, however, we will have to
tighten these restrictions further. For example, though we do not
impose the condition that the blocks be distinct sets, that usually would
be the case in view of some other stipulations.

A t-design, or more generally an incidence structure, is
completely specified up to labellings of its points and blocks by its usual
(0, 1)-incidence matrix N. This matrix N = (nij)vxb is defined by ni].

=1 or 0 according as x; € Bjor not. Two designs D; and D, are said to

be isomorphic (denoted by D = D») if there are bijections between
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their point-sets and block-sets respectively which preserve the
incidence. Equivalently, the incidence matrix N1 of D can be
changed to N, of D, by permuting rows and columns.

We give below three well known and small examples.

Example 1.1. The following picture is a 2-(7, 3, 1) design called the
Fano plane. Here the blocks are triples of points which lie on a line or
circle.

Example 1.2. Take complements of blocks in Example 1.1. We
obtain a 2-(7, 4, 2) design.

Example 1.3. In Example 1.1, add a new symbol e to the point set.
Form new blocks by taking the complements of old blocks; in addition
take old blocks adjoined with c. This new design is a 3-(8, 4, 1) which is

an example of the "smallest Hadamard 3-design." The general
construction is mentioned later on.

The following simple observation is an important tool in

combinatorics. It is known as the method of two way counting and is
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so commonly used in design theory that we often use phrases such as

"two way counting produces” or "counting S in two ways gives" etc.

Lemma 1.4. Let Uand V be finite sets and let Sc Ux V=
{(uv):ue UveW. Forallae U, beV, define subsets of S by
S@,.)={u,v)e S:u=a}) and S(.,b)={(u,v) e S:v="b}

Then 1S = £ 18(g,.)I = X IS(C,b)I.

aeclU beV

As an immediate application of the above, we have the following
result.

Theorem 1.5. Let D = (X, p) be a t-(v, k, 1) design. Then the
following assertions hold.
(@) Fori=0,1, .., t-1, if A; denotes the number of blocks containing
i points, then A, is independent of the choice of i points and in fact,
A=At g
(b) D is also an i-(v, k, 4;) design fori=1, 2, ..., t-1, where
(w-Dw-i-1)---(v 't+1)l
Ck-Dk-i-1) (K-t 4 1)

Ai

Proof. (b) follows from (a) using the formula for A, in terms of A,
and use of induction. Consider (a). We make an induction on j = t-i, i =
0, 1,..., t-1. Assume that any set of i+1 = t-(j-1) points is contained in
exactly A, ; blocks of D. Let {xq, Xy, ..., X;} be some set of i points of D.
Count pairs (x, B) in two ways, where x & {x1, Xy, ...,x;} and {x, Xy, ..., X;,
x} is contained in B. Then Lemma 1.4 gives (v-i) A;,; = (k-i) A, which

gives A, in terms of A, as desired and also shows that A, is an
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invariant of D. Observe that our argument has proved both the basis
and induction step of our proof.

Remark 1.6. An obvious necessary condition for the existence of a
t-(v, k, A) design is that A; be integral for 0 <i<t. This shows, for
example, that a 3-(11, 4, 1) design does not exist.

We have in a t-(v, k, A) design D that 7»0 = b, the number of
blocks, and denote by A = r the number of blocks through any point
of D. A t-(v, k, A) design is also denoted by S, (t, k, v). A
Steiner system is an S, (¢, k, v). A 2-design (which is not trivial nor
complete) is called a_balanced incomplete block design (BIBD) or simply

a_design. For 2-designs, counting flags (i.e., incident point-block pairs)
and then 2-flags (i.e., incident pairs of points with blocks) we have

Lemma 1.7. The parameters v, b, r, k, A of a 2-design satisfy
bk = vr and A(v-1) = r(k - 1).

Remark 1.8. Note that the first relation in Lemma 1.7 holds for
any 1-design and both the relations are also immediate consequences of
Theorem 1.5 (a) with i = 0 and 1 respectively. Since it sometimes serves

our purpose better to list all the parameters, a (v, b, r, k, A) design is

simply a (v, k, A) design where r and b are given by Lemma 1.7 and

must be integers. Then the obvious necessary conditions for the
existence of a 2-(v, k, 1) design are A(v-1) = 0 (mod k-1) and

Av(v-1) = 0 (mod k(k-1)). Hanani [76] has shown these conditions to
be sufficient for k = 3, 4, and 5, and every A, with the exception v =15,
k=5, A=2. Wilson [181] has proved the necessary conditions to be
sufficient asymptotically. Recently, Teirlinck [168] has proved that
non-trivial t-designs without repeated blocks exist for all t. This was a
major unsolved problem in design theory.
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Our discussion above should make it sufficiently clear that the
existence problem of 2-designs is much harder than the one for 1-

designs in view of the following result.

Theorem 1.9. A 1-design (v, b, r, k) without repeated blocks exists
if and only if vr=bk and b < ( z )

We give below D. Billington's [19] elegant proof of this result.

Proof. Observe that a 1-design is just a special case of a (k, ry, 15, ...,
r,) - design which consists of a collection of b blocks of cardinality k
chosen from a v-set X={1, 2, ..., v}, such that no two blocks are the
same, and each i € X occurs exactly r; times (i=1, 2, ..., v). A 1-design
satisfiesry =1, =..=1,=T.

Assertion: Suppose a (k, ry, Iy, ..., 1 )-design exists. If r; > 5 for some i #
jothena (k, 1y, 15, .., 14, 1571, Tip1s - Ty rj+1, Tjp1s s rv)-design exists.

To prove the assertion, suppose D is a (k, 1y, 1y, ...,r )-design with r;
> 1 for some i #j. Let By, B,, ..., B, be all the blocks which contain i, and
Cy, Cy, ..., Cpy, be all the blocks which contain j. Since r; > rj, we
necessarily have 0 <m < n. Hence D has a block B € {By, B, ..., B/}
such that Be {C;,C,, ..., C_}. Form B =(B\ (i) u {j}. Omitting block B
from D and replacing it by B results in a (k, Ty, Ty, .., Tyq, Ti71, Tipq, s
Ty I+ Tyqs s r,)-design. This proves the assertion.

We return to the proof of the theorem. The necessity is obvious.
Suppose now vr = bk and b s( Z ) . Choose any collection of b distinct
k-sets from X = {1, 2, ..., v} obtaining a (k, ry, 15, ..., )-design D for
which vr = bk = r{+ ry+...4r. That is, r is the average of Iy, Ty, o, Ty If
1> 1 for some i # j, then using the assertion, we can obtain a (k, S

i 5L L 1y, 1L r,)-design D' for which the average of the
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replication numbers is still r. Successive use of the assertion results in

a(k,r,r, .., r)-design. This completes the proof of the theorem.
The next result is easily proved.

Lemma 1.10. The incidence matrix N of a 2-(v, k, A) design
satisfies

(i) NNt = (r - )I + A J, where I is the identity matrix of order
v and ] the all one matrix.

(i) det (NN = (r - 1)*1 rk.

We now can get Fisher's inequality for 2-designs.

Theorem 1.11. In a non-trivial 2-(v, k, A) design, the number of

blocks b is greater than or equal to the number of points v.
Proof. Here det(NNt) # 0. Thus v = rank(NNt) < rank(N) <b.

A 2-(v, k, A) design is called symmetric if v = b. The next

result gives various characterizations of symmetric designs.

Theorem 1.12. The following are equivalent for a 2-(v, k, 1)
design D.

(i) D is symmetric.

() r=«k

(iii) Any two blocks intersect in A points.

(iv) The dual Dt of D is a 2-design.

Proof. (Outline) From the proof of Theorem 1.11, v = b implies
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that N is non-singular and by Lemma 1.7, r = k. Since NNt = (r-M)I + AJ
= (k-A)I +AJ and NJ = k] we have N-1J = k-1J, which can be substituted in
NN = N-INNN to obtain NN = (k-A)I +A] = NNt. This proves that
(i) and (ii) are equivalent and imply (iii), which clearly implies (iv). If
(iv) holds, then Theorem 1.10 applied to Dt gives b < v and v <b. So (i)
holds.

We recall that the dual D! of a design D is obtained by
interchanging the roles of points and blocks. Furthermore, a point B;

is incident with block x; in Dt if x; is incident with Bjin D.

Exercise 1.13. Give a matrix-free proof of Theorems 1.10 and 1.11.
In fact the following stronger result (Beth et al. [15] or Tonchev [175])
can be proved.

Theorem 1.14. If D is a design with s repeated blocks, then b 2 sv.

From Lemma 1.10, if D is symmetric then (det(N))2 = det(NN?) =
(k-A)v-1k2, Since all the numbers involved are integers, we obtain the
following result proved independently by Schutzenberger [142], Chowla
and Ryser [55], and S.S. Shrikhande [157].

Theorem 1.15. If there exists a symmetric 2-(v, k, 1) design with

v even, then (k - 1) must be a square.

The above theorem rules out, for example, a symmetric 2-(22, 7, 2)
design. The case of odd v (Theorem 1.16) needs deeper number
theoretic arguments than the simple matrix proof of Theorem 1.15.
Theorem 1.16 was proved by Chowla and Ryser [55] (a proof based on

the calculation of the Hasse-Minkowski invariant was also given by
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S.S. Shrikhande [157]) and Theorems 1.15 and 1.16 are together now
known by the name Bruck-Ryser-Chowla Theorem.

Theorem 1.16. A necessary condition for the existence of a
symmetric 2-(v, k, A) design with odd v is that the equation

x2=(k-A) ¥+ 1)@D/23;2 has an integral solution (x, y, z) # (0,
0, 0).

The above result rules out, for example, a symmetric 2-(43, 7, 1)
design. It was not known whether the conditions of the Bruck-Ryser-
Chowla Theorem were sufficient. Apparently they are not, in view of a
recent paper by Lam et al. [102].

Given a symmetric 2-(v, k, 1) design D and a block B, we can
obtain a 2-design DB called the residual of D with respect to B. The
points of DB are the points of D outside B. The blocks of DB are the
blocks of D minus the points of B. It is easily checked that DB is a 2-
(v-k, k-2, A) design. A 2-design is quasi-residual if it has the right
parameters to be the residual of a suitable symmetric 2-design. To be
specific a 2-(v, k, 1) design is called quasi-residual if r =k + A
(equivalently v = k(k + A -1)/4).

For A = 1, any quasi-residual design D is a 2-(k2, k, 1) design, i.e.,
an affine plane. The familiar process of embedding an affine plane in a
projective plane immediately shows that a quasi-residual design with
A =1 is the residual of a unique symmetric 2-design. The following
result of Hall and Connor [75] covers the case A = 2.

Theorem 1.17. Any quasi-residual 2-(v, k, 2) design is the
residual of a unique symmetric 2-design.
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We should also mention that the exact analogue of Theorem 1.17
for A > 3 is not true in general and there exist counterexamples (e.g.
[74]). However Bose, S.S. Shrikhande, and Singhi [30] proved that there
exists a function f(A) on the positive integers such that any quasi-
residual 2-(v, k, A1) design with A > 3 is the residual of a unique

symmetric 2-design if k> f(A).

Let D be a t-(v, k, A) design and p a point of D. The derived
design (or the point contraction) Dp with respect to pis the (£ - 1) -
(-1, k-1, A) design whose points are the points of D other than p
and whose blocks are the blocks of D passing through p. The residual
design DPis a (t- 1)- (v - 1, k, A1 - A) design, whose point set is that of
D, and whose blocks are those blocks of D missing p. A t-design D
is called extendable if there exists a (t+1)- design D* and a point e of D*
such that D = D*,. If D is a given t-(v, k, 1) design, then all the derived
designs of D are (t-1)-(v-1, k-1, A) designs and therefore have identical

parameter sets. This simple observation gives as a special case

Lemma 1.18. If D is a 3-design and if for some point p the derived
design Dy, is a symmetric design, then every derived design DgofDisa
symmetric design with the same parameters as those of D,

Proof. Apply the definition of a symmetric design and observe that
D, and Dy have identical parameters.

The naive looking Lemma 1.18 is an important tool in the proof of

Cameron's theorem discussed at the end of this chapter. The next
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result of Hughes [92] gives a simple necessary condition for
extendability.

Proposition 1.19. If a t-(v, k, A) design with b blocks is
extendable, then k + 1 divides b(v + 1).

Proof. Let D be a t-(v, k, A) design and D* its extension.
Apply the condition bk = vr to D* and note that here the number of
blocks through a point of D* is the number of blocks of D.

Applying Proposition 1.19 to a projective plane of order n (=
symmetric 2-(n? + n + 1, n + 1, 1) design), Hughes [92] obtained the
following:

Theorem 1.20. If a projective plane of order n is extendable, then
n=2,4,or 10.

Remarks 1.21. The projective plane of order 2 is uniquely
extendable to a 3-(8, 4, 1) design. The projective plane of order 4 is three
times extendable, giving the famous and unique 3-(22, 6, 1), 4-(23, 7, 1),
and 5-(24, 8, 1) designs (see e.g. [15]). Lam et al. [101], using a computer,
have shown that a plane of order ten is not extendable. (Lam, Thiel,
and Swiercz have apparently, very recently, ruled out the existence of a
plane of order ten [102]).

We now recall some well known and important constructions for
designs. Some of these will be often referred to later on. We list these
facts as remarks, and for details refer to the references mentioned
earlier.
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